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Abstract: Asphaltene is a component of crude oil that has remained relatively unexplored for organic
electronic applications. In this study, we report on its extraction technique from crude oil tank
bottom sludge (COTBS) and its thin-film characteristics when 1-ethyl-3-methylimidazolium chloride
([EMIM]Cl) ionic liquid (IL) was introduced as dopants. The extraction technique yielded asphaltene
with more than 80% carbon content. The IL resulted in asphaltene thin films with a typical root-
mean-square surface roughness of 4 nm, suitable for organic electronic applications. The thin films
each showed an optical band gap of 3.8 eV and a sheet resistance as low as 105 Ω/�. When the
film was used as a conductive layer in organic field-effect transistors (OFET), it exhibited hole and
electron conduction with hole (µh) and electron (µe) mobilities in the order of 10−8 and 10−6 cm2/Vs,
respectively. These characteristics are just preliminary in nature. With the right IL, asphaltene thin
films may become a good alternative for a transport layer in organic electronic applications.

Keywords: sludge; asphaltene; ionic liquid; organic; transistor

1. Introduction

Asphaltene is one of the main components of crude oil. It is a complex compound
with the ability to self-assemble into larger molecules. The self-aggregation of asphaltene
molecules is caused by heteroatom association [1–5]. Self-aggregation increases the viscosity
of the crude oil and hence reduces its flowrate in risers and pipelines. It can become
sludge that clogs wells, flowlines, surface facilities and sub-surface formations. Moreover,
the sludge also contains pollutants, such as phenols and heavy metals that, if disposed
indiscriminately, may lead to severe environmental pollution. There are a variety of
techniques available to dispose of the sludge, but at a significant cost to the industry as well
as the environment [6]. Therefore, for an economical and sustainable future, it is imperative
to explore new applications for the asphaltene-rich sludge.

Asphaltene’s molecular structure appears as hexagonal rings of carbon atoms sur-
rounded by hydrogen, metals, impurities, and some functional groups. Several structures
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have been proposed and they differ depending on the geographic origin of the crude
oil [7–10]. Adopting these molecular structures and by density functional theory (DFT)
calculation, the bandgap of asphaltene can be calculated to be ~1.85 eV, with HOMO and
LUMO levels of ~4.78 eV and ~2.94 eV, respectively. These characteristics may be suitable
for use as a transport layer in applications such as organic electronics and photovoltaics.
Such applications would be best realized if the asphaltene could be doped with dopants
that could contribute to the electrical conductions.

Ionic liquid (IL) comprises cationic and anionic components. It can be designed to
have a definite set of properties. As their chemical variety has grown, ILs have been
further divided into many types, such as room-temperature ILs (RTILs), task-specific ILs
(TSILs), and polyionic liquids (PILs) [11]. The IL has been used as novel solvents in organic
synthesis, catalysis, electrochemistry, electrocatalysts, and chemical separation in the oil
industry [12]. It has also been used as an asphaltene dispersant agent in the oil industry [13].
Due to its molecular structure, IL can also be used as a doping agent in organic electronic
applications. Atabaki et al., doped PEDOT:PSS with an imidazolium type of ionic liquid.
In his study, the resistance of the PEDOT:PSS was reduced by 1.7–1.8% after the IL doping
had taken place [14]. While the literature on the use of IL to prevent self-aggregation is
abundant, literature on its use as a dopant in organic electronics is still very much limited.
In fact, the work reported here, i.e., IL-doped asphaltene thin film as the transport layer for
organic thin-film transistor, is the first of its kind.

In this work, the extraction methodology of asphaltene from crude oil tank bottom
sludge (COTBS) will be initially introduced. Then, the extracted asphaltene will be dis-
solved in a solvent, together with the IL, 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl).
The solution is then spin-coated onto glass or Si substrate to form IL-doped asphaltene thin
films. It is also spin- coated onto a commercially available pre-patterned source and drain
back-gated Si wafer to form a back-gated organic field-effect transistor (OFET). Crucial
parameters from materials and electrical points of view were then measured and analyzed.

