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Abstract: Osteosynthesis systems are used to fixate bone segments in maxillofacial surgery. Tita-
nium osteosynthesis systems are currently the gold standard. However, the disadvantages result in
symptomatic removal in up to 40% of cases. Biodegradable osteosynthesis systems, composed of
degradable polymers, could reduce the need for removal of osteosynthesis systems while avoiding the
aforementioned disadvantages of titanium osteosyntheses. However, disadvantages of biodegradable
systems include decreased mechanical properties and possible foreign body reactions. In this review,
the literature that focused on the in vitro and in vivo performances of biodegradable and titanium
osteosyntheses is discussed. The focus was on factors underlying the favorable clinical outcome of
osteosyntheses, including the degradation characteristics of biodegradable osteosyntheses and the
host response they elicit. Furthermore, recommendations for clinical usage and future research are
given. Based on the available (clinical) evidence, biodegradable copolymeric osteosyntheses are a
viable alternative to titanium osteosyntheses when applied to treat maxillofacial trauma, with similar
efficacy and significantly lower symptomatic osteosynthesis removal. For orthognathic surgery,
biodegradable copolymeric osteosyntheses are a valid alternative to titanium osteosyntheses, but
a longer operation time is needed. An osteosynthesis system composed of an amorphous copoly-
mer, preferably using ultrasound welding with well-contoured shapes and sufficient mechanical
properties, has the greatest potential as a biocompatible biodegradable copolymeric osteosynthesis
system. Future research should focus on surface modifications (e.g., nanogel coatings) and novel
biodegradable materials (e.g., magnesium alloys and silk) to address the disadvantages of current
osteosynthesis systems.

Keywords: biocompatible materials; absorbable implants; polymers; orthopedic fixation devices;
reconstructive surgical procedures; fracture fixation

1. Introduction

Most of the osteosynthesis systems applied in oral and maxillofacial surgery (OMF-
surgery) consist of plates and screws. In maxillofacial traumatology, osteosynthesis systems
are used for fixation of bone segments after anatomical reduction of dislocated or mobile
fractures. In orthognathic surgery, they are used for fixation of osteotomy segments in a
predetermined position to treat maxillofacial deformities.

Titanium osteosynthesis systems are currently the gold standard for maxillofacial
fracture treatment and orthognathic surgery. The titanium plate and screw combina-
tion has excellent mechanical and handling properties, providing adequate bone stability
with clinically acceptable plate and screw dimensions without the need for rigid max-
illomandibular fixation [1–7]. However, the disadvantages of titanium systems include
temperature sensitivity [7], tactile sensation of plates and screws [8], possible growth restric-
tions [9], hampering of imaging and radiotherapy [10–12], presence of titanium particles in
surrounding tissue [13–15], high elastic modulus causing stress shielding of the underlying
bone [12], and potential mutagenicity [7].
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The potential of using biodegradable biomaterials to increase health-care quality and
reduce costs has led to a substantial increase in interest in biomaterials by researchers as
well as clinicians over recent years [16–18]. Commercially available biodegradable osteosyn-
thesis systems are commonly composed of synthetic polymers (e.g., polylactide; Table 1).
However, in the last decade, researchers have also focused on novel classes of biodegrad-
able materials for osteosynthesis systems such as degradable metals (e.g., magnesium, zinc,
iron, and their alloys) and natural polymers (e.g., silk) [18]. Biodegradable osteosynthesis
systems composed of synthetic (co)polymers can reduce the need for removal of osteosyn-
thesis systems in a second operation while also avoiding most of the aforementioned
disadvantages of titanium osteosyntheses [19]. Biodegradable systems have, however,
their own limitations including decreased mechanical properties [20], palpability due to
bulkiness [19], and possible foreign body reactions [21].

Over the last few decades, both the titanium and biodegradable osteosynthesis sys-
tems have been improved [18,22]. Examples of improvements are the adaption of the
production process of titanium systems (e.g., to increase or decrease the elastic modu-
lus of the plates) [23,24], modulating biodegradable polymer compositions (e.g., using
L- and D-chirality of lactic acid, or by copolymerization with different homopolymer ra-
tios) [18,20,25], and using ultrasound pin welding of thermoplastic pins for plate fixation
instead of using conventional screws [20]. These improvements affect the mechanical
properties of the system as well as the host response and, in turn, the complications that
arise as a result [18,20]. In addition, recent research provides new insights into long-term
host response to biodegradable biomaterials [18,25,26]. Currently, there is no overview that
summarizes and discusses these novel insights to guide clinical usage and future research
of these osteosynthesis systems.

This review explores advances gathered from in vitro and in vivo studies (i.e., in-
cluding the clinical performances) on biodegradable and titanium osteosyntheses in max-
illofacial surgery. First, the osteosynthesis concepts in maxillofacial surgery are briefly
summarized. Next, the factors underlying the favorable clinical outcome of biodegrad-
able osteosyntheses as an alternative to titanium osteosyntheses based on pre-clinical
evidence are reviewed, including the physico-chemical and mechanical properties of the
(co)polymers as well as the degradation characteristics and the host response they elicit.
Then, the clinical outcomes of both types of osteosyntheses are compared and discussed
based on the available evidence followed by clinical recommendations. Finally, leads for
future research are given and future directions for the clinical translation of novel bio-
materials are discussed. Together, these aspects will guide evidence-based selection of
osteosynthesis systems in maxillofacial surgery and target future research.

Table 1. Commercially available biodegradable osteosynthesis systems for maxillofacial surgery.

Brand Name Manufacturer Composition Indication Biodegradation
Duration Refs

Homopolymer (first generation)

Biofix SR-PGA Bionx Implants
(Tampere, Finland) 100% SR PGA Midface and mandible

fractures and osteotomies LM: 36 months [27,28]

Biofix
SR-PLLA

Bionx Implants
(Tampere, Finland) 100% SR PLLA Midface and mandible

fractures and osteotomies LM: >54 months [27,28]

FIXORB-MX Teijin Medical Technologies
Co., Ltd. (Osaka, Japan) 100% PLLA Midface and mandible

fractures and osteotomies LM: >3 years [22]

GrandFix Gunze (Kyoto, Japan) 100% PLLA Midface and mandible
fractures and osteotomies LM: >3 years [22,29–31]

Copolymer (second generation)

BioSorb FX
ConMed Linvatec
Biomaterials Ltd.

(Tampere, Finland)

70% SR PLLA, 30%
SR PDLLA

Midface fractures and
osteotomies, and mandibular

symphysis factures

SEM with EDX:
>4 years [20,25]
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Table 1. Cont.

Brand Name Manufacturer Composition Indication Biodegradation
Duration Refs

Delta Stryker
(Kalamazoo, MI, USA)

85% PLLA, 10% PGA,
5% PDLA

Midface fractures
and osteotomies

Visual inspection:
8–13 months [18,32]

Inion CPS Inion Oy
(Tampere, Finland)

70–78.5% PLLA,
16–24% PDLLA, 4%

TMC 1

Midface and mandible
fractures and osteotomies

SEM with EDX:
>4 years [20,25]

Inion CPS Baby Inion Oy
(Tampere, Finland)

82% PLLA, 12% PGA,
6% TMC

Cranial reconstructions,
including midface and

mandibular fracture fixation,
in pediatric patients

Ultrasonography:
2–3 years [33,34]

LactoSorb Biomet Microfixation
(Jacksonville, FL, USA) 82% PLLA, 18% PGA Midface fractures

and osteotomies
SEM with EDX:

>4 years [18,20,25]

Macropore Medtronic, Inc.
(Minneapolis, MN, USA)

70% PLLA, 30%
PDLLA

Midface fractures and
osteotomies Unknown [20]

MacroSorb Medtronic, Inc.
(Minneapolis, MN, USA)

70% PLLA, 30%
PDLLA

Midface and mandible
fractures and osteotomies LM: >12 months [27,35]

Polymax Synthes
(Oberdorf, Switzerland)

70% PLLA, 30%
PDLLA

Midface and mandible
fractures and osteotomies LM: >12 months [20,27,35]

Polymax
RAPID

Synthes
(Oberdorf, Switzerland) 85% PLLA, 15% PGA Midface and mandible

fractures and osteotomies Unknown [27]

RapidSorb DePuy Synthes
(West Chester, PA, USA)

70% PLLA, 30%
PDLLA

Midface fractures
and osteotomies In vitro: 12 months [20,22]

Resomer Evonik Industries
(Darmstad, Germany)

50% PLLA, 50%
PDLLA

Midface fractures
and osteotomies Unknown [27]

ResorbX
KLS Martin Group

(Gebrüder Martin GmbH &
Co., Tuttlingen, Germany)

100% PDLLA Midface fractures
and osteotomies LM: 12–30 months [18,20]

SonicWeld Rx
KLS Martin Group

(Gebrüder Martin GmbH &
Co., Tuttlingen, Germany)

100% PDLLA Midface fractures
and osteotomies

SEM with EDX:
>4 years [20,25]

SonicWeld xG
KLS Martin Group

(Gebrüder Martin GmbH &
Co., Tuttlingen, Germany)

85% PLLA, 15% PGA Midface fractures
and osteotomies LM: 12–14 months [18,20]

Biocomposite (third generation)

OsteotransMX Teijin Medical Technologies
Co., Ltd. (Osaka, Japan)

Plate: 60% PLLA,
40% uHA

Screw: 70% PLLA,
30% uHA

Midface and mandible
fractures

and osteotomies
LM: 5.5 years [20,22,36,37]

1 The manufacturer does not publicly report the exact composition of the copolymers. PLLA, poly-L-lactic acid;
PDLLA, poly-D,L-lactic acid; TMC, trimethylene carbonate; SR: self-reinforced; PGA, poly-glycolic acid; uHA,
unsintered hydroxyapatite; LM, light microscopy; SEM, scanning electron microscopy; EDX, energy-dispersive
X-ray analysis.

