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Abstract: Accurately identifying protein—-ATP binding residues is important for protein function
annotation and drug design. Previous studies have used classic machine-learning algorithms like
support vector machine (SVM) and random forest to predict protein-ATP binding residues; however,
as new machine-learning techniques are being developed, the prediction performance could be
further improved. In this paper, an ensemble predictor that combines deep convolutional neural
network and LightGBM with ensemble learning algorithm is proposed. Three subclassifiers have
been developed, including a multi-incepResNet-based predictor, a multi-Xception-based predictor,
and a LightGBM predictor. The final prediction result is the combination of outputs from three
subclassifiers with optimized weight distribution. We examined the performance of our proposed
predictor using two datasets: a classic ATP-binding benchmark dataset and a newly proposed ATP-
binding dataset. Our predictor achieved area under the curve (AUC) values of 0.925 and 0.902 and
Matthews Correlation Coefficient (MCC) values of 0.639 and 0.642, respectively, which are both better
than other state-of-art prediction methods.

Keywords: protein—ATP binding residue prediction; deep convolutional neural network; LightGBM;
ensemble learning; protein primary sequence

1. Introduction

Interactions between proteins and ligands are crucial for many biological activities
and play significant roles in a wide variety of biological processes, including membrane
transportation, muscle contraction, and replication and transcription of DNA [1-3]. There-
fore, accurately identifying the positions of binding sites in proteins is instructive for
protein function annotation and novel drug design for diseases like cancers [4], diabetes [5],
and Alzheimer’s [6]. Adenosine-5-triphosphate (ATP) is an important ligand molecule
that serves as an energy source and a coenzyme in cell biology [7]. It interacts with pro-
teins through protein—-ATP binding residues in protein sequences and provides chemical
energy to proteins via hydrolysis, which can be used for various protein functions [8,9].
Tremendous wet-lab efforts have been undertaken to identify the locations of the protein—
ATP binding residues, including X-ray crystallography [10] and nuclear magnetic reso-
nance (NMR) [11]. However, these wet-lab experiments are often cost-intensive and time-
consuming [12], which constrains their application to the large-scale protein sequences of
the postgenomic era.
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Given these circumstances, the use of computational approaches for protein—ATP
binding residue prediction is drawing more attention from researchers as advances are
made in artificial intelligence and machine learning. Depending on the protein features
involved, these computational prediction methods can be grouped into two categories:
sequence-based methods, in which features are derived from protein sequence informa-
tion, and structure-based methods, in which features are derived from structural protein
information. As of 4 November 2020, the number of protein structures in Protein Data
Bank [13] (about 170,594) was relatively lower than that in the Swiss-Prot database [14]
(about 563,552) because the three-dimensional structure of proteins is more difficult to
detect than protein sequence information. Therefore, using the sequence information for
protein—-ATP binding residue prediction has wider application prospects.

