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In microarray studies, the number of samples is relatively small compared to the number of genes per sample. An important
aspect of microarray studies is the prediction of patient survival based on their gene expression profile. This naturally calls for
the use of a dimension reduction procedure together with the survival prediction model. In this study, a new method based
on combining wavelet approximation coefficients and Cox regression was presented. The proposed method was compared with
supervised principal component and supervised partial least squares methods.The different fitted Coxmodels based on supervised
wavelet approximation coefficients, the top number of supervised principal components, and partial least squares components
were applied to the data.The results showed that the prediction performance of the Coxmodel based on supervised wavelet feature
extraction was superior to the supervised principal components and partial least squares components. The results suggested the
possibility of developing new tools based on wavelets for the dimensionally reduction of microarray data sets in the context of
survival analysis.

1. Introduction

Microarray studies are widely used in biological and medical
studies because they allow researchers to monitor tens of
thousands of gene expression profiles simultaneously. Much
of the interest in microarray data analysis derives from the
potential of identifying the genes that relate to biological
processes, the classification of tumor types, the stages based
on gene expression patterns, and the study of gene interac-
tions [1, 2]. However, because microarray data sometimes
include patients survival data, it is important to study patients
survival times (response) in terms of their corresponding
gene expression levels (predictors). The discovery of the

relationship between time to event (survival time) and gene
expression profiles as covariates provides the possibility to
obtain more accurate diagnosis and advanced treatment
[3]. It is estimated that high-dimensional gene expression
data could noticeably enhance the predictive ability of such
survival models [4].

Survival analysis is a statistical method that especially
dealswith themodeling and analysis time fromawell-defined
time origin until the occurrence of some event or end point
of interest. A major complexity of analyzing such data is
right censoring, where the event of interest is known to
occur only after a certain time point. One popular regression
model that takes into account the censored response is the
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Cox Proportional Hazards (CPH) regression model [5]. A
substantial challenge in this setting comes from the fact that
the number of genomic variables 𝑝 is usually much larger
than the number of subjects 𝑛 (i.e.,𝑝 ≫ 𝑛). Existing statistical
methods such as CPH model require fewer predictors than
cases [4]. Thus, a crucial step towards the application of
microarrays in survival prediction is the dimensionality
reduction from the gene expression profiles. In recent years,
both feature selection and feature extraction methods have
been widely used to predict the survival of cancer patients
based on gene expression data [6].

Rosenwald et al. described a feature selection approach
for identifying genes related to survival time that fits CPH
models to each gene and selected those that pass a threshold
for significance [7]. Liu et al. presented the adaptive 𝐿

1/2

shooting regularization method, which is used for variable
selection in the CPH model [8]. Alizadeh et al. described an
approach in which they first clustered the genes and then
fitted a CPH model using the average expression level of
each cluster as a covariate [1]. Nguyen and Rocke and Park
et al. considered the problem of relating survival time to
gene expression by reducing the dimensionality via partial
least squares method. The first few linear combinations
of gene expressions obtained via PLS were subsequently
used in a CPH regression model for predicting the survival
probabilities [9, 10]. Li and Luan developed a penalized
estimation procedure for the CPH model using kernels,
under the assumption that the covariate effects were smooth
functions of gene expression levels [11].

Several studies have compared dimension reduction
methods in survival prediction based on microarray data.
Bøvelstad et al. applied seven dimension reduction methods
in order to predict survival in patients with diffuse large
B-cell lymphoma (DLBCL) using gene expression dataset.
Totally, their results showed that the ridge regression had best
performance [4].

One of the methods used for feature extraction from the
high dimensional data is wavelet transform. Normally, one
dimensional discrete wavelet transform (DWT) is used to
reduce dimensionality in the analysis of high dimensional
biomedical data [12]. The primary intuition for applying
wavelets in the case of gene expression is that genes are often
coexpressed in groups. It would be useful to treat the group as
a single variable, akin to themotivation behindmethods such
as principal component analysis [12]. Studies showed that this
method has acceptable performance in the field of dimension
reduction in the classification framework [13–16].