2. Pre-Clinical Evidence

A biodegradable osteosynthesis system should meet two intertwined criteria to be
used as an osteosynthesis system: (1) the biomaterial needs to be biocompatible with
the host tissue and (2) the mechanical properties should be sufficient for stable fixation
of fracture or osteotomy segments during the surgical procedure (primary stability) and
during the degradation of the biomaterial, with a gradual transfer of stress to the healing
bone [18].

2.1. Biocompatibility
2.1.1. Initial Host Response

Implanted materials evoke an initial host response after implantation that includes
inflammation, proliferation and tissue remodeling, and, in the case of biodegradable
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biomaterials, is affected by the degradation products [18]. This host response is mediated
by both the innate and adaptive immune systems. Macrophages are the most important
innate immune cells during the host response and also play a main role in the outcome of
biodegradable implants [18]. The phenotype of macrophages ranges from pro-inflammatory
M1 macrophages to anti-inflammatory M2 macrophages [38,39]. After tissue injury, M1
macrophages secrete several inflammatory mediators such as interleukin-1 (IL-1) and
tumor necrosis factor-α (TNF-α) to initiate the healing process [18,40]. After the initial
inflammatory phase, macrophages switch to a wound-healing phenotype (M2a), secreting
growth factors (e.g., platelet-derived growth factor) that promote angiogenesis and cell
proliferation [40,41]. Subsequently, macrophages switch to an anti-inflammatory phenotype
(M2c) and produce anti-inflammatory cytokines (e.g., IL-10) that leads to the inhibition of
the inflammatory response [42].

The adaptive immune system is also involved in the host response. Through anti-
gen presentation, macrophages and dendritic cells can activate CD4+ T-cells of the adap-
tive immune system. T helper 1 (TH1) cells can induce M1 macrophages by produc-
ing interferon-γ and IL-2 [43]. Subsequently, M1 macrophages can produce cytokines
and chemokines (e.g., IL-12, CXC-chemokine ligand 9) that intensify the TH1 response
by recruiting additional TH1 cells [18]. In contrast to TH1 cells, TH2 cells produce anti-
inflammatory cytokines (e.g., IL-4 and IL-10) that induce polarization of macrophages
towards M2 macrophages. M2 macrophages in turn secrete cytokines (e.g., CC-chemokine
ligand 17) that recruit additional TH2 cells that temper the inflammatory response [43].
Imbalances of M1 over M2 macrophages or prominent presence of M1 macrophages may
lead to (chronic) foreign body reactions (e.g., a sterile abscess formation with fibrous encap-
sulation) [18]. Therefore, it is essential that a well-controlled and timely switch of M1 to
M2 macrophages occurs as this then leads to implant degradation and tissue remodeling,
to eventually replace the implant by host tissue (biodegradable systems) or to controlled
fibrous encapsulation (titanium systems) [18].

2.1.2. Synthetic Biodegradable Polymers

The most commonly used (co)polymers in biodegradable osteosynthesis systems
consist of poly(α-esters) such as poly(L-lactic acid) (PLLA), poly(D,L-lactic acid) (PDLLA),
poly(lactic-co-glycolic acid) (PLGA), or poly(L-co-D,L-lactic acid-co-trimethylene carbonate)
(P(LLA-co-DLLA-co-TMC)) (Table 1) [18].

Biodegradation

Synthetic polymers undergo biodegradation via two different modes depending on the
rates of bond cleavages and water diffusion into the polymer: bulk and surface degradation.
In bulk degradation, the degradation occurs in the complete implant resulting in a decrease
in molecular weight and molecular strength with time. Since the complete implant degrades
at a similar rate, disintegration of the implant with generation of polymeric debris can
occur. In contrast, surface degradation occurs on the surface of the implant, resulting in
a decrease in size and mass of the implant with time. Here, the molecular weight and
mechanical properties of the material remain relatively unchanged [18].

Extracellular degradation of poly(α-esters) occurs through hydrolysis (two phases),
enzymatic degradation, and oxidation. During hydrolysis, cleavage of the ester bonds by
water results in oligomers and monomers, such as lactic acid and glycolic acid (primary
hydrolysis) [44,45], that can enter the tricarboxylic-acid cycle (secondary hydrolysis) to
form carbon dioxide and water that can be excreted in the lungs or via urine. Secondary hy-
drolysis is the rate-limiting step and depends highly on the crystallinity and hydrophobicity
of the intermediate products [16]. Enzymes secreted by macrophages and derived from the
blood can contribute to hydrolysis through extracellular hydrolysis [18]. Macrophages can
also phagocytize biomaterial particles. In addition, inflammatory cells (e.g., macrophages
and neutrophils) can induce depolymerization of polymers by oxidation via the release
of reactive oxygen species [46]. Macrophages can also undergo fusion to improve their
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efficiency and form multinucleated giant cells [47] which can remain for up to 24 months
after implantation [25]. Although the phagocytosis capacity of multinucleated giant cells is
reduced compared to macrophages, the capacity of extracellular degradation is increased by
secreting higher concentrations of enzymes and reactive oxygen species into the interface
between the multinucleated giant cells and implant [47].

Late Host Response

Biodegradable osteosynthesis systems should, preferably, be completely resorbed
within 12 months [17]. However, foreign body reactions to polymeric biodegradable ma-
terials remain a major concern, even years after implantation [26]. Factors that influence
foreign-body reactions are implant related (e.g., polymer composition, crystallinity, ge-
ometry, and surface topology), recipient related (e.g., blood supply), and plate location
related (e.g., epiperiosteal versus subperiosteal) [18,48,49].

The progression of the host response is affected by the acidic degradation products of
the poly(α-esters). A lowering in pH intensifies the inflammatory response that results in
fibrous encapsulation of the implant [50,51]. Furthermore, the acidic degradation products
are autocatalytic, resulting in progressive degradation of the remaining polymers and an
increase in the inflammatory response. Additionally, bulk degradation leads to fragmenta-
tion of the polymer that may result in phagocytized particles within the fibrous tissue [18].
Demineralization of the surrounding bone can occur whenever the degradation occurs
too quickly and the surrounding tissue fails to eliminate the degradation products [52].
Therefore, the possibility to induce a foreign body reaction is dependent on an equilibrium
between the levels of degradation products, the degree of fibrous encapsulation, and the
ability of the host to eliminate the degradation products [18]. Short-term foreign body
reactions are mainly caused by fast-degrading polymers (e.g., PGA) [53] while delayed
foreign body reactions are often associated with slow-degrading polymers (e.g., PLLA)
with high crystallinity and crystalline degradation fragments [21,54,55]. Foreign body
reactions to polymeric biodegradable materials can occur to particle sizes of <2 µm, even
years after the implantation (Table 2) [26].

Currently, two main hypotheses regarding the etiology of foreign body reactions to
these synthetic polymeric biomaterials exist. After implantation, the biodegradable poly-
mers are encapsulated by fibrous tissue that acts as a semi-permeable membrane [48]. The
first hypothesis is that, as the polymer degradation continues over time, the size of the
polymeric fragments decreases while the number of particles increases. These particles
cannot pass the semi-permeable membrane. Subsequently, the osmotic pressure within the
area surrounded by the fibrous layer increases and this results in a clinically observable
swelling that, without an intervention, remains [21]. An alternative hypothesis is that,
eventually, the acidic polymeric fragments become small enough to pass the membrane.
This results in a decrease in pH of the surrounding tissues which then causes excessive
sterile inflammation [56,57] accompanied by phagocytosis of any residual fragments [48].
However, since crystalline fragments are stable and more resistant to further hydrolytic
degradation, they accumulate in the macrophages and multinucleated giant cells, and then
remain in situ. Furthermore, extra- and intracellular residual fragments can lead to the ac-
cumulation of crystalline oligomeric stereo-complexes over time that are resistant to further
hydrolytic degradation [18,58]. These two hypotheses could also occur simultaneously.

Differences in vascularization also contribute to inducing foreign body reactions.
Sufficient vascularization is necessary for adequate bone healing, but it is also essential to
eliminate the acidic degradation products of the hydrolyzed poly-α-esters (e.g., polylactide),
thereby affecting the equilibrium between the levels of degradation products and the
ability of the host to eliminate the degradation products [18]. Accumulation of acidic
degradation products may result in decreased pH [18], bone demineralization [52], and may
damage the surrounding cells such as macrophages [59–61]. Whenever micromovements
are present, fibrous encapsulation can entrap the acidic degradation products, resulting
in reduced elimination of the degradation products [18]. The acidic degradation products
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have an autocatalytic effect and cause further degradation of the remaining polymer
resulting in a vicious circle that eventually leads to a more severe inflammatory reaction [18].
Since the mandible has lesser vascularization and is exposed to higher forces, mandibular
osteosyntheses are more prone to these (accumulating) effects compared to those in other
parts of the facial skeleton.