In the past two decades, numerous sequence-based methods based on machine-
learning algorithms have been proposed for prediction of protein—ATP binding residues. In
2009, Chauhan et al. [15] developed ATPint, which is one of the first custom-designed com-
putational predictors for identifying protein-ATP binding residues. With the combination
of Support Vector Machines (SVMs) and Position Specific Scoring Matrix (PSSM), AT-
Pint achieved a pioneering result, which demonstrates the practicability of computational
methods for ATP-binding residues prediction. In 2011, Chen et al. [16] proposed ATPsite,
which improved the predicted Area Under curve (AUC) value from 0.627 to 0.854. They
adopted more sequence-based features including predicted protein secondary structure,
and predicted solvent accessibility and residue conservation scores. Then feature selection
was performed to remove irrelevant and redundant features. Finally, the selected features
were fed into a SVMs classifier to generate probabilities of ATP-binding. Yu et al. [8]
proposed TargetATP for protein-ATP binding residues prediction. For a protein to be
predicted, the TargetATP first extracted LogisticPSSM and predicted secondary structure
features of each residue and applied the sliding window technique; then, the two extracted
features were combined and fed into multiple individual SVMs, the outputs of SVMs were
ensembled by applying an appropriate ensemble scheme; finally, a threshold was used
to determine whether the residue was an ATP-binding residue. In 2013, they developed
another protein-ATP binding residue predictor named TargetATPsite [17]. The evolutionary
information derived from PSSM was considered as image and further processed by sparse
representation to obtain more discriminative features. To effectively deal with the imbal-
anced problem between the positive instances and the negative instances, multiple random
under-sampling and ensemble learning were applied. TargetATPsite achieved AUC of
0.882 on its independent testing set, which was better than the comparative methods. In
2014, Fang et al. [18] proposed a simple method which adopted a modified PSSM encoding
scheme for ATP-binding residues prediction. In their study, only the high local evolutionary
conservation scores in PSSMs were considered as input, without employing any predicted
features from other classifiers. Their method reached the AUC value of 0.899 in their
dataset. The results demonstrated that PSSM plays a significant role in the protein-ATP
binding mechanism. In 2018, Hu et al. [19] proposed a hybrid prediction method named
ATPbind including a sequence-based predictor ATPseq and a structural-based predictor.
The output of S-SITEatp, which is a sequence profile-profile comparison method, was
added to the feature matrix of the ATPseq along with other sequence information. Finally,
the whole feature matrix was sent into multiple SVMs classifiers which were assembled for
final prediction.

Although previous studies have produced significant progress in protein-ATP binding
residue prediction, with the development of artificial intelligence, some new algorithms
and techniques have been proposed to improve performance in classification problems. The
convolutional neural network (CNN), as one of the most important branches in the deep
learning framework, has shown outstanding performance in image recognition [20,21],
computer vision [22], recommendation systems [23], and natural language processing [24].
In the bioinformatics field, the CNN framework has been successfully applied in protein
secondary structure prediction [25,26] and protein-ligand binding site prediction [27,28].
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In 2016, Golkov et al. [29] proposed a method for predicting contact between residues in
protein sequences. They turned a protein sequence into a graph-valued image and used
a CNN to calculate protein contact maps from detailed evolutionary coupling statistics
between positions in the protein sequence. Zhou et al. [30] proposed CNNsite, which
used the CNN structure to predict DN'A-binding residues in protein sequences based on
sequence information. CNNsite outperforms prediction methods based on traditional
machine-learning algorithms such as SVM and random forest (RF), which demonstrates the
efficacy of CNN in protein-ligand binding residue prediction. In 2019, Nguyen et al. [31]
applied a fine-tuned 2D CNN structure to predict ATP-binding residues in membrane pro-
teins. After tuning the hyperparameters, the structure showed highly effective prediction
performance for membrane proteins.

Compared with traditional machine-learning classification algorithms, the CNN frame-
work automatically generates novel features by applying different sizes of convolution
kernels to the input data and passing these features to the next layer, which can avoid
some biases from feature engineering and reduce the mismatch between feature extraction
and the classifier. To handle different classification tasks, various CNN frameworks have
been constructed, such as VGG-16 [32], Inception [33], ResNet [34], and Xception [35].
Compared with the simple CNN structure, these frameworks adopt corresponding tech-
niques to further improve the classification ability in practical applications. Therefore,
applying a certain CNN framework or combining several CNN frameworks may improve
the performance in protein—ATP binding residue prediction. Besides deep learning frame-
works, some progress has also been achieved using other classification algorithms. In
2017, Microsoft Research Asia proposed the LightGBM [36] algorithm, which is a novel
Gradient Boosting Decision Tree (GBDT) algorithm with gradient-based one-side sampling
(GOSS) and exclusive feature bundling (EFB) to deal with big data and large numbers of
features, respectively. Compared with traditional boosting algorithms, LightGBM shows
faster training process with a lower memory cost, which makes LightGBM more suitable
for high-throughput data tasks like analysis of protein sequences.

