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ABSTRACT

Eukaryotic cells respond to changes in environmen-
tal oxygen supply by increasing transcription and
subsequent translation of gene products required for
adaptation to low oxygen. In fission yeast, the ortho-
log of mammalian sterol regulatory element binding
protein (SREBP), called Sre1, activates low-oxygen
gene expression and is essential for anaerobic
growth. Previous studies in multiple organisms
indicate that SREBP transcription factors function
as positive regulators of gene expression by increas-
ing transcription. Here, we describe a unique
mechanism by which activation of Sre1-dependent
transcription downregulates protein expression
under low oxygen. Paradoxically, Sre1 inhibits
expression of tco1+ gene product by activating its
transcription. Under low oxygen, Sre1 directs trans-
cription of tco1+ from an alternate, upstream pro-
moter and inhibits expression of the normoxic tco1+

transcript. The resulting low-oxygen transcript con-
tains an additional 751nt in the 5’ untranslated region
that is predicted to forma stable, complex secondary
structure. Interestingly, polysome profile experi-
ments revealed that this new longer transcript is
translationally silent, leading to a decrease in Tco1
protein expression under low oxygen. Together,
these results describe a new mechanism for
oxygen-dependent control of gene expression and
provide an example of negative regulation of protein
expression by an SREBP homolog.

INTRODUCTION

To survive in diverse environments, organisms have
developed mechanisms to allow growth under conditions
of limiting nutrients. For many organisms including fungi,
oxygen is a critical nutrient and cells have evolved ways in
which to adapt to a hypoxic environment. Changes in gene
transcription and regulation of mRNA translation play
a critical role in the response to hypoxia. In mammals,

the hypoxia inducible factor (HIF) family of transcription
factors are the principal regulators of hypoxic transcrip-
tion (1). In addition, hypoxia regulates gene expression by
suppressing protein synthesis through the inhibition of
translation initiation (2,3). Both of these mechanisms
combine to mediate an adaptive response to limiting
oxygen supply in mammalian cells.

In the fission yeast Schizosaccharomyces pombe, the
transcriptional response to limiting oxygen is mediated by
the membrane-bound transcription factor Sre1, the yeast
homolog of the mammalian sterol regulatory element
binding protein (SREBP) which regulates cellular choles-
terol homeostasis (4). Sre1 (900 aa) contains two
transmembrane segments and is inserted into the ER
membrane in a hairpin orientation with the N- and
C-termini in the cytosol (5). The N-terminus of Sre1 is a
basic helix–loop–helix, leucine zipper transcription factor
that binds to a DNA sequence called a Sre1 regulatory
element (SRE) to activate transcription of adjacent genes
(6). Under atmospheric oxygen conditions, Sre1 is inactive
and remains sequestered in the ER membrane. Under low
oxygen, Sre1 exits the ER and is proteolytically cleaved in
a post-ER compartment to release the N-terminal trans-
cription factor (Sre1N), which enters the nucleus and
activates gene expression. Genome-wide mRNA expres-
sion analysis revealed that under low oxygen Sre1 is
primarily a transcriptional activator. Sre1 induces expres-
sion of 115 genes and controls expression of 68% of genes
upregulated >2-fold under low oxygen (6). Sre1 target
genes include oxygen-dependent enzymes in lipid and
heme biosynthesis as well as other gene products expected
to be required for hypoxic growth. Consistent with these
results, sre1+ is essential for growth under low oxygen
conditions (5). Unlike mammals, regulation of translation
by oxygen has not been reported in fission yeast.

To date, Sre1 and SREBPs are believed to function by
upregulating protein expression through increased gene
transcription (4,7). In this study, we describe a unique
mechanism for oxygen-dependent regulation of transla-
tion that requires Sre1. Unexpectedly, Sre1 inhibits
protein expression by upregulating transcription of the
target gene, tco1+. Under low oxygen, Sre1 directs trans-
cription of tco1+ from an alternate, upstream promoter
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that results in a transcript with a longer 50 untranslated
region (UTR). Interestingly, this longer low-oxygen
transcript is translationally silent, leading to a decrease
in Tco1 protein expression under low oxygen. Collectively,
these findings outline a new mechanism for oxygen-
dependent control of translation and provide an example
of negative regulation of protein expression by an SREBP
homolog.