In a recent study, the long-term (i.e., up to 4-year follow-up) biocompatibility and
degradation of four commonly used biodegradable copolymeric osteosynthesis systems
was compared using a goat model [25]. The study included the BioSorb FX [poly(70LLA-
co-30DLLA)], Inion CPS [poly([70–78.5]LLA-co-[16–24]DLLA-co-4TMC)], SonicWeld Rx
[poly(DLLA)], and LactoSorb [poly(82LLA-co-18GA)] biodegradable osteosynthesis sys-
tems. The copolymer of the SonicWeld Rx system was the only one that was amorphous;
all the other assessed systems were semi-crystalline. All the biodegradable systems were
safe to use and well-tolerated. The SonicWeld Rx system showed the most predictable
degradation profile. In addition, together with the LactoSorb system, new bone percentages
similar to negative controls were observed after 18 months while the two other included
systems reached these levels after 36 months (Figure 1). However, nanoscale residual
polymeric fragments, predominately accumulated in adipocytes (Figure 2), were observed
at every system’s assessment (Figure 3).

Figure 1. Percentage of total new bone formation at the implant site. Error bars: mean
values ± standard error of the mean. ### represents p < 0.05, p < 0.01, and p < 0.001, respectively.
The composition of each system is described in Table 1. A similar curve for titanium systems is not
applicable due to the non-degradable nature of titanium systems. Error bars: mean values± standard
error of the mean. Reprinted with permission from [25].

Since the crystalline regions of synthetic (co)polymers, the intermediate degradation
products and the crystalline oligomeric stereo-complexes that can be formed in vivo over
time are hydrophobic [17,58,62], this could explain the remarkable accumulation of poly-
meric birefringent fragments in adipocytes within the medullary bone cavity up to 4-year
follow-up (Figure 2) [25]. Similar birefringent fragments, derived from as-polymerized
PLLA, were observed in a case report [21] and experimental studies up to the 5-year follow-
up [63,64]. Such particles were found intracellular after 3 and 4.5 years of implantation,
although the particles decreased in size over time [63]. Crystalline fragments derived from
as-polymerized PLLA can induce foreign body reactions even up to 5.7 years after implanta-
tion [21,65]. Another clinical study that focused on the efficacy of an osteosynthesis system
composed of unsintered hydroxyapatite/PLLA composite, with a 12-month follow-up,
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showed that the removed symptomatic systems included up to 65% crystalline regions in
the explanted polymers [66]. In a study that implanted the Resorb X osteosynthesis system
(PDLLA) at the condyle of sheep mandibles, no foreign body reactions and complete bone
formation were observed after 12 months [67]. Another study showed complete bone
formation 18 months after implanting the LactoSorb system in the maxillofacial area of Göt-
tingen minipigs without signs of foreign body reactions [68]. In contrast, after implanting
the Inion CPS system in sheep, the system was surrounded by a fibrous capsule with granu-
lomatous foreign body reactions after 52 weeks [69]. In the literature, foreign body reactions
have predominately been reported for biodegradable osteosyntheses with a high propor-
tion (i.e., >70%) of PLLA [18,21,55,70] or poly(glycolic acid) (PGA) [18]. More amorphous
copolymers such as PDLLA (e.g., 50LLA/50DLA ratio) are more hydrophilic, and degrade
and resorb more quickly and predictably [71]. These findings, as well as those of different
(pre-)clinical studies [18,25,26,72], emphasize that the (co)polymers used in biodegradable
systems should be completely amorphous. Future research should focus on amorphous
(co)polymers with a minimum follow-up of ≥24 months so that a proper degradation
assessment can be performed. Furthermore, it remains unknown whether the observed
nanoparticles after 4-year follow-up [25] may be harmful in the long run (i.e., >4 years).
Since microplastics have been shown to be toxic in vitro, with a potential impact on hu-
man health (e.g., effects on the gastrointestinal tract, lungs, immune system, and blood
components) [73,74], the effects of the observed nanoparticles need further research.

Figure 2. HE-sections of the Inion CPS system at 48-month follow-up under LM (a) and LM-pol (b) with
observable residual polymer fragments (examples are indicated with black arrows). HE, hematoxylin
and eosin; LM, light microscopy; LM-pol, polarized light microscopy. From the study of [25].

Other than (co)polymer composition, the geometry and surface topography of the
implanted materials also affect biocompatibility in vivo [72]. Thick biomaterials, especially
with points and sharp edges, can increase the risk of foreign body reactions [26,75,76].
In contrast, thinner biomaterials, as well as smaller sized polymeric particles used to
engineer a biomaterial, allow for quicker degradation and a lower risk of foreign body reac-
tions [72,77,78]. A smooth well-contoured shape without acute angles induced macrophage
polarization towards macrophages with an immune regulatory phenotype [79,80]. In vivo
biocompatibility of medical devices, such as implants, can be significantly improved by tun-
ing the spherical dimensions [72]. Furthermore, low implant volume reduces the amount of
acidic degradation products and thus reduces the risk of (late) foreign body reactions [18].
The fact that screws possess acute angles, while welded pins do not, may explain the
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favorable degradation profile of the SonicWeld Rx system compared to the BioSorb FX,
Inion CPS and LactoSorb biodegradable systems [18,25,81,82]. Novel biodegradable system
development should incorporate geometry and surface topography into the design-phase
as these characteristics are tunable and may be efficient ways to decrease foreign body reac-
tion risk, hasten degradation, enhance quicker bone formation, and balance the degradation
and regeneration equilibrium (Table 2) [26].

Figure 3. HE-sections (LM and LM-pol), SEM, and EDX by element and with overlay (red: carbon,
and blue: nitrogen) of birefringent polymeric residual fragments of every osteosynthesis system at
48-month follow-up. HE, hematoxylin and eosin; LM, light microscopy; LM-pol, polarized light
microscopy; SEM, scanning electron microscopy; EDX, energy-dispersive X-ray analysis; C, carbon;
N, nitrogen; O, oxygen. Reprinted with permission from [25].

Table 2. Different aspects of biodegradable osteosynthesis systems accompanied with the ideal
properties and the potential solutions to accomplish these properties.

Aspect Ideal Properties Method Potential Solutions Refs

Surgical
handling

Easy perioperative adaptation of
plates

3D engineering Patient specific osteosynthesis systems [18,26,83]

Production process Plate adaption at room temperature [20]

No risk of perioperative screw
breakage

Alternative application
method

Ultrasound welding of thermoplastic
pins instead of using conventional screws [20]

Elastic modulus
of materials

Enough elastic modulus to avoid
micromovements, but not stiffer

than bone to avoid
stress-shielding of the

underlying bone

Production process

Create composites to tailor the elastic
modulus to the application of interest [26]

Self-reinforcing of polymers to increase
the elastic modulus of systems [20]

Alternative application
method

Ultrasound welding of thermoplastic
pins to increase the maximum tensile

load and stiffness, and
side-bending stiffness

[20]

Bacterial
infection

Preventing bacterial adhesion to
implant surface Coating Hydrophobic coatings [26]

Eliminating surrounding
bacteria without antibiotics

Surface modification

Adjusting the nano-scale surface
topography (e.g., pillars on the surface) [84]

Eliminating surrounding
bacteria with local antibiotics

Polymer coating containing stabilized
gas bubbles loaded with antibiotics that
can be released locally using ultrasound

[85]
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Table 2. Cont.

Aspect Ideal Properties Method Potential Solutions Refs

Foreign body
response (FBR)

Materials that do not elicit
an FBR

Selection of materials Materials with non-toxic degradation
products (e.g., derived from silk) [18]

Production process Avoid thick materials, especially with
points and sharp edges [26,75,76]

Tailor the host response so that
FBR are avoided Production process Avoid particle sizes < 2 µm [26]

Avoid micromovements (max.
28–150 µm), that can result in

fibrous encapsulation of
the implant

Selection of materials,
production process, and

3D engineering

Osteosynthesis system with material
properties that matches with the

mechanical properties of the target tissue
(e.g., by using ultrasound welding)

[26]

Degradation
profile

Predictable degradation,
preferably after 3–12 months

3D engineering Thinner materials degrade quicker [17]

Production process
Balance the degradation and

regeneration equilibrium by, e.g., using L-
and D-chirality or by copolymerization

[25,26]

2.1.3. Biodegradable Metals

Biodegradable metals are promising alternatives to polymeric osteosynthesis systems
due to their mechanical properties that are closer to bone than (co)polymeric materials [18]
and their less harmful degradation products. The tensile strength, elastic modulus, ax-
ial pull-out force, and maximum torque of magnesium alloys are higher than that of
(co)polymers, but lower than that of titanium alloys [18,86]. To date, three biodegradable
metal groups have been researched to be used for biodegradable osteosynthesis systems,
i.e., magnesium (Mg), iron (Fe), and zinc (Zn) and their alloys [18]. Mg-based biodegradable
metals have been studied most extensively. The available research for Fe- and Zn-based
degradable metals is limited due to the low degradation rate of Fe-based metals while
Zn-based metals have been introduced only recently [18].