In this study, we constructed a sequence-based prediction method for protein—ATP
binding residues by combining CNN frameworks and LightGBM. For the CNN frame-
works, we propose a multi-incepResNet-based predictor and a multi-Xception-based pre-
dictor. Compared with traditional CNN frameworks which use the whole feature matrix
as the input, we applied the corresponding convolutional neural network for each type
of feature to detect deeper representations to avoid the negative effects caused by feature
differences, and these representations were combined in a deeper layer of the network for
classification. The outputs of the CNN frameworks and LightGBM were merged by an
ensemble learning algorithm. At the same time, a complimentary template-based method
was implemented to further improve the prediction performance from another angle. The
final prediction consists of the ensemble learning prediction result and the complimentary
template-based prediction result. In two independent testing sets, our sequence-based
prediction method achieved AUC values of 0.924 and 0.902. In comparison with other
existing prediction methods, our method was determined to perform significantly better in
protein—-ATP binding residue prediction. The full source code and benchmark datasets in
this study are freely available at https://github.com/tlsjz/ ATPensemble.

2. Results
2.1. Performance Comparison with other Sequence-Based Prediction Methods

To demonstrate the performance of our proposed ensemble predictor, we provide the
evaluation criteria of prediction results on the classic testing dataset ATP-17 and newly
proposed testing dataset ATP-41. We provide the performance of other sequence-based
ATP-binding residue predictors for comparison with our proposed predictor. The evalua-
tion criteria of other sequence-based predictors were extracted from their corresponding
papers. Since most of the previous predictors were tested on the classic testing set ATP-17,
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their performance on the proposed testing set ATP-41 could not be obtained for some of
them, namely ATPint, ATPsite, and TargetATP.

Table 1 shows the overall performance of our proposed ensemble predictor and that
of other sequence-based predictors on the classic testing set ATP-17. The highest value
of each column in the table is shown in bold. The classification threshold was set to 0.43,
which maximized the MCC value when the training set was ATP-227, to calculate the ACC,
sensitivity, specificity, and MCC. The MCC and AUC values of our proposed predictor
were superior to those of other sequence-based predictors, with values of 0.639 and 0.925,
respectively. For the other three criteria, our proposed ensemble predictor achieved a
better ACC value at 0.978, the multi-IncepResNet-based predictor in our ensemble predic-
tor achieved a sensitivity of 0.608, and the complementary template prediction method
achieved a specificity of 0.995. However, the sensitivity of the complementary template
prediction method was only 0.189. This can be explained by its very limited prediction
coverage and the limited number of sequences in the training set. The AUC values of the
multi-IncepResNet-based predictor, multi-Xception-based predictor, and the LightGBM
predictor were 0.915, 0.909, and 0.917, respectively; the MCC values of the three subclas-
sifiers were 0.565, 0.630, and 0.618, respectively. After applying the ensemble learning
algorithm, the AUC and MCC values improved to 0.925 and 0.638, respectively, which were
better than those of the subclassifiers. To further improve the accuracy for true positive
instances, the complementary template prediction method was adopted, which helped to
improve the MCC value from 0.638 to 0.639.

Table 1. Performance comparison between our proposed method and other sequence-based methods
on ATP-17 testing set (methods are ranked according to AUC and the highest value of each column
in the table is shown in bold).

Method ACC Sen Spe MCC AUC
Complementary template 0.967 0.189 0.995 0.324 -
ATPint # 0.665 0.512 0.660 0.066 0.606
ATPsite @ 0.969 0.367 0.991 0.451 0.868
NsitePred P 0.967 0.460 0.985 0.476 0.875
TargetATPsite © 0.972 0.458 0.991 0.530 0.882
TargetNUCs ¢ 0.975 0.516 0.992 0.584 -
Multi-Xception-based predictor 0.977 0.565 0.993 0.630 0.909
TargetATP @ 0.969 0.489 0.989 0.542 0.912
Multi-IncepResNet-based predictor 0.969 0.608 0.983 0.565 0.915
LightGBM predictor 0.977 0.556 0.992 0.618 0.917
Ensemble without template 0.978 0.569 0.993 0.638 0.925
Ensemble predictor 0.978 0.589 0.992 0.639 0.925

a: Data obtained from Reference [8]; P: Data obtained from References [37,38]; ¢: Data obtained from Reference [17];
d. Data obtained from References [39,40]; —: Not available or not reported in paper.