2. Materials and Methods
2.1. Asphaltene Extraction

COTBS was initially obtained from an oil refinery in Malaysia. Then, 5 g of the sludge
was weighed and heated using a muffle furnace. The sludge was weighed every 10 min
during the heating process until it reached a constant weight. Asphaltene in COTBS was
precipitated using decane with a 1 gm: 30 mL ratio following the ASTM D6560 standard.
A magnetic stirrer was used to stir the solution for 8 h. The asphaltene precipitated oil
sludge was then obtained by vacuum filtration of the mixture. Using the Soxhlet apparatus,
toluene was used to dissolve the asphaltene from the oil sludge. The cycle was repeated
for an additional eight hours or until the solvent was colorless. Finally, the toluene was
separated from the asphaltene solids using rotary evaporation.

2.2. Preparation of Asphaltene and [EMIM]Cl Stock Solution

Two solutions were prepared separately as follows: dissolved asphaltene, which
consists of 4 mg of asphaltene solids in 10 mL of toluene, and [EMIM]Cl, which consists
of 13.86 mg in 10 mL of chloroform. The dissolved asphaltene solution is considered
a pure asphaltene solution without dopant. For doping purposes, the two solutions
were mixed and sonicated for 15 min. The mixtures were prepared by adding different
concentrations: 1, 2, and 5 wt% of [EMIM]Cl for optical and surface morphology analysis.
Furthermore, the doping ratio was increased in steps of 10 until 110 wt% of [EMIM]Cl for
sheet resistance optimizations.

2.3. Thin-Film Formation

Glasses used as substrates were initially washed in deionized water (DIW), acetone
and isopropanol alcohol (IPA). The stock solution was then spin-coated onto the glass at
2500 rpm for 60 s to ensure a uniform coating by using centrifugal force. Then, the rotation
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speed was increased to 3000 rpm for 5 s to reduce the thickness of the film. Finally, the
rotation was reduced to 500 rpm for 60 s before the process ended. The samples were then
heated on a hot plate at 60 ◦C for 300 s to remove any remaining solvents. The prepared
samples were used for optical, surface morphology analysis, and electrical characterization.

2.4. Elemental Analysis

Elemental analysis was carried out in the equipment modeled “Vario Micro Cube”.
The asphaltene sample was weighed and loaded into the integrated carousel in a tin
vessel. Before moving to the combustion tube, the sample was transferred to the ball
valve and flushed with helium carrier gas to remove atmospheric nitrogen. At 1200 ◦C,
catalytic combustion takes place by injecting oxygen directly into the sample through a
lance. The second furnace was used for post-combustion. The mixture is then separated
into its components using purge-and-trap chromatography and detected using a thermal
conductivity detector after the combustion is reduced on hot copper. Based on stored
calibration curves, a connected computer system calculates the element concentration from
the detector signal and the sample weight.

2.5. Thin-Film Surface Analysis

The Nano Navi (E-Sweep) Atomic Force Microscopy (AFM) (Bruker, Billerica, MA,
USA) was used to examine the surface morphology of the coated and uncoated glass
samples. For all the samples, non-contact tapping mode was used with a 1.2 V constant
operating force, 1 Hz scanning rate, and 0.1 µm Z-axis range to obtain the thin-film surface
topographical profile. The surface area of 5.0 × 5.0 µm2 of the specimens were then
evaluated for their root-mean-square (RMS) roughness and other parameters.

2.6. Functional Groups Analysis Using ATR-FTIR

Functional groups surrounding the asphaltene molecular structure were studied using
Spectrum One modeled Pelkin Elmer equipped with diamond head Attenuated Total
Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) (PerkinElmer Ltd, Seer
Green, Beaconsfield HP9 2FX, UK). Firstly, toluene was evaporated using a thermal bath to
obtain the undoped and 1, 2 and 5 wt% of [EMIM]Cl-doped asphaltene solids. The sample
holder was cleaned with acetone and the calibration was carried out prior to each sample
measurement. Next, the solids were placed on the sample holder of the measurement
equipment. Pristine [EMIM]Cl was also measured as a reference in this study. The 5 mg
of each sample were placed on the sample holder. Then, the diamond head was lowered
to be in contact with the surface of the samples. The samples were analyzed at ambient
temperature from a collection of 16 scans per spectrum in the frequency range of 4000 cm−1

to 550 cm−1.