MATERIALS AND METHODS

Strains, plasmids and standard procedures

Schizosaccharomyces pombe wild-type KGY425 (h�, his3-
D1, leu1-32, ura4-D18, ade6-M210) and sre1D strains have
been described previously (5,8). Materials, media and
standard procedures including northern blotting, western
blotting, chromatin immunoprecipitation and electro-
phoretic mobility shift assay have been described pre-
viously (5,6,9). Yeast deleted for tco1+/SPAC17G6.02c
were generated by homologous recombination using
standard techniques by replacing the tco1+ open reading
frame with the kanamycin resistance gene (10). The
tco1L� strain was created by replacing �1790 nt to
�1250 nt upstream of tco1+ ORF with ura4+. A sre1N
plasmid overexpressing sre1+ (1–1320 nt) from the thia-
mine repressible, nmt promoter was generated by inserting
a PCR product into the SalI–BamHI sites of REP3� (11).
The sre1N plasmid codes for Sre1(aa 1–440).
Supplementary Table 1 contains sequences of oligonucleo-
tides used.

Mapping the ends of tco1+mRNA

cDNA was generated using Superscript II (Invitrogen)
and an oligo dT primer from DNAse-treated RNA
extracted from wild-type cells grown +/� oxygen
for 6 h. 50 and 30 transcript ends were amplified using
Gene Racer kit (Invitrogen). The 50 and 30 Rapid
Amplification of cDNA Ends (RACE) products were
cloned into TOPO-TA vector (Invitrogen) and sequenced.
The tco1L 50RACE product was sequenced by primer
walking in three reactions. Five independent clones were
sequenced for both culture conditions and the longest
sequence shown by at least two clones was used.

Tco1 antiserum

An N-terminal GST-fusion to Tco1 (aa 263–324) in
pGEX4T1 was expressed in Escherichia coli using
standard techniques. Recombinant fusion protein was
purified using glutathione-agarose beads (Sigma), dialyzed
to remove excess glutathione, and used as antigen to
generate antiserum (Covance).

Polysome profiling

Polysomes were isolated as described previously with
minor modifications (12,13). Wild-type cells were grown in
rich medium in the presence or absence of oxygen for 8 h,
treated with 0.1mg/ml cycloheximide and immediately
placed on ice. Cells were centrifuged, washed in ice-cold
lysis buffer (20mM Tris–HCl pH 8.0, 140mM KCl,

1.5mM MgCl2, 0.5mM DTT, 0.1mg/ml cycloheximide
and 1mg/ml heparin) and lysed with glass beads in 1ml
lysis buffer by vortexing eight times for 30 s with
incubation on ice for 30 s between pulses. Following
addition of 100 ml each of 10% Triton X-100 and 10%
sodium deoxycholate, lysates were incubated on ice for
5min with an additional vortex pulse of 30 s. Lysates were
cleared and 25 A260nm units were layered onto a 11-ml
10–50% (w/v) sucrose gradient (containing 20mM
Tris–HCl pH 8.0, 140mM KCl, 5mM MgCl2, 0.5mM
DTT, 0.1mg/ml cycloheximide, 0.5mg/ml heparin) and
centrifuged at 35 000 r.p.m. in a SW41 rotor for 170min at
48C. Fractions (�950 ml) were collected using an ISCO
collection system and adjusted to 0.05% SDS. Following
addition of yeast tRNA (20 mg/ml) (Invitrogen) and
luciferase RNA control (0.1 mg/ml) (Promega) to each
fraction, RNA was precipitated overnight and purified
using RNeasy mini columns (Qiagen). cDNA was
synthesized from RNA using SuperScript First-Strand
Synthesis System (Invitrogen). The cDNA was diluted and
amplified using gene-specific oligos by quantitative PCR
(Bio-Rad) using Sybr-Green (ABgene). The Ct values for
the gene of interest were used to determine the normalized
value for each fraction using the formula [2^(Ctluciferase–
Cttarget gene)]. The relative RNA amount was calculated by
dividing the amount in each fraction by the total signal in
all fractions.

Model for RNA structure

The predicted secondary structures for tco1L (�1406
to �1 nt) and tco1S (�655 to �1 nt) 50UTR was
determined using the GeneBee RNA secondary structure
prediction software (www.genebee.msu.su/services/rna2_
full.html) (14). Default settings were used to derive the
models shown in Figure 6.