However, few studies have used wavelet transform in the
area of survival analysis. For example, Liu et al. used contin-
uous wavelet transform combined with a genetic algorithm
to select genes related to survival in colon cancer [15]. This
study aimed to introduce a dimension reduction strategy
for transforming the high-dimensional gene expression data
into a low dimensional space based on wavelet transform.
Accordingly, a predictive survival model was built upon
the reduced dimensional space. Then, the proposed novel
supervised method of feature extraction was compared with
the supervised principal component analysis (PCA) and the
supervised partial least squares (PLS) method.

2. Material and Methods

2.1. Simulation Setup. We performed simulation study to
evaluate and compare the performance of the proposed
supervised wavelet method with supervised PCA and super-
vised PLS. The simulated data set was first presented by Bair
and Tibshirani, for evaluation purposes [17]. Following Bair
and Tibshirani, simulated data set X consisted of 5000 genes
and 100 samples. All expression values were generated as
standard normal random numbers with a few exceptions.
Genes 1–50 in samples 1–50 had a mean of 1.0. We randomly
selected 40% of the samples to have a mean of 2.0 in genes
51–100, 50% of the samples to have a mean of 1.0 in genes 101–
200, and 70% of the samples to have a mean of 0.5 in genes
201–300.

The survival times of samples 1–50 were generated as
normal random numbers with a mean of 10.0 and a standard
deviation of 2.0, and the survival times of samples 51–100were
generated as normal randomnumbers with amean of 8.0 and
a standard deviation of 3.0. For each sample, a censoring time
was generated as a normal random number with a mean of
10.0 and a standard deviation of 3.0. If the censoring time
turned out to be less than the survival time, the observation
was considered to be censored [17].

2.2. Real-Life Datasets. We applied the supervised wavelet
transform method to a set of gene expression data with
survival information on two real datasets. The first dataset
was related to the diffuse large B-cell lymphoma (DLBCL)
dataset of Rosenwald et al. and the second dataset was related
to the lung cancer dataset of Beer et al. [7, 18].

TheDLBCLdataset included expressionmeasurements of
7,399 genes on 240 patients, togetherwith their survival times.
A total of 138 deaths were observed during the study with
the median death time of 2.8 years. The dataset is available
at http://llmpp.nih.gov/lymphoma/data.shtml.

The lung cancer dataset also included expression mea-
surements of 7,129 genes on 86 lung adenocarcinomapatients,
together with their survival times. The survival times were
observed in 24 patients and the censored times in 62 patients.
A detailed description of lung cancer dataset can be found in
the original publication [18]. We used the dataset from the
study conducted by Zhao and Simon in 2008 [19].

2.3. Cox Proportional Hazards Model. The CPHmodel is the
most commonly used model in survival analysis. It is also
known as the Cox regression model. It factorizes the time
dependence of the event rate from the covariate dependence
as follows:

ℎ (𝑡, 𝑥) = ℎ
0
(𝑡) exp (𝛽𝑇𝑥) , (1)

where ℎ (𝑡, 𝑥) represents the hazard function at time 𝑡 for
a subject with covariates 𝑥. For different covariates, CPH
regressionmodels the hazard as a proportional factor applied
to time-dependent baseline hazard that corresponds to a
reference population for which the covariate values are all
zero. This baseline hazard function is ℎ

0
(𝑡) and the effect

of the covariates 𝑥 is modeled linearly using 𝛽𝑇𝑥, which is
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known as the risk score. The coefficient vector 𝛽 is estimated
by maximizing the partial likelihood:

𝑙 (𝛽) =

𝑘

∏

𝑗=1

(
exp (𝛽𝑇𝑥

𝑗
)

∑
𝑙∈𝑅𝑗

exp (𝛽𝑇𝑥
𝑙
)
) , (2)

where 𝑅
𝑗
represents all patients at risk at the 𝑗th failure time

and 𝑘 is the number of distinct failure times.The hazard ratio
between different observations 𝑖 and 𝑗 by (1) is assumed to be
constant and independent of time:

ℎ
𝑖
(𝑡, 𝑥
𝑖
)

ℎ
𝑗
(𝑡, 𝑥
𝑗
)
=

exp (𝛽𝑇𝑥
𝑖
)

exp (𝛽𝑇𝑥
𝑗
)
. (3)

Consequently, the Cox regression model is a proportional
hazards model [5].