2.7. Sheet Resistance Measurement of the Asphaltene Thin Films

In this study, Lucas Labs S-302-4 Four Point Probe (4PP) (Signatone Corporation,
Gilroy, CA, USA) is used for electrical characterization. The probes are spaced apart by
a constant distance along a straight line. Two of the outer probes of the 4PP are used to
supply current to the sample, while the other two inner probes are used to measure the
resulting potential drops. The step size of the current is automated and derived based on
the current that is pre-set into Keithley 2400 attached to the 4PP.

Sheet resistance can be calculated using equation:

Rs = 4.53
∆V

I
, (1)

where I is the input current, ∆V is the voltage drop and 4.53 is the correction factor used in
this measurement. The recorded sheet resistance of the film was averaged from five sheet
resistance measurements obtained at different points on the film.
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2.8. Optical Bandgap Determination from UV-Vis Spectroscopy

The UV-Vis spectra were obtained using CARY from Agilent Technologies. A hydrogen
and a tungsten lamp were used as a UV and visible light source, respectively. The scan rate
used was 600 nm/min and the wavelength was swept from 190 nm to 900 nm. The reference
material was an uncoated glass slide, while the target specimen was a film-coated glass
slide. The light source would be split and deflected to the target specimen and reference
holders using beam splitter optics. The amount of light that penetrated the specimen and
the reference material would be measured and compared.

The bandgap in this study was calculated using the equation:

Eg =
1240
λonset

, (2)

where λonset is the onset absorption and Eg is the calculated bandgap [15]. The onset
absorption was identified from the intersection of the linear fitting with the x-axis on the
UV-Vis plot [16].

2.9. Fabrication of Organic Field-Effect Transistor (OFET)

Bottom gate bottom contact (BGBC) OFETs were fabricated by spin coating asphaltene
solution doped with 90 wt% of [EMIM]Cl on the prefabricated transistor structure. The
prefabricated transistor test structure consists of a heavily doped silicon substrate (gate
electrode, p-type 10−4 Ω cm), thermally grown silicon dioxide layer (gate dielectric, 300 nm),
and thermally evaporated gold electrodes (source and drain contacts, 70 nm gold on 2 nm
chromium). The width of the transistor was fixed at 1000 µm with 30, 40, 50, 60, and 80 µm
as channel length.

2.10. Characterization of the OFET

The OFETs were characterized using Agilent Technologies B1500A Semiconductor
Device Analyzer (manufacturer, city, state abbreviation, country). To determine the output
characteristics, drain current vs. drain voltage (Id-Vd) was plotted. The drain voltage (Vd)
is swept from 0 to 50 V, while the gate voltage (Vg) is swept from 0 V to 50 V. The Id-Vd
curve was plotted for Vg = 0 V, 20 V, and 40 V. For the transfer characteristics, Id-Vg, Vg is
swept from −50 V to 50 V with Vd varying from 0 V to 50 V. The electron mobility (µe), hole
mobility (µh), threshold voltage (Vth), Ion/Ioff current and subthreshold swing (SS) were
extracted from the linear and saturation region of the Id-Vg curves based on the published
standard and handbooks [17–19].

3. Results and Discussion
3.1. Asphaltene Physical Appearance and Elemental Analysis

Asphaltene consists primarily of carbon, hydrogen, nitrogen, sulfur, and oxygen as
well as trace amounts of metals, such as vanadium, nickel, and iron. Typically, in an
asphaltene molecule, the carbon atoms are arranged in several polyaromatic clusters with
side aliphatic chains and other functional groups attached. Table 1 shows the elemental
analysis of the asphaltene extracted from this project, i.e., for both thermally treated and
untreated COTBS.

Table 1. Elemental Analysis of asphaltene extracted from thermally treated and untreated COTBS.