Biodegradation

Biodegradable metal degradation is driven by anodic and cathodic reactions that result
in the production of oxides, hydroxides and/or hydrogen gas [18,87]. Once biodegradable
metals come into contact with body fluids, they are oxidized into metal cations combined
with producing electrons via an anodic reaction. The electrons generated by implanting
Mg-based biodegradable metals are consumed by cathodic reactions with water to form
hydrogen gas and hydroxide. For Fe- and Zn-based metals, oxygen reduction only produces
hydroxide without hydrogen gas. Hydroxide then reacts with the adjacent metal to form a
metal-hydroxide layer on the surface of the implant. The protective layer can be eroded by
high levels of chloride ions in the body fluids resulting in continuation of the degradation
process. However, in Fe-based biodegradable metals, the protective layer consists of
Fe(OH)2, Fe(OH)3, and Fe3O4, that inhibits further degradation. As a result, the degradation
rate of Fe-based metals is very slow [18]. These ongoing reactions cause an oversaturation
of calcium and phosphate ions in the surrounding body fluids that result in a layer of
calcium-phosphate on the metal-oxide layer, that is able to induce bone formation [18].

A major challenge of biodegradable metals, particularly Mg-based materials, is the
unpredictable degradation profile in vivo with subcutaneous emphysema due to the ac-
cumulation of hydrogen gas [18]. The degradation rate of biodegradable metals can be
controlled by tailoring the microstructure, surface properties and coatings of the materials.
For example, a recent study included gallium (i.e., a bone resorption inhibitor) in a mag-
nesium alloy and showed promising results with inhibition of bone porosity formation,
mechanical properties matching cortical bone, and low corrosion rate resulting in less
hydrogen gas formation compared to other available magnesium alloys for orthopedic
surgery [88]. In addition, surface modifications and coatings can be used to tune the degra-
dation rates. For example, Mg-alloys and polymers can be combined to form Mg–polymer
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composites. These composites include high strength and elastic modulus derived from
biodegradable metals while the surrounding biodegradable polymer matrix improves the
corrosion resistance of the underlying metal [89].

Late Host Response

The degradation products of degradable metals such as hydroxide ions, hydrogen gas,
metal-oxides, abraded particles, and calcium-phosphate affect the host response [90,91].
In a bone environment, the formation of the calcium-phosphate layer induces new bone
deposition, making it a unique feature as base material for an osteosynthesis system.
In addition, the Mg-ions can induce new bone formation in cortical bone by increasing
calcitonin gene-related peptide 1 levels in periosteum-derived stem cells [92]. However,
current Mg-based biodegradable metals often show a burst release of Mg-ions that can
lead to excess formation of hydrogen gas resulting in gas pockets, tissue displacement, and
subcutaneous emphysema. The fast degradation rate can also induce osteolysis, hemolysis,
and rapid reduction of the mechanical properties [93].

2.1.4. Silk

Silk is the most recent addition to biodegradable materials [18]. Silk is a natural
biodegradable polymer that is usually derived from the silkworm Bombyx mori. Although
the evidence is still limited to pre-clinical evidence, the current evidence shows excellent
biocompatibility and unique mechanical properties combined with easily and environmen-
tally friendly processing into mechanically robust three-dimensional bulk materials with
excellent machinability [18,94]. To date, it is the only natural polymer that has been used to
prepare an osteosynthesis system [94].

Biodegradation

As with most natural polymers, silk is degraded enzymatically, e.g., by protease XIV,
matrix metalloproteinase and collagenase [44]. These enzymes cleave silk protein chains
into peptide fragments with decreased molecular weight and strength [95]. Immune cells,
especially macrophages and FBGCs, play an important role during degradation of silk.
Immune cells mediate silk degradation through (1) phagocytosis and (2) extracellular
degradation mediated by proteolytic enzymes derived from macrophages and FBGCs. The
degradation products are tightly packed aggregates or amino acids for metabolism [18].
The degradation time depends on implant-related factors (e.g., molecular weight, porosity,
crystallinity, and surface topography) and host-related factors (e.g., species and implan-
tation site). The degradation times can be tailored from minutes to years by controlling
the material variables such as molecular weight, surface topography, β-sheet content, and
porosity [18]. Although in vivo research in animal studies showed complete silk degrada-
tion, a thorough understanding of the degradation pathways and clearing mechanisms as
well as degradation in humans is still lacking [18].

Late Host Response

After implantation of silk materials, a mild inflammatory response occurs that de-
creases within a few weeks. This host response involves recruitment and activation of
macrophages and the formation of FBGCs. The silk implant can be degraded and replaced
by host tissue (e.g., bone), but it can also be integrated within the tissue or encapsulated
by fibrous tissue. There is currently limited data regarding the short- and long-term host
response in vivo. In the currently only available study that prepared a silk-based osteosyn-
thesis systems for fracture fixation in maxillofacial surgery, the in vivo assessment of the
4- and 8-week host response by rats showed more favorable mechanical properties than
biodegradable synthetic polymers and excellent biocompatibility accompanied with bone
remodeling [94]. These results are promising but additional research is necessary to unravel
the complete degradation pathways as well as the host responses that this natural-derived
polymer elicits.
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2.1.5. Titanium and Its Alloys
Late Host Response

Titanium osteosynthesis systems are commonly made of pure titanium or titanium
alloys [20,96]. The most frequently used titanium alloy for maxillofacial osteosynthesis
systems consists of 90% titanium, 6% aluminum, and 4% vanadium (Ti6Al4V, also called
titanium alloy grade 5) [96–99]. However, although titanium and its alloys are presumed to
be completely bioinert, there is growing evidence that wearing of particles occurs that can
accumulate in surrounding tissues and different organs of which the consequences are still
largely unknown [96,98,100].

In a study that explanted titanium osteosynthesis plates from patients that under-
went craniofacial surgery, titanium particles (7.9 to 31.8 µg/gram of dry tissue) could
be detected in the regional soft tissue and lymph nodes after 24-month follow-up [13].
Similarly, a recent study showed that the tissue surrounding titanium plates after fracture
and osteotomy fixation contained 1.03 and 1.09 ppm titanium particles, respectively [14].
Meningaud et al. revealed a large variation in titanium levels within the surrounding
tissue (4–8000 µg/gram) after titanium fixation of osteotomies, but concluded that almost
all of these particles were produced at the moment of applying the osteosynthesis sys-
tem [101]. Other studies reported on the presence of dark-grey pigmentation accompanied
with fibrosis of the surrounding tissue and macrophages containing intra-cellular titanium
particles (Figure 4) [15,102,103]. Zaffe et al. have also shown the presence of titanium in
the surrounding tissue as well as that erythrocytes and lymphocytes contained titanium
particles [104]. In addition, explanted osteosynthesis plates analyzed with scanning elec-
tron microscopy showed defects and irregularities most likely due to in vivo substance
loss [102]. Titanium debris has also been found throughout the body suggesting hematoge-
nous dissemination, with traceable amounts of titanium particles within the liver, spleen,
and lymphatic system [98,100].

Figure 4. HE-section of a soft tissue biopsy surrounding commercially pure titanium plates after
mandibular osteosynthesis under LM. Dust-like (1 micron) particles are indicated with a blue arrow
(magnification ×400). HE, hematoxylin and eosin; LM, light microscopy. Reprinted with permission
from [15].
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To determine the effect of such titanium particles, Coen et al. assessed the cytotoxicity
of Ti6Al4V particles on human fibroblast cells in vitro, and showed chromosomal instabil-
ity, reproductive failure and decreased clonogenic survival 10 generations postexposure
(Figure 5) [105]. Studies that analyzed the periosteum surrounding titanium plates as well
as blood samples in patients after mandibular fracture fixation showed redox abnormal-
ities, and increased oxidative stress and damage [106,107]. Furthermore, an association
between aluminum and the pathogenesis of Alzheimer’s disease has been suggested. In
addition, increased levels of circulating aluminum are associated with microcytic anemia
and osteomalacia [98,108,109]. These findings indicated that there is a need for long-term
epidemiological studies that assess the effect of these particles in the long run.

Figure 5. The initial curve represents the percentage survival of colony formation of HF19 cells
exposed to titanium particles for 24 h. The percentage of survival of the progeny of these cells is
also shown, indicating delayed reproductive death 10 generations postexposure. All percentages are
expressed relative to the control expressed as 100%. Reprinted with permission from [105].