RESULTS

Transcriptional profiling experiments of oxygen-depen-
dent gene expression in S. pombe identified Sre1 target
genes that were upregulated under low oxygen (6). These
target genes functioned in diverse metabolic pathways
such as the synthesis of heme, ergosterol, ubiquinone and
sphingolipids. Additional expression profiling experiments
identified an uncategorized Sre1 target gene SPAC17
G6.02c, which was upregulated under low oxygen. SPAC
17G6.02c codes for a 324-aa RTA1-like protein that is
predicted to contain seven transmembrane domains. The
Saccharomyces cerevisiae genome codes for four homologs
of SPAC17G6.02c: RSB1, RTA1, RTM1 and an unchar-
acterized gene YER185W. Previous studies demonstrate
that these S. cerevisiae genes are involved in efflux of
different cytotoxic compounds, such as sphingoid long-
chain bases by Rsb1p (15), 7-amino-cholesterol by Rta1p
(16) and an unknown toxic substance in molasses by
Rtm1p (17). Due to the potential function of SPAC
17G6.02c in oxygen-regulated lipid transport, we char-
acterized this gene further and based on our results we
named it tco1+ for translation controlled by oxygen.
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To confirm that tco1+ is upregulated under low oxygen
by Sre1, we performed northern analysis using a strand-
specific probe on RNA isolated from cells grown in the
presence or absence of oxygen for increasing time
(Figure 1A). To our surprise, while the levels of tco1+

transcript increased under low oxygen, the size of the
tco1+ mRNA also increased from �2 to �3 kb
(Figure 1A, lanes 1–4). After 6 h of low oxygen growth,
cells expressed the long tco1+ transcript (tco1L) and not
the short tco1+ transcript (tco1S). Importantly, both the
upregulation of tco1+ and the increase in transcript size
required Sre1 (Figure 1A, lanes 5–8). Consistent with this,
the switch between tco1S and tco1L transcripts correlated
with the proteolytic activation of Sre1 and the increase of
cleaved Sre1N under low oxygen (Figure 1A, lower panel).
The increase in tco1+ transcript length could result

from differential splicing or changes in the length of the
mRNA UTRs. Given that tco1+ contains no predicted
introns, we used RACE to determine the sequences of
the 50 and 30UTRs for each transcript. In the presence of

oxygen, the tco1S 50UTR was 655 nt and in the absence of
oxygen the tco1L 50UTR was 1406 nt (Figure 1B, top
panel). The 30RACE revealed that the 30UTR was 390 nt
in both the tco1L and tco1S transcripts (Figure 1B, bottom
panel). In addition, the coding sequences of tco1L and
tco1S were the same length as determined by RT–PCR.
These data indicate that tco1L and tco1S differ in size due
to the presence of an additional 751 nt in the 50UTR
of tco1L.

Thus far, the data are consistent with a model in which
under low oxygen Sre1 directs transcription of tco1L from
an anaerobic promoter upstream of the aerobic promoter
that produces tco1S. To test whether Sre1 binds to the
tco1+ promoter in vivo under low oxygen, we performed a
chromatin immunoprecipitation experiment. Using pri-
mers positioned 100-bp upstream of the start of the tco1L

transcript to detect DNA binding, Sre1 bound specifically
to the tco1+ promoter and binding was increased 5-fold
under low oxygen (Figure 2A). Sre1 displayed oxygen-
dependent binding to the promoter of hem13+, a gene
required for heme biosynthesis, but not the Tf2-11
retrotransposon as expected from previous results (6,9).
Next, we scanned the genomic sequence 500-bp upstream
of the tco1L 50UTR for sequences that matched the SRE
consensus sequence determined previously (6). Two
potential SREs were identified (Figure 2B, Probes A
and B) and we assayed these sequences for their ability to
bind the DNA-binding domain of Sre1 in vitro in an
electrophoretic mobility shift assay (Figure 2B). Sre1
bound to Probe A located �1527 to �1518 nt upstream of
the tco1+ ORF as well as the positive control Probe C, a
SRE from the promoter of sre1+ (Figure 2B, lanes 2
and 4) (6). Sre1 did not bind the other candidate SRE,
Probe B located at �1651 to �1642 nt (Figure 2B, lane 3).
Together, these in vitro and in vivo binding experiments
suggest that under anaerobic conditions, Sre1N binds to a
SRE upstream of tco1+, leading to the synthesis of tco1L.