Elements Thermally Treated
COTBS (wt%)

Untreated
COTBS (wt%)

C 81.76 64.22
H 8.91 9.83
N 1.31 0.59
S 1.43 0.68
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Asphaltene extracted from the thermally treated COTBS shows a higher carbon content
compared to the asphaltene extracted from the untreated COTBS. It is believed that heating
the COTBS before asphaltene precipitation helps to remove moisture, thus reducing the
number of hydrogens in the extracted asphaltene samples. Contents of nitrogen and
sulfur also increased from the effect of thermal treatment of the COTBS. During thermal
treatment, nitrogen was released from pyridine and indole composition, whereas sulfur
was released from hydrogen sulfide bonding and sulfur oxide compounds originating
from the COTBS. Nitrogen and sulfur in the asphaltene might present as surface functional
groups at the edges of the asphaltene structure and this will influence the functionality of
the asphaltene [20,21]. Asphaltene extracted in our study is black and shiny in appearance
as shown in Figure 1.
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3.2. Thin-Film Surface Analysis

The surface of a thin film significantly affects its mechanical and electrical transport
properties. Hence, conducting surface analysis and assessing its roughness may have a
tangible impact on the performance of electronic devices made from the thin film. Figure 2
shows typical 3D AFM images of asphaltene thin film on a glass slide for both doped
and undoped asphaltene. A 3D AFM image of an uncoated glass slide is also included as
a reference.
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The key parameters and the statistical analysis of the surface topography are sum-
marized in Table 2. The surfaces were described using roughness parameters, such as the
average surface roughness (Sa), which is related to the average deviation of the surface
irregularity from the mean line over one sampling length, and the root-mean-square sur-
face roughness (RMS), which is calculated as the standard deviation of the surface height
distribution and the peak-to-peak roughness. The RMS roughness of the three surfaces
was 3.370 nm, 7.924 nm, and 3.758 nm for the blank glass slide, the undoped asphaltene
film, and the 90 wt% of [EMIM]Cl-doped asphaltene film, respectively. It is apparent
that the doped RMS roughness was much lower than the RMS roughness of the undoped
asphaltene film. In fact, the RMS roughness of the 90 wt% of [EMIM]Cl-doped film was
3.758 nm, a value closer to the roughness of the uncoated glass slide, which was 3.370 nm.

Table 2. AFM surface analysis of the uncoated glass, undoped, and 90 wt% [EMIM]Cl-doped
asphaltene thin film on glass.

Samples RMS (nm) Sa (nm) Skew (Ssk) Excess Kurtosis

Glass 3.37 2.65 0.64 0.72
Asphaltene on glass 7.92 5.27 1.26 3.82

90 wt% [EMIM]Cl-doped
asphaltene on glass 3.76 2.59 1.67 7.68

Lower surface roughness for the doped film was caused by the lower viscosity of
the asphaltene solution doped with 90 wt% of [EMIM]Cl. This modified the asphaltene
structure in such a way that the intensity of the peak-to-valley decreased and smoothed
the thin film surface, which resulted in a lower surface roughness compared to undoped
asphaltene thin film [22,23].

Referring to the skewness and excess kurtosis definitions, these parameters describe
the height symmetry of the surfaces. In our study, the skewness was 1.255 and 1.673 for
undoped and doped samples, respectively. Thus, the peak distribution of the coating shows
the right tail is longer than the left tail. In addition, the hills are dominant over the valleys,
which indicates that the distributions are not perfectly symmetrical [24]. Values for exces-
sive kurtosis are greater than 3 for both undoped and 90% [EMIM]Cl-doped asphaltene
thin films, which indicate that both thin film surfaces are spiky and the distribution is
leptokurtic [25].

In essence, the surface analysis shows that the asphaltene thin films have low surface
roughness. The thin films have spiky surfaces, and the peak distributions are dominant
over the valleys. More importantly, however, the ability of [EMIM]Cl to improve surface
roughness of the thin films is established in this work.