2.4. Wavelet Transform. A wavelet is a “small wave,” which
has its energy concentrated in time. In signal processing, a
transformation technique is used to transfer a data in another
domainwhere hidden information can be extracted.Wavelets
have a nice feature of local description and separation of
signal characteristics and give a tool for the analysis of
transient or time-varying signal [12]. A wavelet is a set of
orthonormal basis functions generated from dilation and
translation of a single scaling function or father wavelet (𝜑)
and a mother wavelet (𝜓).

Wavelet transforms are classified into two different cat-
egories: the continuous wavelet transforms (CWT) and the
discrete wavelet transforms (DWT). DWT is a linear oper-
ation that operates on a data vector, transforming it into a
wavelet’s coefficient. The idea underlying DWT is to express
any function𝑓(𝑡) ∈ 𝐿2(𝑅) in terms of𝜑(𝑡) and𝜓(𝑡) as follows:

𝑓 (𝑡) = ∑
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(4)

where 𝜑 (𝑡), 𝜓(𝑡), 𝑐
0
, and 𝑑

𝑗
represent the scaling function,

mother wavelet function, scaling coefficients (approximation
coefficients) at scale 0, and detail coefficients at scale 𝑗,
respectively. The variable k is the translation coefficient for
the localization of gene expression data.The scales denote the
different (low to high) scale bands. The variable symbol 𝑗

0
is

scale (level) number selected.
One-dimensional discretewavelet transformdecomposes

a signal as a sum of wavelets at different time shifts and
scales (frequencies) using DWT. For this purpose, the signal
is passed through series of high pass and low pass filters in

Low Low Low

High High High

f(t) = c0 c1 c2

d1 d2

· · ·

· · ·

Figure 1: The 1D wavelet decomposition process.

order to analyze low as well as high frequencies in the signal
as follows:

𝑐
𝑗+1
= ∑
𝑚

ℎ (𝑚 − 2𝑘) 𝑐
𝑗
(𝑚) ,

𝑑
𝑗+1
= ∑
𝑚

ℎ
1
(𝑚 − 2𝑘) 𝑐

𝑗
(𝑚) ,

(5)

where ℎ (𝑚 − 2𝑘) and ℎ
1
(𝑚 − 2𝑘) are the low-pass filters and

high-pass filters.
The whole process of obtaining the wavelet transform of
𝑓 (𝑡) using the pyramid algorithm is shown in Figure 1.

At each level, the high pass filter produces detail coef-
ficients (wavelet coefficients) 𝑑

1
, while the low pass filter

associated with scaling function produces approximation
coefficient (scaling coefficients) 𝑐

1
. Then the approximation

coefficients 𝑐
1
are split into two parts by using the same

algorithm and are replaced by 𝑐
2
and 𝑑

2
, and so on. This

decomposition process is repeated until the required level
is reached. The coefficient vectors are produced by down
sampling and are only half the length of the signal or the
coefficient vector at the previous level.

The main advantage of the wavelet transform is that
each basis function is localized jointly in both the time and
frequency domains. From a viewpoint of time-frequency, the
approximation coefficients are corresponding to the larger-
scale low-frequency components and the detail coefficients
are corresponding to the small-scale high-frequency compo-
nents. Generally, the former can be used to approximate the
original signal and the latter represents some local details of
the original signal [12–14, 20].

There are different families of wavelets symlet, coiflet,
daubechies, and biorthogonal wavelets. They vary in various
basic properties of wavelets, like compactness. Among them,
Haar wavelets belonging toDaubechies wavelet family are the
most commonly used wavelets in database literature because
they are easy to comprehend and fast to compute.