The low oxygen increase in tco1L transcript is accom-
panied by a decrease in tco1S transcript. To investigate if
synthesis of tco1L is required for decreased levels of tco1S,
we deleted sequences upstream of tco1S predicted to
contain the transcriptional start site and regulatory
elements for tco1L. In this strain designated tco1LD,
tco1L transcript was not expressed under low oxygen
and tco1S transcript was still present after 10 h of growth
under low oxygen (Figure 2C). These results indicate that
tco1L transcription is required to inhibit tco1S synthesis
and that Sre1 does not directly block tco1S expression.

Sequence analysis predicted that both the tco1L and
tco1S transcripts code for the same protein. To examine
the translation products of these two transcripts, we raised
antibodies to the C-terminus of Tco1, which is a predicted
membrane protein. Microsomes were prepared from wild-
type, sre1� and tco1� cells grown in presence or absence
of oxygen for 6 h and these membranes were analyzed by
immunoblotting for Tco1 (Figure 3A, upper panels).
Antibodies specifically recognized Tco1 as a doublet mig-
rating �30 kDa (Figure 3A, compare lanes 1 and 5).
Interestingly, when wild-type cells were cultured under
low oxygen to induce the tco1L transcript, levels of Tco1
protein were dramatically reduced (Figure 3A, lanes 1
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Figure 1. Low oxygen synthesis of tco1L requires Sre1. (A) Wild-type
and sre1� cells were cultured in the absence of oxygen for increasing
time. Upper panel: total RNA (10 mg) was subjected to northern
analysis using a tco1+ probe. 25S ribosomal RNA was imaged as
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and 2). In contrast, no decrease in Tco1 was observed
under low oxygen in sre1� cells which expressed tco1S

(Figure 3A, lanes 3 and 4). As expected, Sre1N levels were
highly upregulated under low oxygen in wild-type and
tco1� cells (Figure 3A, lower panel). These results indicate
that under low oxygen Tco1 protein expression is inhibited
by a mechanism that requires Sre1.

To test whether inhibition of Tco1 synthesis requires
both activation of Sre1 and low oxygen, we overexpressed
Sre1N in the presence of oxygen in wild-type cells. Cells
carrying either empty vector or a plasmid expressing
Sre1N from a thiamine repressible promoter were grown
in the presence or absence of thiamine (18). Overexpres-
sion of Sre1N induced tco1L and inhibited expression of
Tco1 even in the presence of oxygen (Figure 3B, lanes 3
and 4). Cells carrying the empty vector synthesized
tco1S and showed aerobic levels of Tco1 (Figure 3B,
lanes 1 and 2). These data indicate that activation of Sre1

is sufficient to induce expression of tco1L and inhibit Tco1
expression.
Next, we tested whether the inhibition of Tco1

expression by Sre1 is reversible. Sre1N has a short half-
life of 5–10min, and cleavage of Sre1 is rapidly inhibited
upon shifting cells to the presence of oxygen (B.H. and
P.E., unpublished data). Thus, Sre1N levels decrease
rapidly after reintroducing oxygen to an anaerobic
culture. For this experiment, we grew wild-type cells in
the absence of oxygen for 10 h to induce tco1L and inhibit
Tco1 expression (Figure 4, lane 2). Cells were then
harvested at different times following a shift to aerobic
conditions. As expected, Sre1N and tco1L accumulated
under low oxygen (Figure 4, lanes 1 and 2). After shifting
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to aerobic conditions for 30min, Sre1N disappeared and
there was a corresponding switch from the tco1L to the
tco1S transcript. Tco1 protein was detectable at 30min
and continued to increase to 120min (Figure 4, lanes 2–5).
These data indicate that the Sre1-dependent inhibition of
Tco1 expression is reversible and provide further evidence
that expression of the tco1L transcript leads to decreased
Tco1 protein. In addition, these results suggest that the
tco1L transcript has a short half-life since it disappeared
30min after inhibiting Sre1 proteolytic activation.
This oxygen-dependent regulation of Tco1 by Sre1 could