3.3. Functional Groups Analysis Using Attenuated Total Reflection Fourier Transform Infrared
Spectroscopy (ATR-FTIR)

Asphaltene molecular structure is commonly attached with functional groups. These
functional groups were identified by using ATR-FTIR. Figure 3 shows FTIR spectra of
asphaltene doped with 1, 2, and 5 wt% of [EMIM]Cl, respectively. As a comparison, spectra
for undoped asphaltene and [EMIM]Cl are also included. There are a few peaks of interest
that are visible in all asphaltene spectra. Particularly, we focus on the peaks at 2920 cm−1,
2856 cm−1, 1376 cm−1, 1460 cm−1, which were ascribed to C-H symmetric stretching, C-H
asymmetric stretching, C-H symmetric bending, and C-H asymmetric bending, respectively.

In addition, for undoped asphaltene spectra, four adjacent aromatic C-H bonds and
out-of-plane deformation vibration of one isolated aromatic C-H bond peaks were visible
at 724 cm−1 and 881 cm−1, respectively. Furthermore, C=O or carbonyl stretching visible
at the range of 1640 cm−1 to 1661 cm−1 and O-H or hydroxyl group stretching peak were
observed at 3387 cm−1.
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Figure 3. Fourier Transform Infrared spectroscopy of the undoped and [EMIM]Cl-doped asphaltene
thin films.

For [EMIM]Cl, the peaks at 762 cm−1 and 1085 cm−1 could be attributed to C-H
out-of-plane bending and N-C bonding, respectively. Stretching of C-C vibration from the
alkyl chain is observed at 1168 cm−1. The C-H symmetrical and asymmetrical bending
and stretching for [EMIM]Cl is observed at 1376 cm−1 and 1460 cm−1, 2867 cm−1, and
2983 cm−1, respectively. The peak at 1570 cm−1 represents the symmetrical stretching of
the N=C bond. In addition, the stretching of C-H of substituted polynuclear aromatics and
hydroxyl group or O-H stretching appeared at 3057 cm−1 and 3373 cm−1, respectively [26].
The peaks and its associated descriptions are summarized in Table 3.

Table 3. Peak descriptions of the ATR-FTIR for the undoped and [EMIM]Cl-doped asphaltene.

Wavenumber (cm−1) Description

724 four adjacent aromatic C-H
762 C-H out-of-plane bending
881 Out-of-plane deformation vibration of one isolated aromatic C-H

1085 C-N stretching
1168 C-C stretching
1173 C-OH non-hydrogen bonded stretching

1376, 1460 Methyl C-H symmetric/asymmetric bending
1661–1640 C=O (carbonyl) stretching
2856, 2920 Methylene C-H symmetric/asymmetric stretching
2867, 2983 Methyl C-H symmetric/asymmetric stretching

3057 N-H stretching of amide
3373, 3427 O-H stretching

The plot shows the transmittance intensity for undoped asphaltene to be low at C-H
symmetric and asymmetric, stretching and bending regions. However, as the first 1 wt% of
[EMIM]Cl was introduced, the intensity increased significantly, implying the attachment
of [EMIM]Cl to the functional group of the asphaltene [27]. More interestingly, as the
[EMIM]Cl was increased to 5 wt%, the peak at 881 cm−1, ascribed to the out-of-plane
deformation vibration of one isolated aromatic C-H bond, disappeared. At the same time,
sharp and broadened peaks at 1173 cm−1 and 3427 cm−1 appeared. These peaks represent
the non-hydrogen bonded stretching mode of C-OH groups [28] and O-H stretching,
respectively. As the concentration of [EMIM]Cl increased, the peaks that represented the
O-H group became more intense. These changes prove there were interactions between the
hydrogen of the hydroxyl group and the chloride ions [29]. The FTIR analysis shows that
IL doping can alter the asphaltene’s molecular structure.
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3.4. Sheet Resistance (RS) Measurement of the Asphaltene Thin Films