2.4.1. Supervised Wavelet Transform. The proposed method
starts by adopting a univariate Cox model for each gene:

ℎ (𝑡, 𝑥
𝑔
) = ℎ
0
(𝑡) exp (𝛽𝑇𝑥

𝑔
) , (6)

for each gene 𝑔 = 1, 2, . . . , 7399.
The covariates, each representing a different gene, are

then sorted by increasing absolute values of the Wald’s statis-
tic𝛽/se(𝛽), which aremeasures of the correlation between the
gene expression level and patient survival.Then, in each step,
we pick out the top number of genes included with higher
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Wald’s statistic. Then, this reduced set of genes is modeled by
the one-dimensional discrete wavelet transform to extract the
relevant information and finally, the wavelet approximation
coefficients in the first levels of decomposition are used in
a multiple Cox regression model (1). Note that numbers of
selected genes in this stage are considered proportional to the
sample size. The Haar wavelet transform in the first level is
applied on the preselected genes.

2.5. Supervised Principal Components Analysis. Bair and
Tibshirani and Bair et al. proposed the supervised principal
components regression [17, 21]. This procedure first picks
out a subset of the gene expressions that is correlated with
survival by using univariate selection and then applies PCA
to this subset. In our analysis, we pick out top number of
genes with higher Wald’s statistic. Then, we apply principal
components analysis to this subset of genes and, in each
step, include the top number of principal components that
will be comprised of at least 75% of the total variance into a
multivariate Cox model.

2.6. Partial Least Squares Method. Partial least squares (PLS)
method is a supervised dimension reduction technique that
is usually employed to correlate a response variable to the
explanatory variables. PLS components are linear combina-
tions of the predictor variables, constructed to maximize an
objective criterion based on the sample covariance between
response and covariates.

PLS finds components that are dependent on both
the variance of the gene expressions and the covariance
between the gene expressions and the survival, whereas the
components in PCA only depend on the variance of the
gene expressions [9]. Many methods have been suggested
to perform PLS for Cox regression. We used the method
which was provided by the plsRcox package. In this study, the
number of PLS components was fixed like for the supervised
PCA method.

2.7. Model Building and Model Evaluation Criteria. In order
to evaluate the proposed method, in all experiments (sim-
ulation and real life), data set was randomly divided into
training (2/3 of the data) and test (1/3 of the data) sets for
50 times.Themethods (supervised wavelet, supervised PCA,
and supervised PLS) were applied to the training set and the
test set was used to calculate the evaluation measures. These
data sets included 66 samples from 100 samples for simulated
data, 160 samples from 240 patients for DLBCL data, and 60
samples from 86 patients for lung cancer data.

For predicting the survival of patients based on gene
expression, we applied the proposed dimension reduction
method, supervised PCA, and supervised PLS in stage 1 in
each data set and then used the data in the reduced subspace
to apply in the multiple CPH model in stage 2. In fact,
following the evaluation scheme proposed by Bøvelstad et al.
in each experiment, the parameters were estimated (𝛽train)
from the training data set for a given method. Then, in the
test set for each patient, the obtained estimates were used
to derive a prognostic index (PI) (PI = 𝑥́𝛽train). Then, this

PI index was used in the Cox model for calculating the
evaluation criteria. The above procedure was repeated for 50
times [3, 4]. It is noted that various numbers of preselected
genes were tested in each situation. Next, the results of model
evaluation criteria were computed for each dataset. These
methods were compared in terms of the mean of the criteria
values. MATLAB r2012a software and 𝑅 statistical package
were used for data analysis.

The predictive performance of a fitted Cox model based
on supervised wavelet coefficients, supervised principal com-
ponents, and supervised partial least squares components
was evaluated using 𝑅2 statistic, Concordance Probability
Estimate (CPE), Likelihood ratio test statistic, Integrated
Brier Score, and C index.

Moreover, in order to evaluate the effect of adding clinical
information to genomic data on the performance of model
for a lung cancer data set, clinical information was added
to genomic data. The clinical features for each patient were
included: age, sex, stage, tumor size, and nodal status.