result from the differential translation of tco1S and tco1L

transcripts. To investigate this directly, we performed a
polysome profiling experiment. Wild-type yeast were
grown in the presence or absence of oxygen for 8 h to
generate cells expressing either the tco1S or tco1L tran-
script, respectively. Cell lysates were fractionated on a
sucrose gradient to separate ribosome-associated RNA
from free RNA. Overall, there was no significant difference
in the two polysome profiles, suggesting that translation
efficiency was similar in the presence and absence of oxygen
for 8 h (Figure 5A). To examine the translation status of
tco1+ mRNAs, we isolated RNA from each fraction
and quantified individual mRNAs by RT–PCR. First, we
used oligos to the coding region of tco1+ to monitor the
association of tco1+ mRNA with ribosomes (Figure 5B,
left panel). In the presence of oxygen, tco1S mRNA
associated with polysomes in Fractions 6–12 (Figure 5B,
left, solid line). In the absence of oxygen, tco1L mRNA
cofractionated with unassembled ribosomal subunits in
Fractions 2–4 (Figure 5B, left, dotted line). In contrast,
the sre1+ transcript fractionated with polysomes in both
the presence and absence of oxygen, indicating that the
gradient fractionation and mRNA isolation were identical
under the two conditions (Figure 5B, right panel).

To examine the association of tco1L mRNA with
ribosomes directly, we detected this transcript using
primers directed to its unique 50UTR. As expected, cells
grown in the absence of oxygen had elevated levels of
tco1L compared to cells grown in the presence of oxygen
(Figure 5C). In the absence of oxygen, tco1L fractionated
with unassembled ribosomal subunits (Figure 5C, dotted
line). To test whether the failure of tco1L to associate with
ribosomes was dependent on the absence of oxygen, we
determined the translation status of the small amount of
tco1L mRNA that is synthesized in the presence of oxygen
(Figure 5C, solid line). Even in the presence of oxygen,
tco1L fractionated at the top of the gradient in Fractions 2
and 3. Collectively, these data indicate that tco1S is
primarily associated with polysomes and therefore effi-
ciently translated, while tco1L fails to associate with
ribosomes and is poorly translated. In addition, this
property of tco1L is independent of oxygen and thus likely
results from sequence differences between the two mRNA
transcripts.

RNA secondary structure can affect translation effi-
ciency (19). In particular, stable stem-and-loop structures
in the 50UTR can inhibit translation initiation (20). To
investigate whether the structure of the tco1+ mRNAs
could contribute to their differential association with
ribosomes, we used RNA structure programs to predict
the secondary structure of the tco1L and tco1S 50UTRs.
Two different RNA structure programs (M-fold and
GeneBee) predicted that the tco1L 50UTR folds to form
a highly structured, stable RNA (Figure 6). In contrast,
the tco1S 50UTR was predicted to contain less secondary
structure with a higher Gibbs energy of formation. The
models predicted by GeneBee are shown in Figure 6.
These data suggest that the tco1L 50UTR may assume a
complex secondary structure that prevents efficient trans-
lation of the tco1+ ORF.

DISCUSSION

In this study, we describe a unique mechanism for
translational control by oxygen via the low oxygen
transcription factor Sre1. Genome-wide expression analy-
sis identified tco1+ as a Sre1 target gene of unknown
function. Here, our characterization revealed that tco1+

mRNA is upregulated under low oxygen by Sre1
(Figure 1A). Counterintuitively, this increased gene
expression leads to decreased Tco1 protein due to the
Sre1-dependent synthesis of a poorly translated, alter-
native transcript, tco1L. Our data are summarized by a
model for regulation of tco1+ expression outlined in
Figure 7. In the presence of oxygen, Sre1 is inactive and
cells synthesize a 2020-nt mRNA tco1S that is efficiently
translated into Tco1 protein. In the absence of oxygen,
Sre1 is proteolytically activated leading to an increase in
Sre1N which binds to the tco1+ promoter and directs
expression of the 2771-nt mRNA tco1L from an alter-
native, upstream promoter. At the same time, expression
of tco1S is blocked. The tco1L transcript associates
inefficiently with ribosomes, leading to an inhibition of
Tco1 protein expression.
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(40mg) and cell lysates (40 mg) were immunoblotted using anti-Tco1 and
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to northern analysis using a tco1+ probe. 25S rRNA was imaged as
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tco1+, respectively.
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Polysome profiling experiments demonstrated that
tco1S, but not tco1L, is efficiently translated (Figure 5).
These two transcripts differ only in the length of their
50UTRs. The 50UTR of tco1L contains an additional 751 nt
and is predicted to assume a more complex and stable
secondary structure than the tco1S 50UTR (Figure 6).
Inasmuch as RNA secondary structure is known to affect
translation initiation and efficiency, the structure of tco1L