To fully verify the proposed ensemble predictor’s performance, we compared our
proposed method with that of other sequence-based predictors on the newly proposed
testing set ATP-41, which has more protein sequences for evaluation; the criteria values
are listed in Table 2. The highest value of each column in the table is shown in bold. The
classification threshold was set to 0.37 because when the training set was ATP-388, this
threshold produced the highest MCC value. We found that the MCC and AUC of our
proposed ensemble predictor are consistently better than those of the other sequence-based
predictors, with values of 0.642 and 0.902, respectively. For the ACC criterion, our ensemble
predictor achieved 0.973, which is slightly better than the other predictors. Our predictor
is slightly less sensitive than ATPseq, but its specificity is lower than that of our method,
which means that there could be more false positive instances in its result. For specificity,
the complementary template method achieved 0.998, but its sensitivity was 0.239, which
is a similar situation to that which occurred with the ATP-17 testing set. The AUCs of
multi-IncepResNet-based predictor, multi-Xception-based predictor, and the LightGBM
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predictor were 0.875, 0.889, and 0.896, respectively. The MCCs of the multi-IncepResNet-
based predictor, multi-Xception-based predictor, and the LightGBM predictor were 0.589,
0.585, and 0.597, respectively. By adopting the ensemble learning, the AUC and MCC were
improved to 0.902 and 0.625 respectively; when the complementary template prediction
method was used, the MCC of our proposed ensemble predictor was further improved
to 0.642. The ROC curves of our proposed predictor and other sequence-based predictors
on the ATP-41 testing set are shown in Figure 1, which further displays the superior

generalization capability of our prediction method.

Table 2. Performance comparison between our proposed method and other sequence-based methods
on the ATP-41 testing set (methods are ranked according to AUC and the highest value of each

column in the table is shown in bold).

Method ACC Sen Spe MCC AUC
Complementary template 0.964 0.239 0.998 0.451 -
NsitePred 2 0.954 0.467 0.977 0.456 0.852
TargetATPsite 2 0.968 0.413 0.995 0.559 0.853
TargetNUCs @ 0.972 0.469 0.997 0.627 0.856
Multi-IncepResNet-based predictor 0.969 0.441 0.995 0.589 0.875
ATPseq ? 0.972 0.545 0.993 0.639 0.878
Multi-Xception-based predictor 0.968 0.480 0.992 0.585 0.889
LightGBM predictor 0.970 0.447 0.996 0.597 0.896
Ensemble without template 0.972 0.461 0.997 0.625 0.902
Ensemble predictor 0.973 0.497 0.996 0.642 0.902

a: Data obtained from [19]; —: Data not available.

1.0

ATP-41 Testing Set ROC

TargetATPsite ROC curve(AUC=0.853)
—— NsitePred ROC curve(AUC=0.852)
—— TargetNUCs ROC curve(AUC=0.856)
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Figure 1. ROC curves of our proposed ensemble predictor and other sequence-based predictors on

the ATP-41 testing set.
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The outstanding performance of our proposed ensemble predictor on the two inde-
pendent testing set demonstrates that the deep convolutional neural network and the
LightGBM can be efficiently applied to protein—ATP binding residue prediction, and the
overall prediction performance can be greatly improved by using the appropriate ensem-
ble learning algorithm. The MCC of the prediction result can be further improved by
combination with the complementary template prediction method.

2.2. Case Study

Next, the protein sequence in the ATP-41 testing set with the PDB ID 4RX6_B was
used for a case study. The prediction results of the three subclassifiers and the ensemble
predictor are shown in Figure 2.