2.7.1. 𝑅2 Statistic. 𝑅2 statistic measures the proportion of
variation in survival data that may be explained by the
predictor. A predictor with good predictive performance can
explain a high proportion of variation in the survival data.
On the other hand, a poor predictor may explain only a little
variation in the data. Accordingly, when comparing models,
the model with the larger 𝑅2 statistic is usually preferred
[6]. Nagelkerke et al. suggested a general definition of the 𝑅2
statistic that may be employed for Cox proportional hazard
model as follows:

𝑅
2
= 1 − exp (−2

𝑛
(𝑙 (𝛽) − 𝑙 (0))) , (7)

where 𝑙(⋅) indicates the log-likelihood function [22]. In the
present study,𝑅2 values are those which were provided by the
coxph() 𝑅 function.

2.7.2. Concordance Probability Estimate. The discriminatory
power of a statistical model is assessed by concordance prob-
ability estimate (CPE). This estimator is merely a function
of the regression parameters and the covariate distribution
without using the observed event and censoring times. A
value of one for CPE denotes the perfect discrimination [23].

2.7.3. C Index. Concordance, or C-statistic, is a valuablemea-
sure of model discrimination in analyses involving survival
time data. In general, consider selecting random pairs of
patients and for each pair note, whether the model correctly
predicts an order, for example, a higher model score for the
better result. Concordance is then the fraction of pairs for
which the model is correct. A completely random prediction
would have a concordance of 0.5 and a perfect rule a
concordance of one [24].

2.7.4. Likelihood Ratio Test Statistic. The likelihood ratio test
is a global goodness-of-fit test statistic for a Cox regression
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Figure 2: Box plot of the difference in model evaluation criteria between the supervised wavelet and the two other methods for simulated
dataset with different number of preselected genes.

model. The test statistic for the likelihood ratio test is given
as follows:

LR = −2 ln 𝐿
𝑅
− (−2 ln 𝐿

𝐹
) , (8)

where 𝑅 denotes the reduced (PH) model obtained when all
𝛽’s are 0 and 𝐹 denotes the full model.Thus, the performance
is good when LR is large [5].

2.7.5. Integrated Brier Score (IBS). At a given time point 𝑡,
the Brier score for a single subject is defined as the squared
difference between observed survival status (e.g., 1 = alive at
time 𝑡 and 0 = dead at time 𝑡) and a model based prediction
of surviving time 𝑡. The Brier score is given by

BS (𝑡) = 1
𝑁

𝑛

∑

𝑖=1

(𝑝
𝑖
(𝑡) − 𝑜

𝑖
(𝑡))
2

𝑊, (9)

where 𝑁 is the sample size, 𝑜
𝑖
(𝑡) is the observed survival

at time 𝑡, and 𝑝
𝑖
(𝑡) is the predicted probability at time 𝑡.

The weight𝑊 is used to remove a large censoring bias. The
Integrated Brier Score (IBS) is a summary of the prediction
error over event time by integrating the formula (9). The

smaller the Brier score is, the better the survival prediction
would be [25].

3. Results

The results of the predictive performance of the fitted Cox
models based on approximation wavelet coefficients, the top
number of principal components, and partial least squares
components for simulated, DLBCL, and lung datasets are
shown in Tables 1, 2, and 3, respectively. In general, the results
showed that the Cox model based on supervised wavelet
feature extraction method was superior to the supervised
principal components and partial least squares components
in terms of different evaluation criteria for three data sets.
Although, in simulated data set, all methods have a similar
performance in terms of the Integrated Brier Score.

The results showed that the spread of mean values of five
evaluationmeasures over the 50 data sets is fairly large.These
variations are caused by selecting the data at random into 50
data sets as well as the variations of the prediction methods
performance for the given datasets. In order to determine
howmuch of the variationwas due to the predictionmethods,
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Figure 3: Box plot of the difference in model evaluation criteria between the supervised wavelet and the two other methods for DLBCL
dataset with different number of preselected genes.

we used the supervised wavelet method as a benchmark and,
for each of the two other methods, computed the difference
between the evaluation criteria in each of the conditions.