In our previous work, asphaltene extracted from thermally untreated COTBS showed
RS in the order of 1010 Ω/� [30]. In this work, however, the RS has been reduced signifi-
cantly by the thermal treatment. Without ionic liquid doping, the RS has already dropped
by four orders of magnitude down to ~106 Ω/�. More interestingly, with the introduction
of [EMIM]Cl, the RS drops further. Figure 4 shows the measured RS versus the concentra-
tion of [EMIM]Cl used to dope the asphaltene film. For [EMIM]Cl less than 10 wt%, the RS
is still in the order of ~106 Ω/�. A further increase in the concentration of the [EMIM]Cl,
on the other hand, shows on average a further one order of magnitude drop to ~105 Ω/�.
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Sheet resistance is inversely related to the mobile charge carrier density and carrier
mobility. In this case, the number of mobile charge carriers increases when the doping
concentration of [EMIM]Cl is increased. This is evidenced by the reduction of the sheet
resistance of the thin film. This scenario is true when the doping concentration is varied
from 1–20 wt%. From 20–60 wt%, however, the sheet resistance increases slightly, and
this is probably due to the steric crowding of ions, which creates a barrier in carrier
motion and effectively reduces its mobility. Then, for doping concentration between
60–110 wt%, again the sheet resistance appears to decrease. This is probably due to the
dissociation of the formed polyionization, which increases the number of ions and hence
reduces the sheet resistance once again [31]. Similar observations were made in the study
conducted by Singh et al., where the conductivity of the IL-doped chitosan polymer thin
film shows a non-monotonic relationship for doping concentration at 0–250 wt% of 1-ethyl-
3-methylimidazolium thiocyanate [32].

In addition, in the study conducted by Dobbelin et al. [33], IL doping of the PEDOT:PSS
thin films helps in increasing the conductivity of the thin films. It has been demonstrated
that the conductivity of the [EMIM]Cl-doped PEDOT:PSS film improved from 1 S cm−1 [34]
to 55 S cm−1 at an optimum doping level of 57 wt% of IL. Lower conductivity of PEDOT:PSS
resulted from the insulating PSS content and lack of dense packing of PEDOT chains.
Adding the IL helps to reorganize the molecular structure of PEDOT itself and improve
the conductivity. Based on a similar argument, it is concluded that IL doping could also
improve the conductivity (or lower the sheet resistance) of the asphaltene thin film to an
extent, as observed in Figure 4.

3.5. Optical Bandgap Determination from UV-Vis Spectroscopy

The optical properties of the undoped and [EMIM]Cl-doped asphaltene were investi-
gated in solid-state form. The absorption spectra of the thin films are shown in Figure 5.
The absorbance intensity in the UV range (200 nm–320 nm) indicates the presence of aro-
matic groups in the undoped and [EMIM]Cl-doped asphaltene film [35]. The profile of
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the undoped asphaltene film was rather broad compared to the [EMIM]Cl-doped thin
films. The absorption spectra of undoped and 2 wt% of [EMIM]Cl-doped asphaltene film
exhibited maximum wavelength (λmax) at 265 nm and 260 nm, respectively. Whereas, for
the 1 and 5 wt% of [EMIM]Cl-doped asphaltene film, the λmax was at 275 nm. For 5 wt% of
[EMIM]Cl, an additional hump was observed at 250 nm.
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The onset wavelength (λonset) was recorded at 331 nm, 328 nm, 324 nm and 322 nm for
undoped, 1, 2, and 5 wt% of [EMIM]Cl-doped asphaltene thin film, respectively. Further-
more, by increasing the doping to 5 wt% of [EMIM]Cl, there was an enhancement of the
shoulder band at 250 nm spectrum and this absorption peak arose from π-π* transition [36].
These optical properties are tabulated in Table 4.

Table 4. Maximum wavelength, onset wavelength and optical band gap for undoped and [EMIM]Cl-
doped asphaltene thin films.

Asphaltene Film λmax
(nm)

λonset
(nm)

Optical Band Gap
(eV)

Undoped 265 331 3.74
1 wt% of [EMIM]Cl 260 328 3.78
2 wt% of [EMIM]Cl 275 324 3.82
5 wt% of [EMIM]Cl 275 322 3.85

The increase in the absorption intensity (or hyperchromic shift) of the doped thin
films resulted from the characteristics of the B-bands in the UV-Vis absorption spectra of
heteroaromatic compounds, such as pyrimidine, pyridazine, and pyrazine [37,38], and the
functional groups from ionic liquid [EMIM]Cl doping [39]. Furthermore, the occurrence of
the red shift in the λmax for the IL-doped film was potentially caused by the increment in
the aromatics cluster sizes [40].