50UTR could directly inhibit Tco1 translation (19–21).
Alternatively, the tco1L 50UTR contains 14 AUG initiation
codons compared to three in tco1S. The 50UTRs of tco1L

and tco1S code for seven ORFs (ranging from 3 to 97 aa in

length) and three ORFs (8 –19 aa in length), respectively.
Upstream ORFs (uORFs) can regulate translation of
downstream ORFs by preventing reinitiation of ribosomes
after translation termination (22). In this way, uORFs
present in the tco1L 50UTR could prevent translation of
Tco1. Consistent with this possibility, 35–40% of tco1L

mRNA was found to be associated with polysomes in
fractions 6–12 (Figure 5B). Examples exist in S. cerevisiae
and humans in which transcription from an alternative
promoter leads to a different 50UTR and less efficient
translation, but the mechanisms involved in this regulation
are unknown (23,24). Future experiments will determine
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fractionated on a sucrose density gradient and absorbance at 260 nm was continuously measured for each fraction to detect RNA. Positions of the
40S and 60S ribosomal subunits, 80S monosomes and polysomes are indicated. (B) The amount of individual RNAs in each fraction was determined
by real-time RT–PCR and the percentage of total RNA on the gradient is plotted for each fraction. The tco1+ (left panel) and sre1+ (right panel)
transcripts were quantified using oligos in the tco1+ and sre1+ ORFs. The solid line denotes+oxygen sample and the dotted line denotes –oxygen
sample. (C) The absolute amount of tco1L in each fraction is plotted after normalization with the extraction standard. The solid line
denotes+oxygen sample and the dotted line denotes –oxygen sample.
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the functional contribution of these two mechanisms to the
inhibition of Tco1 translation.
One question that arises from these observations is why

do cells make the tco1L transcript if it is not translated?
One possible explanation is that inhibition of tco1S

synthesis requires active transcription from the upstream
tco1L promoter through a mechanism such as transcrip-
tional interference or promoter competition (25,26). The
regulated transcription of SER3 in S. cerevisiae is a well-
characterized example of transcriptional interference in
which the upstream, noncoding SRG1 transcript inhibits
transcription from the SER3 promoter (27). In addition,

the alcohol dehydrogenase gene inDrosophila melanogaster
is regulated by two closely linked promoters during
larval development. During late larval stages, there is a
switch in promoter usage, wherein the distal promoter
represses transcription from the proximal promoter by
transcriptional interference (28). Here, transcription from
the tco1L promoter inhibits transcription of tco1S

(Figure 2C), but both transcripts code for the same
protein product. In an alternative model, active tran-
scription from the tco1L promoter could maintain an
open chromatin state in order to allow rapid synthesis of
tco1S and Tco1 upon the reintroduction of oxygen and
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Figure 6. Predicted secondary structures for the 50UTRs of tco1L and tco1S. The secondary structure for the 50UTR sequence of the anaerobic tco1L

(A) and aerobic tco1S (B) transcripts, as predicted by the GeneBee RNA secondary structure prediction software (www.genebee.msu.su/services/
rna2_full.html) (14). The Gibbs energy of formation for each folded RNA is shown. Nucleotide positions are given relative to the Tco1 AUG
initiation codon.
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loss of Sre1N. A similar idea has been proposed to
explain the production of translationally silent transcripts
in response to mating pheromone in S. cerevisiae (23).

Finally, while our experiments do not directly address
the physiological function of Tco1, we find that expression
of Tco1 decreases under low oxygen due to a block in
translation. tco1+ is a nonessential gene and we have
failed to detect any phenotypes associated with the loss or
overexpression of Tco1 under anaerobic or other standard
laboratory conditions. By homology to the characterized
S. cerevisiae transporters Rta1p, Rsb1p and Rtm1p, we
speculate that Tco1 may export a toxic compound(s) from
cells under aerobic conditions, but that this substrate is
either absent or no longer toxic under anaerobic condi-
tions. Future experiments will address the physiological
basis for this unique mechanism for inhibition of Tco1
translation under low oxygen.
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