Figures 2, 3, and 4 showed the boxplots of these differ-
ences in each evaluation criterion for the 50 data sets. The
median values for 𝑅2, C index, CPE, and LR were positive,
which showed that supervised wavelet method performed
better than other methods. In addition, the median values
for the Integrated Brier Score criterion in the different
conditions were negative. Totally, simulation results and real
data analysis confirmed the suitable performance of the
supervised wavelet method.

The results of the predictive performance of the fitted
Cox models based on combination of clinical and genomic
information for a lung data set are shown in Table 4. The
results showed that adding clinical information leads to
an increase in the predictive ability of the model in three
mentioned methods (supervised wavelet, supervised PCA,
and supervised PLS).

4. Discussion

This study employed the supervised dimension reduction
method based on wavelet transform and modeled survival
times in the presence of right censoring, taking into account
the microarray data information. The proposed method was
evaluated by simulations and applied to the Rosenwald et al.’s
DLBCL dataset and Beer et al.’s Lung cancer dataset [7, 21].

Considering the fact that most genes are irrelevant to
patients’ survival, we analyzed the reduced dataset given
by selecting genes that were significantly related to survival
time based on the Wald’s statistic. If the wavelet trans-
form is performed directly by using all of the genes in a
data set, there is no guarantee that the resulting wavelet
coefficients will be related to survival [19, 22]. Thus, this
study introduced a supervised form of wavelet transform
that can be considered supervised wavelet. After extracting
supervised wavelet approximation coefficients using discrete
Haarwavelet transform, the coefficients had higher predictive
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Table 1: Performance of different Cox models for simulated dataset.

# Gene Method C index ± se CPE ± se 𝑅
2
± se LR ± se IBS ± se

40
Supervised wavelet 0.924 ± 0.002 0.904 ± 0.003 0.766 ± 0.006 96.906 ± 1.729 0.153 ± 0.000
Supervised PCA 0.907 ± 0.002 0.850 ± 0.003 0.709 ± 0.003 81.564 ± 0.700 0.153 ± 0.000
Supervised PLS 0.919 ± 0.005 0.865 ± 0.005 0.739 ± 0.005 89.083 ± 1.311 0.155 ± 0.000

30
Supervised wavelet 0.914 ± 0.002 0.877 ± 0.004 0.720 ± 0.009 83.313 ± 2.284 0.150 ± 0.000
Supervised PCA 0.897 ± 0.003 0.842 ± 0.014 0.684 ± 0.007 76.448 ± 1.410 0.151 ± 0.004
Supervised PLS 0.910 ± 0.003 0.853 ± 0.016 0.711 ± 0.008 82.436 ± 1.791 0.151 ± 0.004

20
Supervised wavelet 0.899 ± 0.006 0.837 ± 0.030 0.682 ± 0.005 72.253 ± 2.233 0.153 ± 0.003
Supervised PCA 0.886 ± 0.004 0.827 ± 0.025 0.648 ± 0.009 69.357 ± 1.873 0.154 ± 0.004
Supervised PLS 0.895 ± 0.003 0.835 ± 0.027 0.669 ± 0.011 73.691 ± 2.273 0.154 ± 0.003

10
Supervised wavelet 0.870 ± 0.006 0.823 ± 0.023 0.618 ± 0.013 65.800 ± 1.419 0.154 ± 0.004
Supervised PCA 0.855 ± 0.011 0.810 ± 0.002 0.582 ± 0.008 58.072 ± 1.845 0.154 ± 0.003
Supervised PLS 0.866 ± 0.009 0.818 ± 0.001 0.609 ± 0.009 62.484 ± 1.767 0.156 ± 0.003

performance than the top number of principal components
and the top number of partial least squares components.
Hence, our results suggested that the wavelet coefficients
are an efficient way to characterize the features of high
dimensional microarray data. It seems that these results
exhibit the possibility of developingmore efficient tools using

wavelets for the dimensionally reduction of microarray data
sets in the context of survival analysis.

The main purpose of the feature extraction method
usingwavelet transform is that the approximation coefficients
usually comprise the majority of the important information
[14]. In addition, thismethod canusually condense or denoise
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Table 2: Performance of different Cox models for DLBCL dataset.