Surface modifications (e.g., oxygen plasma immersion ion implantation) have been
proposed to reduce metal ion release from the implant (Table 3) [110]. In addition, they are
an important aspect of biocompatibility [98,110]. Titanium, without surface modifications,
has a positively charged surface and will, therefore, tend to covalently bond to negatively
charged proteins such as fibronectin [111]. Fibronectin promotes bacterial adhesion and,
thus, increases the risk of infection [112]. Besides bonding to autologous proteins, most of
the cell surface of bacterial species (e.g., Staphylococcus aureus, the most common etiological
pathogen of infections surrounding osteosyntheses [113]) is negatively charged, and thus
also adheres to positively charged surfaces such as titanium [114]. By modifying the surface
charge, adhesion of various bacteria (e.g., Staphylococcus aureus and Escherichia coli) is
inhibited and, ideally, the risk of infection is reduced [110]. These properties of titanium
systems can also be tuned by other surface modifications (Table 3 and Figure 6).
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Table 3. Different aspects of titanium osteosynthesis systems accompanied with the ideal properties
and the potential solutions to accomplish these properties.

Aspect Ideal Properties Methods Potential Solutions Refs

Surgical handling

Easy perioperative
adaptation of plates

3D engineering Patient specific osteosynthesis systems [115,116]

Production process
Adaption of the production process to

alter the mechanical properties of
plates (e.g., lower stiffness)

[20,117–120]

No risk of perioperative
screw breakage 3D engineering Adjusting the screw head to improve

the grip on the screws [20]

Elastic modulus

Enough elastic modulus to
avoid micromovements, but
not stiffer than bone to avoid

stress-shielding of the
underlying bone

Production process
Adaption of the production process to

alter the mechanical properties
of plates

[20,117–120]

Bacterial infection

Preventing bacterial
adhesion to implant surface

Coating
Hydrophobic coatings [26]

(Nano)gel coatings [121,122]

Surface modification

Plasma immersion ion implantation
(surface modification) [110,123,124]

Physical vapor deposition [125,126]

Increasing surface energy by acid
etching [127]

Eliminating surrounding
bacteria without antibiotics

Coating Titanium Nitride (TiN) coating [128,129]

Surface modification

Adjusting the nano-scale surface
topography (e.g., pillars on the surface) [84]

Plasma immersion ion implantation [110,130]

Physical vapor deposition [131]

Laser surface modification [132]

Anodization [133,134]

Micro-Arc oxidation [135,136]

Eliminating surrounding
bacteria with local

antibiotics

Coating

Polymer coating containing stabilized
gas bubbles loaded with antibiotics

that can be released locally using
ultrasound

[85]

(Nano)gel coatings [122,137]

Surface modification Chemical vapor deposition [138]

Osteogenesis Improving bone growth
surrounding the implant

Coating (Nano)gel coatings [137]

Surface modification

Plasma spraying with hydroxyapatite [139–143]

Plasma immersion ion implantation [144,145]

Physical vapor deposition [146,147]

Chemical vapor deposition [148]

Increasing surface energy by acid
etching [127]

Laser surface modification [132,149,150]

Anodization [151]

Wear resistance
No wearing of titanium

(alloy) particles

Coating Titanium Nitride (TiN) coating [152,153]

Surface modification

Plasma immersion ion implantation [110]

Physical vapor deposition [98]

Laser surface modification [150,154]

Anodization [134,155,156]
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Figure 6. (a) Schematic overview of nanogel coating with antifouling and antimicrobial properties.
(b) Staphylococcus aureus adhered to glass with and without the nanogel coatings under fluorescence
microscopy (scale bars 20 µm). (c) The number of colony-forming units of surviving Staphylococcus
aureus after 24 h incubation on the surface of uncoated and coated glass (*** and **** indicate p < 0.001
and p < 0.0001, respectively). N-nGel, nonquaternized nanogel; Q-nGel, quaternized nanogel; TCS,
triclosan; CFU, colony-forming units. Reprinted with permission from [122].

2.2. Mechanical Properties
2.2.1. Minimally Required Mechanical Properties

Several studies assessed the mechanical forces surrounding osteosyntheses applied to
maxillofacial fractures [157–163], osteotomies [164,165] and reconstructions [166], so that
the minimally required mechanical properties of an osteosynthesis system can be estimated.
After maxillofacial trauma, the reported bite force increases up to 64 N by the second post-
operative fracture fixation day, 92 N after 1 week, 187 N after 4 weeks, and up to 373 N at
the 3-month follow-up [157]. Other studies focusing on trauma patients showed that 100 N
forces were measured after 4 weeks of fixation [159,161]. The mechanical forces around
maxillofacial osteotomies have been reported to increase from 21 ± 14 N (i.e., after 1 week)
to 65 ± 43 N (i.e., after 6 weeks) [160] while other studies reported forces ranging from
82.5 to 132 N [164,165]. The masticatory forces after mandibular reconstructions ranged
from 28 to 186 N [166]. However, the mechanical stress surrounding osteosynthesis systems
is multi-factorial and is affected by the location of the fracture [1], differences in interfrag-
mentary stability [1], mandibular height [1], degree and direction of movement [167], and
preoperative masticatory forces [159,168,169]. Load-sharing osteosynthesis allows sharing
of the load between bone segments and the osteosynthesis system (e.g., fractures with
interfragmentary stability) whereas in load-bearing osteosynthesis, the complete load at
the fracture site is carried by the osteosynthesis system without interfragmentary stabil-
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ity [1,170]. In a load-bearing situation, the osteosynthesis system is exposed to substantially
higher loads and, thus, the biomechanical requirements for an optimal osteosynthesis
system are higher compared to load-sharing osteosyntheses [70,171]. Although it would be
of high clinical value to determine the exact cut-off value of the transition from load-sharing
to load-bearing osteosyntheses, this is currently unknown. Since the mandible is exposed
to considerably higher biomechanical forces compared to the maxilla [1], load-bearing
osteosynthesis of the mandible requires even higher mechanical properties of the used os-
teosynthesis system compared to load-bearing osteosynthesis of the maxilla or load-sharing
osteosynthesis of the mandible [172,173]. Furthermore, as bone healing progresses, the
forces will be shared by the osteosynthesis system and the underlying healing bone. Thus,
it remains difficult to estimate the least mechanical properties an osteosynthesis system has
to meet. Therefore, researchers have mainly focused on relative differences between the
available osteosynthesis systems [20].

2.2.2. Mechanical Properties of Osteosynthesis Systems

The mechanical properties of osteosynthesis systems depend on several factors including
composition (i.e., titanium (alloys) or (co-)polymers), the production processes (e.g., stamping ver-
sus laser cutting of titanium systems) [117,118,174], dimensions, polymer self-reinforcement [175],
the application method (i.e., screws or ultrasound welded pins) [176], ageing, and sterilization
methods [177–179]. The tensile, bending and torsional stiffness of an osteosynthesis system are a
more clinically relevant outcome than maximum tensile load since this affects adequate fixation
and bone healing (i.e., malunion and non-union) [180] while maximum tensile load is only relevant
whenever the bone segments are already separated by more than a few millimeters. In the latter
case, this will certainly result in compromised bone healing or malunion.

In a recent in vitro study, the maximum tensile load as well as the tensile, bending and
torsional stiffness of 13 biodegradable and 6 titanium straight, four-hole osteosynthesis
systems derived from static mechanical tests of the initial materials were assessed and
compared (Figures 7–9) [20]. The titanium systems’ tensile loads were higher than those
of the biodegradable systems. The bending stiffness of the 1.5 mm titanium systems was
comparable to all the biodegradable systems whereas the 2.0 mm system’s bending stiffness
was higher. Regarding the biodegradable systems, Inion CPS 2.5 mm had the highest tensile
load and torsional stiffness, SonicWeld 2.1 mm the highest tensile stiffness, and BioSorbFX
2.0 mm the highest bending stiffness. Regarding the titanium systems, the CrossDrive
(2006) systems had the highest tensile, bending and torsional stiffness. It must be noted,
though, that although high mechanical osteosynthesis properties are sought for adequate
fixation, the extreme stiffness of the titanium systems can be a disadvantage due to the
stress shielding of the underlying bone [12]. Stress shielding occurs when the underlying
bone is exposed to less stress than it should endure, leading to an increase in osteoclast
activity and bone resorption, that can, in turn, lead to decreased bone density and aseptic
loosening [98,181]. This has led to the development of new titanium osteosynthesis systems
with a lower elastic modulus to reduce stress shielding of the underlying bone by adjusting
the production process (Figures 7–9 and Table 3) [20,23,24].

Within the limitations of finite element analyses (e.g., assuming the masticatory forces
are fixed), three-dimensional analyses indicated that the biomechanical stresses surround-
ing osteosynthesis systems remain far below the threshold of their ultimate strength of
both biodegradable and titanium osteosynthesis systems [163,172,182,183]. In addition,
the empirical evidence of fracture [19] and osteotomy [184] osteosyntheses shows that the
efficacy of titanium and biodegradable osteosyntheses is similar (e.g., absence of malunion),
indicating that the less favorable mechanical properties of biodegradable osteosynthesis are
still sufficient to achieve similar healing outcomes. However, as also observed from the em-
pirical evidence, the mechanical properties of biodegradable osteosyntheses of mandibular
osteotomies may be insufficient to avoid micromovements [184]. Future research should
also focus on these micromovements since they play an important role in developing
foreign body reactions [26].
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Finite element analyses also demonstrated that the stress surrounding conventional
screws is much larger compared to those of plates, indicating that material complications
may arise from the screws rather than the plates (e.g., screw loosening or fractures) [182].
The positive effect of ultrasound welding of biodegradable, thermoplastic pins instead of
using conventional screws was demonstrated by the superior mechanical properties of the
SonicWeld Rx (PDLLA with thermoplastic pins) compared to the Resorb X system (identical
system with screws) [20]. Additionally, ultrasound welding caused a shift of the weakest
link of the complete osteosynthesis system from the screw-plate interface to the plate itself.
Therefore, ultrasound welding may reduce screw-related material complications, but this
has to be investigated by future research.