For organic materials, the bandgap is defined as the minimum energy required to
excite an electron from the highest occupied molecular orbital (HOMO) to the lowest
unoccupied molecular orbital (LUMO). The λonset values show a blue shift, which causes
the increment in the calculated optical bandgap. The increment in bandgap shows the
decrease in the particle size. The doping of IL could decrease the asphaltene particle size
and, for a smaller particle, the energy required for an electron to get excited is higher.
The lattice parameters increase as the diameter of the particle decreases, which results in
wider spaces between the bands. Therefore, to cross a bandgap of greater energy, shorter
wavelengths were observed, which resulted in the blue shift of the wavelength.
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Singh et al., conducted a study on the relationship between the semiconductor nanoma-
terials bandgap and sizes. Both the simulation and experimental study show the bandgap
increase with the reduction in the size of the semiconductor nanomaterials [41]. Similarly,
the simulation study conducted by Beriso et al., showed the bandgap of the germanium
nanostructure increase with the reduction of its size [42]. The UV-Vis analysis in this
study shows the asphaltene itself contains aromatics, and that [EMIM]Cl doping reduces
the particle size and aids in altering the molecular structure of the thin films so that π-π*
transition can take place.

3.6. Characteristics of the Asphaltene-Based Organic Field-Effect Transistor (OFET)

Figure 6 shows the output characteristics, Id-Vd, of OFETs with undoped and 90 wt%
of [EMIM]Cl-doped asphaltene. The channel width and length of the OFETs are 1000 µm
and 60 µm, respectively.
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Figure 6. The output characteristics, Id-Vd, of the undoped and [EMIM]Cl-doped asphaltene OFET
bias at Vg = 0, 20, and 40 V. The Id for [EMIM]Cl-doped asphaltene appears a few orders of magnitude
higher than the Id for undoped OFET, except near the transition points where the Id change from
negative to positive current.

The most glaring feature of Figure 6 is that Id is small (in the range of a few tens
pA). This is expected because the structure of the OFET has not been fully optimized, i.e.,
high-contact resistance, thick dielectric material, and high surface charge density. The
next observation is that the Id flows even at Vg = 0 V. This is typical for an OFET operated
in depletion mode. It is also observed that for [EMIM]Cl-doped asphaltene OFET, the Id
switches from negative to positive current at crossover voltage, Vd ~15 V and Vd ~20 V
for Vg = 20 and 40 V, respectively. The negative current can be ascribed to the current
arising from the tunneling of carriers from the source to the gate contact. This is feasible
considering that the electric field across the oxide is much greater than 106 V/cm [43].
The Id becomes positive when the effective tunneling electric field has been reduced by
the opposing electric field arising from the increase of the Vd. More importantly, it is also
observed that the Id for the [EMIM]Cl-doped OFET is two orders of magnitude higher than
the Id from the undoped OFETs. The increase in Id is believed to be due to an increase in
the number of charge carriers in the channel originating from the IL doping.