# Gene Method C index ± se CPE ± se 𝑅
2
± se LR ± se IBS ± se

40
Supervised wavelet 0.755 ± 0.005 0.744 ± 0.004 0.401 ± 0.011 78.739 ± 1.815 0.237 ± 0.007
Supervised PCA 0.711 ± 0.004 0.695 ± 0.003 0.270 ± 0.000 42.636 ± 1.762 0.245 ± 0.005
Supervised PLS 0.723 ± 0.003 0.698 ± 0.003 0.294 ± 0.007 55.883 ± 1.449 0.250 ± 0.005

30
Supervised wavelet 0.723 ± 0.005 0.727 ± 0.007 0.325 ± 0.013 70.303 ± 2.618 0.244 ± 0.004
Supervised PCA 0.709 ± 0.004 0.692 ± 0.003 0.262 ± 0.008 42.087 ± 1.825 0.245 ± 0.003
Supervised PLS 0.713 ± 0.002 0.697 ± 0.002 0.289 ± 0.007 54.898 ± 1.418 0.251 ± 0.004

20
Supervised wavelet 0.730 ± 0.002 0.714 ± 0.002 0.323 ± 0.009 59.708 ± 2.699 0.243 ± 0.004
Supervised PCA 0.709 ± 0.003 0.688 ± 0.003 0.260 ± 0.008 41.327 ± 2.079 0.245 ± 0.003
Supervised PLS 0.719 ± 0.002 0.696 ± 0.003 0.282 ± 0.006 53.130 ± 1.486 0.249 ± 0.004

10
Supervised wavelet 0.703 ± 0.004 0.686 ± 0.005 0.255 ± 0.007 49.838 ± 1.832 0.248 ± 0.003
Supervised PCA 0.699 ± 0.005 0.686 ± 0.003 0.254 ± 0.013 41.056 ± 2.045 0.252 ± 0.004
Supervised PLS 0.701 ± 0.003 0.684 ± 0.003 0.255 ± 0.007 45.648 ± 2.241 0.254 ± 0.006

Table 3: Performance of different Cox models for lung cancer dataset.

# Gene Method C index ± se CPE ± se 𝑅
2
± se LR ± se IBS ± se

20
Supervised wavelet 0.923 ± 0.005 0.876 ± 0.007 0.582 ± 0.014 54.986 ± 2.130 0.328 ± 0.015
Supervised PCA 0.892 ± 0.003 0.796 ± 0.010 0.471 ± 0.014 38.609 ± 1.637 0.353 ± 0.009
Supervised PLS 0.909 ± 0.005 0.801 ± 0.005 0.498 ± 0.008 40.77 ± 1.439 0.365 ± 0.011

15
Supervised wavelet 0.905 ± 0.004 0.846 ± 0.005 0.531 ± 0.007 45.466 ± 1.838 0.343 ± 0.007
Supervised PCA 0.894 ± 0.003 0.801 ± 0.007 0.469 ± 0.010 38.263 ± 1.678 0.349 ± 0.007
Supervised PLS 0.900 ± 0.002 0.803 ± 0.005 0.483 ± 0.008 39.954 ± 1.382 0.353 ± 0.009

10
Supervised wavelet 0.889 ± 0.006 0.813 ± 0.006 0.462 ± 0.018 38.357 ± 1.641 0.330 ± 0.010
Supervised PCA 0.878 ± 0.005 0.784 ± 0.009 0.441 ± 0.008 34.217 ± 1.671 0.335 ± 0.008
Supervised PLS 0.885 ± 0.003 0.788 ± 0.004 0.448 ± 0.007 36.087 ± 1.356 0.350 ± 0.007