Figure 7. The tensile load and stiffness of 13 biodegradable and 6 titanium osteosynthesis systems
commonly used in oral and maxillofacial surgery. The characters in blue and orange represent signifi-
cant pairwise differences in maximum load and stiffness, respectively, between the corresponding
systems using a one-way analysis of variance adjusted for multiple testing. The titanium CrossDrive
(2006) plates consisted of 100% titanium produced by stamping of plates. The titanium CrossDrive
(2018) and MaxDrive consisted of 100% titanium produced by milling of plates. The titanium Cross-
Drive (2006 and 2018) and MaxDrive screws consisted of a Ti6Al4V alloy. The composition of each
biodegradable system is described in Table 1. Error bars: mean values ± standard deviation. Ti6Al4V,
90% titanium, 6% aluminum and 4% vanadium alloy; SW, SonicWeld; D, drill diameter (mm); T,
tap diameter (mm). The dotted line separates the titanium (left) and biodegradable systems (right).
Reprinted with permission from [20].
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Figure 8. The side bending stiffness of 13 biodegradable and 6 titanium osteosynthesis systems
commonly used in oral and maxillofacial surgery. The characters in blue and orange represent signifi-
cant pairwise differences in maximum load and stiffness, respectively, between the corresponding
systems using a one-way analysis of variance adjusted for multiple testing. The titanium CrossDrive
(2006) plates consisted of 100% titanium produced by stamping of plates. The titanium CrossDrive
(2018) and MaxDrive consisted of 100% titanium produced by milling of plates. The titanium Cross-
Drive (2006 and 2018) and MaxDrive screws consisted of a Ti6Al4V alloy. The composition of each
biodegradable system is described in Table 1. Error bars: mean values ± standard deviation. Ti6Al4V,
90% titanium, 6% aluminum and 4% vanadium alloy; SW, SonicWeld; D, drill diameter (mm); T, tap
diameter (mm). The dotted line separates the titanium (left) and biodegradable systems (right).
Reprinted with permission from [20].
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Figure 9. The torsional stiffness of 13 biodegradable and 6 titanium osteosynthesis systems commonly
used in oral and maxillofacial surgery. The characters in blue and orange represent significant pairwise
differences in maximum load and stiffness, respectively, between the corresponding systems using a
one-way analysis of variance adjusted for multiple testing. The titanium CrossDrive (2006) plates
consisted of 100% titanium produced by stamping of plates. The titanium CrossDrive (2018) and
MaxDrive consisted of 100% titanium produced by milling of plates. The titanium CrossDrive (2006
and 2018) and MaxDrive screws consisted of a Ti6Al4V alloy. The composition of each biodegradable
system is described in Table 1. Error bars: mean values ± standard deviation. Ti6Al4V, 90% titanium,
6% aluminum and 4% vanadium alloy; SW, SonicWeld; D, drill diameter (mm); T, tap diameter
(mm). The dotted line separates the titanium (left) and biodegradable systems (right). Reprinted with
permission from [20].

3. Clinical Evidence
3.1. Biodegradable Versus Titanium Osteosyntheses: Efficacy and Symptomatic Removal

In theory, the primary advantage of biodegradable compared to titanium osteosynthe-
sis is the reduced, or even eliminated, need for symptomatic device removal while having
similar efficacy (i.e., adequate bone healing without malunion). In a recent systematic
review with meta-analyses, the available clinical evidence (i.e., randomized controlled
trials [RCTs], and prospective and retrospective controlled studies without language or
period restrictions) from patients treated for maxillofacial fractures (i.e., Le Fort I, cranial,
zygomaticomaxillary complex and mandibular fractures) with load-sharing biodegradable
versus titanium osteosyntheses was compared [19]. Following a sensitive and thorough
literature search that focused on all relevant clinical endpoints, the meta-analysis of RCTs
demonstrated similar efficacy and morbidity between the two systems, but symptomatic
osteosynthesis removal was significantly lower in the biodegradable compared to the
titanium group [19]. Other studies that focused on cohorts of patients who had undergone
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load-sharing biodegradable fixation of midface and malar fractures [66,185,186], naso-
orbital-ethmoid fractures [187], and mandibular body, parasymphysis and symphysis frac-
tures [37,66,183], also showed adequate internal fixation, long-term stability, and biocom-
patibility with biodegradable systems. Similar results were observed in non-comparative
cohorts that included adults with isolated orbital floor fractures [186] and combined orbital
floor and medial wall fractures [187] treated with biodegradable mesh plates. In addition,
another systematic review that focused on the composite of the complications (e.g., infec-
tion, palpability, dehiscence, material-related complications, and exposure) encountered
with biodegradable versus titanium osteosynthesis of zygomatic and mandibular fractures
revealed significantly fewer complications from biodegradable compared to titanium os-
teosyntheses, although the analysis had a risk of bias due to substantial methodological
heterogeneity of the included studies [188]. Symptomatic biodegradable osteosynthesis
system removal in these studies (0 to 8.6%) was comparable to that of the patients with
mandibular, Le Fort I, and zygomatic fractures in a multicenter randomized controlled
trial (RCT) that compared titanium (KLS Martin CrossDrive system) with biodegradable
osteosynthesis (Inion CPS system) with a median follow-up of 99 (78;113) months [8].

Similar to the abovementioned results, a recent systematic review with meta-analyses
that compared biodegradable versus titanium osteosyntheses in adults with dentofacial
deformities treated with orthognathic surgery (i.e., Le Fort I, bilateral sagittal split (BSSO),
and intraoral vertical ramus osteotomies (IVRO), with and without concurrent genioplasty)
also demonstrated similar efficacy and morbidity between biodegradable and titanium
osteosynthesis systems [184]. Non-comparative cohort studies that focused on the stability
of maxillary [189–191], mandibular [189–191], or bimaxillary osteotomies [189–193], and
post-operative complications [191,194,195], also showed predictable skeletal stability with
post-operative complications rates similar to those reported in the literature after titanium
osteosyntheses [196–198].

In contrast to the abovementioned trauma population [19], a non-significant differ-
ence in symptomatic biodegradable and titanium osteosynthesis system removal was
observed in the aforementioned orthognathic population [184]. The main reasons for
biodegradable osteosynthesis removal in both populations were chronic inflammation
and discomfort [19,184]. Similar results were observed in the aforementioned RCT with
long-term follow-up, but in-depth analyses revealed that all the removals among the
biodegradable group were due to clinical problems in the mandible, and were only seen
after fixation of osteotomies [8]. Different reviews noted that mandibular osteotomies are
associated with significantly more complications and higher symptomatic biodegradable
and titanium osteosyntheses removal compared to maxillary osteotomies, and compared to
fracture fixation [188,199–201]. A large retrospective cohort study (n = 685 patients) that fo-
cused on the efficacy and complications of biodegradable osteosyntheses and symptomatic
removal of the systems also showed that mandibular osteotomies are associated with more
complications and higher symptomatic removal rates compared to other osteotomies [202].
In addition, earlier reviews also showed more complications and symptomatic osteosyn-
thesis removal after titanium fixation of mandibular osteotomies compared to other os-
teotomies [199,200]. Together, these results indicate that biodegradable osteosynthesis is a
viable alternative to titanium osteosynthesis for fixation of both fractures and osteotomies.
However, among the studied trauma population, the symptomatic biodegradable osteosyn-
thesis systems removal rates are lower compared to the titanium osteosyntheses group
whereas the biodegradable and titanium osteosyntheses groups have similar symptomatic
osteosyntheses removal rates after orthognathic surgery.

An important aspect of successful biodegradable osteosyntheses (i.e., adequate bone
healing and stability, and lack of foreign body reactions) is the biomechanical perspective.
The biomechanical differences between fixation of fractures and osteotomies may explain
the beneficial effect of biodegradable systems compared to titanium systems after frac-
ture fixation versus osteotomy fixation. Fracture fixation with interfragmentary stability
ensures load-sharing osteosyntheses whereas in osteotomies, interfragmentary stability
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is absent and thus the complete load at the osteotomy is carried by the osteosynthesis
system (i.e., load-bearing osteosyntheses) [1,203]. Since the mandible is exposed to con-
siderably higher biomechanical forces compared to the maxilla, this effect is even more
pronounced in mandibular osteosyntheses. This is supported by the empirical findings that
symptomatic osteosynthesis removal after fixation of mandibular fractures and osteotomies
is significantly higher compared to those of other parts of the facial skeleton, both after
titanium and biodegradable osteosyntheses [188,199–202,204]. Biomechanical forces that
are not sufficiently counteracted can result in micromovements surrounding the osteosyn-
theses that may result in disturbed bone healing or foreign body reactions [1,18,26,205–208].
Animal studies have shown that these micromovements should be limited to 28–150 µm
to avoid fibrosis and accompanying foreign body reactions [26,205–208]. Therefore, it is
important that the mechanical properties of biodegradable implants are sufficient for the
intended clinical application to ensure (primary) stability for adequate bone healing and to
avoid micromovements and the accompanying risk of foreign body reactions (Table 2).