—— Multi-IncepResNet prob e Multi-IncepResNet binary e« Template binary

Multi-Xception prob Multi-Xception binary e Ensembled binary
—— LightGBM prob e LightGBM binary True binding site
—— Ensembled prob e Ensembled without template binary

|
1l

>

M M, VL J """""" J ---------------

. eee o . eee sesece o .o

. eee o o . e esese o o .

2‘0 4‘0 6‘0 8‘0 160 120
Sequence length

Figure 2. Binding residues predicted by the multi-IncepResNet-based predictor, multi-Xception-based predictor, LightGBM

predictor, and the ensemble predictor for protein 4RX6_B. The x axis represents each residue in 4RX6_B and the y axis

represents the probability predicted by the classifier. The blue, yellow, green, and black lines represent the probability curves

of the multi-IncepResNet-based predictor, the multi-Xception-based predictor, the LightGBM predictor, and the ensemble

predictor, respectively; the dots in the corresponding colors represent the binding residues predicted by the corresponding

predictors. Specifically, the pink dots denote the observed (true) binding residues in the protein sequence, the red dots

denote the predicted binding residues from the complementary template method, and the dots in slate-gray denote the

predicted binding residues from the ensemble predictor complemented with the template method.

Figure 2 shows that the multi-IncepResNet-based predictor correctly predicted 16 out
of 21 true binding residues with 1 false positive instance; the multi-Xception-based predictor
correctly predicted 12 out of 21 true binding residues with 2 false positive instances; the
LightGBM predictor correctly predicted 15 out of 21 true binding residues with 1 false
positive instance. After ensemble learning algorithm, the ensemble predictor correctly
predicted 17 out of 21 true binding residues with 1 false positive instance. Finally, the
performance further improved with the use of the complementary template method, with
18 correctly predicted binding residues and 1 false positive instance.

3. Discussions
3.1. Feature Importance Analysis

In this analysis, we tried to validate the effectiveness of the included features for
protein—ATP binding residue prediction. Three types of feature were applied in this study:
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the PSSM, the predicted secondary structure, and the one-hot encoding for each residue in
the protein sequence. We compared the prediction performances of classification algorithms
based on individual features and different combinations of features on the ATP-388 dataset
over five-fold cross validations to demonstrate their impact on the prediction results. The
AUC value was adopted to reveal the performance of the classifiers. The ROC of the
multi-IncepResNet-based, multi-Xception-based, and LightGBM predictors under different
features or feature combinations are shown in Figure 3a—c, respectively.
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Figure 3. Receiver operating characteristic (ROC) curves of the multi-IncepResNet-based predictor (a), the multi-Xception-
based predictor (b), and the LightGBM predictor (c) under different individual features and feature combinations. The
corresponding area under the curve (AUC) values are listed in the legends.

For individual features, the three classification algorithms performed better when the
PSSM feature was applied, giving AUC values of 0.864, 0.865, and 0.890, respectively. This
demonstrated that the PSSM feature, which mainly reflects the conservation of residue, is a
significant property for protein—-ATP binding residue prediction. For feature combinations,
since the PSSM feature performed better than the other individual features in the prediction
AUC, we set the PSSM feature as the base feature and combined other features with
the PSSM. The ROC curves in the Figure 3 illustrate that the prediction performance
with feature combination was better than the performance of individual features. The
combination of PSSM and the predicted secondary structure performed better than the
combination of PSSM and one-hot encoding in the three classification algorithms. When
the three features were all adopted, the prediction AUC outperformed the other feature
combinations, with 0.886, 0.892, and 0.903 for the multi-IncepResNet-based predictor, multi-
Xception-based predictor, and LightGBM predictor, respectively. Therefore, by comparing
the performance with individual features and feature combinations, the three included
features were determined to be effective for protein—-ATP binding residue prediction;
of them, the PSSM feature is indispensable. When all three features were applied, the
classification algorithms achieved the best performance.