The transfer characteristics, Id-Vg, of the undoped and doped OFETs plotted in linear
and logarithmic scale are shown in Figure 7. From the plots, the Id for undoped OFET is
small, within the range of 2–15 pA only. On the other hand, the Id for [EMIM]Cl-doped
OFET is two orders of magnitude higher than the Id for the undoped OFET. The Id also
exhibits hole and electron conduction, suggesting that the OFET has ambipolar transport
characteristics. From the log plot, the transition voltage, where the change from hole to
electron conduction occurs, is observed at 34.1 V and 42.8 V for doped and [EMIM]Cl-
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doped OFET, respectively. The left-shift of the transition voltage from 42.8 V to 34.1 V
suggests that the asphaltene thin film has been n-doped by the [EMIM]Cl. Below these two
transition voltages, the OFETs exhibit hole conduction, and it appears reaching saturation.
Above the transition voltages, however, the OFETs exhibit electron conduction with Id
limited to ~300 pA, simply because of the limitation of the instrument. With an optimized
structure, the Id is expected to be much higher than the one observed in this work.
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Figure 7. Transfer characteristics, |Id|-Vg, of undoped and 90 wt% of [EMIM]Cl-doped OFET plotted
in linear and logarithmic scale. Both hole and electron conduction are observed. The transition
voltage from hole to electron conduction can be observed at 34.1 V to 42.8 V for doped and undoped
OFET. The left-shift of the transition voltage suggests that the asphaltene thin film has been n-doped.

The µh and µe of the doped and [EMIM]Cl-doped OFETs were extracted from the Id-Vg
curve. The average value of the µh and µe for the undoped OFET are 4.89 × 10−8 cm2/Vs
and 9.73 × 10−7 cm2/Vs, respectively. On the other hand, the average value of the µh
and µe for the doped OFET are 9.45 × 10−8 cm2/Vs and 1.05 × 10−6 cm2/Vs, respectively.
It is apparent that IL doping caused the µe to increase by one order of magnitude while
the µh remained relatively unchanged. Furthermore, the threshold voltage (Vth) and
subthreshold swing (SS) also show good improvement for the IL-doped devices compared
to the undoped devices, regardless of the channel length. As for the Ion/Ioff ratio, in its
current unoptimized OFET structure, it is only in the range of 100–101. The performance
characteristics of the undoped and doped OFETs are summarized in Table 5.

Table 5. Field-effect transistor characteristics of the undoped and [EMIM]Cl-doped asphaltene OFET.

Channel Length
(µm)

Undoped Asphaltene OFET [EMIM]Cl-Doped Asphaltene OFET

µh
(cm2/Vs)

µe
(cm2/Vs)

Vth
(V)

SS
(V/dec)

µh
(cm2/Vs)

µe
(cm2/Vs)

Vth
(V)

SS
(V/dec)

30 6.28 × 10−8 6.53 × 10−7 43.2 3.956 5.52 × 10−8 1.69 × 10−6 37.2 3.586
40 5.99 × 10−8 6.04 × 10−7 43.3 3.258 5.05 × 10−8 1.14 × 10−6 33.1 2.687
50 5.54 × 10−8 5.27 × 10−7 42.9 3.536 8.64 × 10−8 1.07 × 10−6 42.1 1.471
60 3.81 × 10−8 23.1 × 10−7 42.5 3.569 11.0 × 10−8 0.31 × 10−6 33.8 2.415
80 2.83 × 10−8 7.65 × 10−7 42.9 3.577 15.4 × 10−8 1.02 × 10−6 34.0 3.072

In this study, asphaltene thin films extracted from thermally treated COTBS exhibited
both hole and electron conduction. After IL doping, the µe increases by one order of
magnitude while the µh remains relatively unchanged. The magnitude of the hole and
electron mobilities are similar in 30 µm–80 µm channel length for BGBC architecture devices.
On the other hand, the doping of the [EMIM]Cl shows some improvement in the surface
roughness, on the extracted mobility and n-doped the asphaltene.
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4. Conclusions

In conclusion, asphaltene extracted from thermally treated COTBS contains a signif-
icant amount of carbon content compared to the untreated ones. As a thin film, it has a
rather smooth surface. Doping the asphaltene with [EMIM]Cl led to an improved surface
roughness with a typical ~4-nm RMS, making it suitable for organic electronic applications.
The thin films showed an optical band gap of 3.8 eV and a sheet resistance as low as
105 Ω/�. When the thin film was used as a conductive layer in OFETs, it exhibited ambipo-
lar transport characteristics with µh and µe mobilities in the order of 10−8 and 10−6 cm2/Vs,
respectively. These characteristics are just preliminary in nature. With the right IL and
optimize device structures, asphaltene thin film may become a viable alternative as a
transport layer in organic electronic applications.
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