The clinical evidence of biodegradable metals is limited. A clinical study that compared
magnesium (MgYREZr alloy; WE43) with titanium compression screws (Ti6Al7Nb alloy)
for the fixation of mandibular condylar head fractures showed similar results after 18-month
follow-up, with limited formation of hydrogen gas within the first 4 months [86]. These and
other intermediate-term clinical outcomes [209] indicate that tuning the composition and
structure of magnesium alloys are promising techniques to achieve biodegradable metal
osteosyntheses in maxillofacial surgery. Although the degradation profiles of biodegradable
magnesium alloys look promising [210–212], future research should focus on in vivo studies
with long-term follow-up.

3.2. Biodegradable Versus Titanium Osteosyntheses: Secondary Advantages

At first glance, the non-significant difference in the proportion of symptomatic re-
moval of biodegradable and titanium osteosyntheses in orthognathic surgery seems to
negate the benefits of biodegradable osteosyntheses. However, asymptomatic biodegrad-
able osteosynthesis systems will eventually be resorbed while titanium osteosynthesis will
remain in situ until removed surgically. Therefore, titanium osteosynthesis systems have a
life-time risk of, e.g., late infection or palpability complaints. Furthermore, biodegradable
osteosyntheses have other (secondary) advantages, besides the most obvious benefit of less
device removal compared to titanium systems, including no interference with radiographic
imaging and radiotherapy, a more gradual transfer of stress to the healing bone (i.e., less
stress shielding), and less system palpability in the long-term [8,9,19,176,213–215]. Whereas
17–80% of the patients undergo a second operation for elective titanium osteosynthesis
removal due to their awareness of the presence of a foreign body (i.e., the titanium sys-
tem) [216–218], asymptomatic biodegradable systems are generally eventually resorbed,
thus forestalling such elective removals. When asked prior to surgery, the vast majority
of patients (i.e., >95%), therefore, prefer biodegradable over titanium osteosyntheses in
both maxillofacial traumatology and orthognathic surgery [219,220]. Despite the similar
symptomatic removal rates in orthognathic surgery, the other benefits of biodegradable
over titanium systems (e.g., no temperature sensitivity, no possible growth restrictions,
and no hampering of imaging and radiotherapy) could also be valid reasons to choose
biodegradable osteosynthesis systems. All these aspects should therefore be addressed
preoperatively when informing the patients to ensure well-informed decision making.

Similarly, after fracture fixation in pediatric patients, common practice is to electively
remove all the titanium systems due to possible later growth disturbances [221,222] and
plate migration [223–225], whereas only the symptomatic biodegradable systems (12%)
are removed [19]. In a recent systematic review including pediatric upper- and mid-facial
fractures, the biodegradable osteosyntheses showed significantly fewer complications
and symptomatic osteosynthesis system removal rates compared to titanium osteosynthe-
ses [226]. Comparable rates were observed after applying biodegradable osteosynthesis
for mandibular fracture fixation [227,228] and in craniofacial surgery [229,230] in pediatric
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patients. Biodegradable osteosyntheses would thus overall result in lower osteosynthesis
removal compared to titanium osteosyntheses from pediatric patients. It must be noted,
though, that there is currently no conclusive evidence whether growth disturbances actu-
ally occur with titanium systems and, thus, there is controversy in the current literature
regarding the elective removal of titanium osteosynthesis systems from pediatric fracture
patients [223,224,231,232]. Therefore, this subject needs to be addressed by future research.
OMF-surgeons should inform pediatric patients and/or their caregivers about the above
preoperatively to guide the shared-decision making.

3.3. Certainty of the Current Evidence

An important aspect when assessing efficacy, morbidity and symptomatic osteosyn-
thesis removal in clinical studies is the duration of follow-up. The studies included in the
most recent and comprehensive systematic reviews that focused on biodegradable versus
titanium osteosyntheses in maxillofacial traumatology [19] and orthognathic surgery [184]
predominately had 2-year follow-ups. Although this is sufficient follow-up to assess efficacy
(e.g., adequate bone healing), symptomatic osteosynthesis removal can occur later on (i.e.,
>2-year follow-up) due to osteosynthesis system palpability, thermal sensitivity or foreign
body reactions [8,53,65,69,233–235]. In a cohort study with a follow-up of 67 months, 7%
of the included patients underwent symptomatic biodegradable osteosynthesis removal
between 24 and 67 months [186]. In an RCT with a follow-up of 99 months, 3% and 5% of
the patients in the biodegradable and titanium group, respectively, underwent a secondary
surgical procedure to remove symptomatic osteosynthesis system removal between the
24-month and final follow-up [8]. Similarly, titanium system removals due to infection
and discomfort occurred after the 4- [201] and 5.5-year follow-ups [235]. Therefore, future
research should also include long-term follow-up assessments (e.g., ≥5-year follow-ups) in
the pre-specified protocols.

Since significant differences in biocompatibility and degradation profiles as well as in
mechanical properties are observed between copolymeric biodegradable osteosynthesis
systems, future clinical research should focus on a specific biodegradable system that has
proven to be biocompatible in the long-term as well as having the most favorable mechanical
properties for specific surgical indications. In addition, there is currently no evidence to
support or refute the use of biodegradable osteosynthesis in load-bearing fracture fixation.
Since current evidence suggests that load-sharing fixation of fractures using biodegradable
osteosynthesis is feasible, the next step would be to focus on load-bearing biodegradable
osteosynthesis of fractures. Finally, systematic reviews should include tools to assess the
degree of clinical heterogeneity [236], and should perform network meta-analyses to assess
the most preferred biodegradable system. This would allow conclusions regarding the
efficacy of specific biodegradable osteosynthesis systems based on clinical evidence.

4. Clinical Recommendations: Titanium or Biodegradable Osteosyntheses?

Current pre-clinical and clinical evidence indicates that biodegradable copolymeric
osteosynthesis is a viable alternative to titanium osteosynthesis for fixation of both frac-
tures and osteotomies, with similar efficacy [19,184]. Fixation of fractures also leads to
significantly lower symptomatic device removal, thereby achieving the primary advantage
of biodegradable osteosyntheses. Based on both the biological and biomechanical perspec-
tives [20,25], a biodegradable osteosynthesis system composed of amorphous copolymers
(e.g., PDLLA), preferably using ultrasound welding with a well-contoured shape without
acute angles, and that has sufficient mechanical properties has the greatest potential as a
biocompatible biodegradable copolymeric osteosynthesis system. Therefore, for midface
fractures, the SonicWeld Rx 2.1 mm system is recommended [20,25]. The Inion CPS 2.5 mm
system is recommended for mandibular fractures. Whenever the patient or surgeon prefers
a titanium osteosynthesis system, 1.5 (e.g., midface fractures) and 2.0 mm titanium systems
(e.g., mandibular fractures) from several suppliers are recommended [1,20,170].
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Although copolymeric biodegradable and titanium osteosyntheses of osteotomies
result in similar efficacy, both groups also have similar symptomatic osteosyntheses re-
moval rates. Therefore, the primary advantage of biodegradable osteosyntheses in this
population is neglected. Titanium systems are, therefore, still preferred due to lower
risk of perioperative screw breakage, lower operation time, and better perioperative han-
dling compared to biodegradable systems [19,171,184]. For maxillary and mandibular
osteotomies, 1.5 and 2.0 mm titanium systems are recommended, respectively. Biodegrad-
able osteosyntheses in orthognathic surgery may still be used, but only whenever the
patient and/or surgeon prefer biodegradable over titanium systems, e.g., on the basis on
secondary advantages (e.g., no temperature sensitivity, no possible growth restrictions, and
no hampering of imaging). Then, the SonicWeld Rx 2.1 mm and Inion CPS 2.5 mm systems
are also recommended for maxillary and mandibular osteotomies [20,25], respectively.

There is currently no evidence to support or refute the use of biodegradable osteosyn-
thesis in load-bearing fracture fixation (e.g., a comminuted fracture) or osteosyntheses in
reconstructive surgery (e.g., anatomical defects after an oncological resection) [19]. However,
since the biomechanical requirements for these surgical procedures are comparable or even
higher compared to osteosyntheses of osteotomies [1,20,166], titanium osteosyntheses remain
preferred over biodegradable osteosyntheses until (empirical) evidence becomes available
that supports the use of biodegradable osteosyntheses for these surgical procedures.

5. Future Perspectives
5.1. Overcoming the Disadvantages of Current Osteosynthesis Systems
5.1.1. Biodegradable (Co)Polymeric Systems

In Table 2, different important aspects of biodegradable osteosynthesis systems have
been summarized accompanied with the ideal properties and the potential solutions to
accomplish these properties.