3.2. Proposed CNN-Based Models Showed Better Performance than Simple 2D CNN Model

In this study, we constructed two CNN-based predictors: a multi-IncepResNet-based
predictor and a multi-Xception-based predictor. Both predictors adopt certain CNN frame-
works like Inception, ResNet, and Xception, which apply corresponding techniques to
improve the classification performance. However, to show their effectiveness, we com-
pared the prediction performance with a fine-tuned 2D CNN model on ATP-388 over
five-fold cross-validations. For the structure of the fine-tuned 2D CNN model, refer to
Reference [31], which aimed to predict ATP-binding residues for membrane proteins. The
hyperparameters used for tuning the 2D CNN model are listed in Table 3. After hyperpa-
rameter optimization, the best set of hyperparameters was found to be 60 training epochs,
a batch size of 256, learning rate of 0.001, and dropout rate of 0.4.
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The prediction performance measures of the multi-IncepResNet-based predictor, multi-
Xception-based predictor, and the fine-tuned 2D CNN model are listed in Table 4. The
highest value in the column is shown in bold. The fine-tuned 2D CNN model achieved
0.417 and 0.871, the multi-IncepResNet-based predictor achieved 0.501 and 0.886, and the
multi-Xception-based predictor achieved 0.519 and 0.892 for MCC and AUC, respectively.
The MCCs and AUCs of the proposed CNN-based predictors were superior to those of
the fine-tuned simple 2D CNN model because our proposed predictors apply several
CNN-based frameworks, and the techniques used in these frameworks produced efficient
performance improvements. For example, the Inception framework concurrently operates
several convolution kernels with various sizes; this process allows the CNN to detect local
features from multiple receptive fields simultaneously and concatenate these features for
deeper feature extraction in the subsequent layers.

Table 3. Hyperparameters used for tuning the 2D convolutional neural network (CNN) model.

Hyperparameter Value
Optimizer Adamdelta, Adamgrad, Adam, RMSprop, SGD, Adamax
Number of epochs 30to 120
Batch size 32, 64,128, 256
Learning rate 1x1071,1x1072,1x1073,1 x 107*
Dropout rate 0.1,0.2,0.3,04, 0.5

Table 4. Prediction performance of multi-IncepResNet-based predictor, multi-Xception-based predictor, and the fine-tuned
2D CNN model on ATP-388 over five-fold cross-validations (The highest value of each column in the table is shown in bold).

Matthews Correlation

Method Accuracy (ACC)  Sensitivity (Sen)  Specificity (Spe) Coefficient (MCC) AUC

Fine-tuned 2D CNN model 0.950 0.512 0.967 0.417 0.871

Multi-IncepResNet- 0.965 0.489 0.984 0501 0.886
based predictor

Multi-Xception-based predictor 0.967 0.491 0.986 0.519 0.892

3.3. Applying Separate Features as Inputs in CNN Models can Improve Performance

In the common IncepResNet or Xception structures, the whole feature matrix is
sent into the network as the input. This process is often effective in the fields of image
representation and image recognition, where the network input is a full image. However,
in protein—ATP binding residue prediction, where the network input is various sequence
information features, taking all features as a whole into the network may not be the
best solution.