5
Supervised wavelet 0.873 ± 0.006 0.795 ± 0.005 0.429 ± 0.001 31.906 ± 1.786 0.297 ± 0.007
Supervised PCA 0.853 ± 0.005 0.775 ± 0.006 0.387 ± 0.012 29.241 ± 1.784 0.315 ± 0.006
Supervised PLS 0.858 ± 0.005 0.771 ± 0.006 0.386 ± 0.010 29.650 ± 1.313 0.323 ± 0.006

a signal without appreciable degradation due to using a
different view of data than those presented by conventional
methods. In addition, the powerful capability of the DWT
to compress the signal energy makes it a good candidate for
feature extraction applications. The DWT compresses most
of the energy from the input signal and concentrates it in a
few high-magnitude coefficients in the transformed matrix.
The DWT also reduces the size of the input signal to half
of its original size. Keeping only a number of these high-
magnitude coefficients (in addition to their locations) while
discarding the rest of the coefficients in the transformed
signal can produce a valid feature vector representation of the
input signal [13].

The wavelet feature extraction method does not depend
on the training dataset to obtain the basis of feature space
compared to PCA and PLS methods. Therefore, the wavelet
feature extraction method reduces the computation load
compared to PCA and PLS [15].

The flexible characteristic of our proposedmethodmakes
it appropriate not only for correlating censored patient
survival data with microarray gene expression data but also
with large-scale biological data stemming from other high-
throughput technologies such as DNA copy number analysis
and proteomics.

Although the proposed method was better than super-
vised principal components and supervised partial least
squares components based on two popular data sets and brief
simulation, it is suggested that comprehensive simulation
is used in future studies in order to evaluate this method
compared with the other dimension reduction methods.

The future investigations can focus on different ways of
preselecting gene in the first stage of the proposed method.
For example, rather than ranking genes based on theirWald’s
statistic, one would use a different metric to measure the
association between a given gene and survival time. On the
other hand, another mother wavelet and different level of
decomposition can be studied.

5. Conclusion

This study showed the Cox model based on supervised
wavelet feature extraction method which had superior pre-
dictive performance over the supervised principal compo-
nents and supervised partial least squares components based
on top selected genes. These results exhibit the possibility
of developing more advanced tools using wavelets for the
dimension reduction of microarray data sets in the context
of survival analysis.
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Table 4: Performance of different Cox models for lung cancer dataset (clinical + genomic data).

# Gene Method C index ± se CPE ± se 𝑅
2
± se LR ± se IBS ± se

20
Supervised wavelet 0.949 ± 0.006 0.924 ± 0.010 0.669 ± 0.031 72.304 ± 2.589 0.431 ± 0.007
Supervised PCA 0.907 ± 0.008 0.844 ± 0.009 0.553 ± 0.033 52.020 ± 2.208 0.432 ± 0.007
Supervised PLS 0.914 ± 0.007 0.849 ± 0.009 0.564 ± 0.035 53.814 ± 2.366 0.435 ± 0.009

15
Supervised wavelet 0.916 ± 0.005 0.855 ± 0.011 0.558 ± 0.031 56.318 ± 3.017 0.433 ± 0.010
Supervised PCA 0.903 ± 0.007 0.836 ± 0.010 0.540 ± 0.034 53.478 ± 2.585 0.435 ± 0.009
Supervised PLS 0.908 ± 0.007 0.842 ± 0.012 0.552 ± 0.041 55.526 ± 2.398 0.435 ± 0.006

10
Supervised wavelet 0.906 ± 0.006 0.848 ± 0.008 0.552 ± 0.027 52.746 ± 2.872 0.426 ± 0.006
Supervised PCA 0.892 ± 0.009 0.831 ± 0.008 0.521 ± 0.029 48.092 ± 2.119 0.426 ± 0.007
Supervised PLS 0.905 ± 0.009 0.842 ± 0.009 0.542 ± 0.031 51.472 ± 2.562 0.430 ± 0.005

5
Supervised wavelet 0.895 ± 0.008 0.818 ± 0.011 0.499 ± 0.036 51.472 ± 2.760 0.352 ± 0.008
Supervised PCA 0.883 ± 0.009 0.803 ± 0.010 0.445 ± 0.042 46.336 ± 2.113 0.359 ± 0.008
Supervised PLS 0.879 ± 0.007 0.814 ± 0.010 0.481 ± 0.029 49.976 ± 2.152 0.355 ± 0.006
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