Both in maxillofacial trauma treatment and orthognathic surgery, the risk of perioper-
ative screw breakage and perioperative time is significantly higher in the biodegradable
compared to titanium osteosyntheses group [19,184]. Perioperative biodegradable screw
breakage is a commonly reported complaint [237,238] and, together with the need to pre-tap
burr holes for biodegradable screws (i.e., a time-consuming extra step), it is the lowest
rated perioperative handling aspect of biodegradable systems by OMF-surgeons [238].

Screw breakage is more likely when the difference between the torque applied to the
screws for adequate fixation (i.e., hand-tight) and the maximum allowed torque (i.e., torque
up to screw breakage) is small [239,240]. The difference between hand-tight and maxi-
mum torque is much smaller for biodegradable screws composed of synthetic polymers
compared to titanium screws [20,239,240] and, thus, explains the higher risk of periop-
erative biodegradable screw breakage. Biodegradable screws composed of degradable
metals or silk have more better mechanical properties that can be prepared as self-tapping
screws as well as that screw breakage occurs less often than when using screws of synthetic
materials [94,209].

An alternative to biodegradable screws is biodegradable pins that are inserted via
ultrasonic welding (e.g., the SonicWeld systems), thereby diminishing the risk of periop-
erative screw breakage (Table 2). This also obviates the need to pre-tap the burr holes.
Ultrasound welding has been shown to be easy to use and reduces the time needed to apply
the osteosynthesis systems by up to 50% compared to the same biodegradable system with
screws [229,230,241].

Besides the advantages in perioperative handling, systems with ultrasound pin weld-
ing have significantly better mechanical properties compared to an identical system with
conventional screws [20,176]. A positive effect of ultrasound welding was demonstrated
by the superior mechanical properties of the SonicWeld Rx (PDLLA with thermoplastic
pins) compared to the Resorb X system (identical system with screws; Figures 7–9) [20].

Improvements in mechanical properties may also result in smaller biodegradable
osteosynthesis devices, thereby reducing issues regarding palpability of the system by
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patients, and stress-free closure of the incision by OMF-surgeons. In addition, low implant
volume reduces the amount of acidic degradation products and thus reduces the risk
of (late) foreign body reactions [18]. Studies have also shown that the geometry of the
implant also affects the host response. A smooth, well-contoured shape without acute
angles induces macrophage polarization towards M2 macrophages (i.e., towards wound
repair and an immune regulatory phenotype) whereas implants with acute angles and non-
contoured shapes increase the risk of foreign body reactions to biomaterials [25,79,80]. Since
screws possess acute angles and welded pins are smooth without acute angles, welded
pins may also contribute to a more biocompatible osteosynthesis system compared to a
similar system with screws [18].

Besides ultrasound welding, patient-specific osteosynthesis systems will also con-
tribute to osteosynthesis systems with superior mechanical properties while reducing the
total volume of the system, i.e., the system can be strengthened where necessary while
removing excess material [18,83,242,243]. This will also reduce the amount of degradation
products and, thus, the risk of foreign body reactions [18].

Other novel developments such as different types of coatings to prevent bacterial
adhesion, surface topography adjustments to eliminate surrounding bacteria without
the need for antibiotics, and coatings with antibiotics that can be released locally using
ultrasound are promising developments to reduce infection risk (Table 2). These leads
should be included in future research.

5.1.2. Titanium Systems

In Table 3, different important aspects of titanium osteosynthesis systems have been
summarized accompanied with the ideal properties and the potential solutions to accom-
plish these properties.

Titanium osteosynthesis systems have been improved to overcome the associated
disadvantages. The titanium alloy production process can be altered in such a way to
increase or decrease the elastic modulus of the titanium osteosynthesis plates [23,24]. By in-
creasing the elastic modulus, the titanium plates can be thinner while maintaining sufficient
mechanical properties for adequate bone healing. Another advantage of thinner systems is
that they may reduce the tactile sensation of the osteosynthesis systems for patients which,
in turn, could reduce symptomatic osteosynthesis removal rates. In addition, reducing
the volume of the titanium osteosynthesis systems reduces imaging and radiotherapy
restrictions. On the other hand, decreasing the elastic modulus of existing osteosynthesis
plates would address the potential issue of stress shielding of the underlying bone [23,24]
as well as improve the perioperative handling of the systems (Table 3).

Besides the adjustments in mechanical properties, different types of surface modifica-
tions and coatings have been introduced to decrease infection risk, improve osteogenesis
surrounding the implant, and reduce wearing of particles [26,110]. Surface modifications,
such as adjusting the nano-scale surface topography (e.g., pillars on the surface) [84], can
lead to the elimination of surrounding bacteria. Another promising surface modification
is oxygen plasma immersion ion implantation. Here, the implant surface is modified by
targeting it with specific ions (e.g., TiO2) to gain specific properties including inhibiting
various bacteria from adhering (e.g., Staphylococcus aureus and Escherichia coli) and reducing
metal ion release from the implant [110]. Finally, different types of coatings have also been
introduced to prevent bacterial adhesion to implant surfaces, diminishing the need for
antibiotics (Figure 6 and Table 3) [26].

5.2. Outlook

Besides the currently available biodegradable synthetic copolymeric systems (e.g.,
PDLLA), novel biodegradable systems composed of degradable metals (e.g., magnesium
and zinc alloys) [87,244,245] or natural polymers (e.g., amorphous silk fibers derived from
the silkworm Bombyx mori) are being developed [18].
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Biodegradable metals are promising alternatives to polymeric osteosynthesis but a ma-
jor challenge of biodegradable metals is the unpredictable degradation profile in vivo [18].
Therefore, although the short-term degradation profiles of biodegradable magnesium and
zinc alloys look promising [210–212], research should focus on controlling the degradation
rates in vivo and assessing the long-term outcomes of biodegradable metal systems in a
clinical setting.

Silk is the most recent addition to biodegradable materials for osteosynthesis sys-
tems [18]. The preliminary fracture fixation results are promising [94]. However, no data
are currently available on the short- and long-term effects of in vivo produced degradation
products. Future research should focus on these aspects as well as on the degradation
pathways in vivo and the comparison of the biocompatibility and safety profiles with other
available biodegradable materials.

Besides material composition, the microstructure of biomaterials, material morphology,
geometry, internal structure, surface topology, porosity, and coatings require more attention
as these are important factors that contribute to the host response (Tables 2 and 3) [18,246].
Surface modifications (e.g., polarity and charge) have been shown to influence cellular
behaviour [247–250] and that surface coatings can have antimicrobial effects [85]. Tuning
the spherical dimensions of biomaterials increases their biocompatibility [72]. Furthermore,
bioactive molecules can be incorporated into biomaterials [251] which may be useful for
incorporating antibiotics into osteosynthesis systems used in revision surgery following an
infection. These factors may improve the next-generation (biodegradable) osteosynthesis
systems so that the host responses are influenced and the risk of surgical site infections is
decreased (Table 2) [72].

Research should also aim to assess the least required mechanical properties for an
osteosynthesis system for specific cases (e.g., by developing in silico models). Ideally, these
insights should be incorporated into a validated model in which osteotomy and fracture
parameters (e.g., presence of interfragmentary stability, gap width, and mandibular height)
can be easily adjusted. In addition, three-dimensional printing technologies such as stere-
olithography and selective laser sintering [252] means that patient-specific biodegradable
osteosynthesis systems are now feasible [83,253]. Applying such new design methods could
lead to implants with a better fit, stress resistance and dimensions (Tables 2 and 3) [26]. An
excellent example is a patient-specific osteoinductive implant made by stereolithography
to repair orbital floor defects that has shown promising results [83]. Constructing and
validating in silico models would also contribute to, and accelerate, the translation to
patient-specific biodegradable osteosyntheses systems for maxillary and/or mandibular
fractures and osteotomies [18].

6. Conclusions

In this review, the current literature that compared the in vitro and in vivo performances
(i.e., including the clinical performances) of different biodegradable and titanium osteosyn-
thesis systems was discussed. It was shown that, based on current pre-clinical and clinical
evidence, biodegradable copolymeric osteosyntheses are a viable alternative to titanium os-
teosyntheses when applied to treat maxillofacial trauma, with similar efficacy and significantly
lower symptomatic osteosynthesis removal, but with higher perioperative screw breakage.
For orthognathic surgery, biodegradable copolymeric osteosynthesis is also a valid alternative
to titanium osteosyntheses, but with longer operation times compared to titanium osteosyn-
theses. Furthermore, it was shown that an osteosynthesis system composed of an amorphous
copolymer (e.g., PDLLA), preferably using ultrasound welding with a well-contoured shape
without acute angles, and that has sufficient mechanical properties (e.g., the SonicWeld Rx
2.1 mm system) has the greatest potential as a biocompatible biodegradable copolymeric
osteosynthesis system. Future research should focus on surface modifications (e.g., nanogel
coatings and surface topography) of titanium and biodegradable osteosynthesis systems to
improve surgical handling, osteogenesis, and wear resistance. Finally, novel biodegradable
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materials (e.g., magnesium alloys and silk) are promising candidates for the development of
next-generation biodegradable osteosynthesis systems.
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