Since each sequence feature has its corresponding property for prediction, i.e., the
PSSM feature represents the evolutionary conservation, the predicted secondary structure
feature represents the type of protein secondary structure for the query residue, and the
one-hot encoding feature represents the specific physicochemical property of the query
residue, we used the separate features as inputs for the CNN structures in this study. In the
multi-IncepResNet-based and multi-Xception-based predictors, three sequence features
were separately fed into the network, each individual feature had the corresponding CNN
structures for deep representations extraction, and the deep representations from individual
features were merged for predictions. Figure 4a,b shows the prediction ROC using the
combined feature and separate features as the inputs for the multi-IncepResNet-based
predictor and the multi-Xception-based predictor, respectively, on ATP-388 over five-fold
cross validation. It is worth mentioning that the hyperparameters in CNN structures with
combined feature were also fine-tuned, which made the CNN structures achieve their best
performance. The optimal hyperparameters for CNN structures with combined feature
and CNN structures with separate features are listed in Table 5.
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For the multi-IncepResNet-based predictor, using the combined feature as the input
achieved an AUC of 0.877, while using separate feature inputs achieved an AUC of 0.886.
For the multi-Xception-based predictor, using separate features as inputs also achieved
a better AUC of 0.892 compared with 0.873 using the combined feature input. These
improvements in the prediction AUC demonstrate that in protein—ATP binding residue
prediction, using separate features as inputs and applying corresponding CNN structures
for deep representation extraction can efficiently improve performance and reduce the
negative effects of feature differences. Furthermore, the idea of using separate features
as the inputs for CNN-based models can be applied to other protein prediction problems
where sequence information features are adopted as features.

Table 5. The optimal hyperparameters for CNN structures with combined feature and CNN struc-
tures with separate features after fine-tuning.

Hvperparameter CNN Structure with CNN Structure with
yperp Combined Feature Separate Features
Optimizer Adam Adam
Training epochs 60 60
Initial learning rate 0.001 0.0001
Batch size 128 256
Dropout rate 0.4 0.4
1.0 — 1.0
0.8 1 0.8 1
g 2
@ 0.6 © 0.6 1
a k)
2= 2
3 3
Q Q
o 0.4 @ 0.44
3 3
0.2 1 0.2 1
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Figure 4. ROC curves of the multi-IncepResNet-based predictor (a) and the multi-Xception-based predictor (b) with
combined features and separate features as the inputs. The corresponding AUC values are listed in the subfigure legends.

3.4. Ensemble Learning for CNN Predictors and the Light GBM Predictor

Ensemble learning can significantly improve prediction performance by combining
the results from multiple subclassifiers with certain rules. Various ensemble strategies have
been proposed for different types of subclassifiers, such as maximum ensemble, minimum
ensemble, mean ensemble, and weighted ensemble. The definitions of the above ensemble
strategies are shown as follows, respectively:

pj(x) = maxS;;(x), ey
pi(x) = min Si5(x), @
B = 7 (1(3) + S21(x) + ...+ S1(x) ©)

and
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y](x) = Wy x Sll]«(x) + Wy % Szrj(x) 4+ ...+ WL SL,]‘(JC), 4)

(s.t. YW= 1), ®)

where p;(x) is the confidence of instance x being classified into class j after classifier
ensemble, S; ;(x) is the confidence of x being classified into class j by the subclassifier i, and
L is the total number of subclassifiers.

With the proper strategy, applying ensemble learning can improve the generalization
performance and avoid the risk of local optimization. In this study, three subclassifiers
were included: the multi-IncepResNet-based predictor, the multi-Xception-based predictor,
and the LightGBM predictor. For the ensemble strategy, we tried the above four strategies
on ATP-388 and ATP-227 over five-fold cross validation, and the prediction performance
is reported in Table 6. The highest value in the column is shown in bold. According to
Table 6, the weighted ensemble strategy achieved better MCC and AUC values on both
ATP-388 and ATP-227 datasets; therefore, the weighted ensemble strategy was adopted to
combine the three subclassifiers.

Table 6. Prediction performance of maximum ensemble, minimum ensemble, mean ensemble, and
weighted ensemble on ATP-388 and ATP-227 over five-fold cross validation (The highest value of
each column in the table is shown in bold).

Strategy ACC Sen Spe MCC AUC
ATP-388

maximum 0.963 0.557 0.980 0.523 0.902

minimum 0.965 0.481 0.982 0.528 0.892

mean 0.966 0.568 0.981 0.544 0.906

weighted 0.968 0.599 0.981 0.549 0.910
ATP-227

maximum 0.965 0.537 0.983 0.536 0.898

minimum 0.967 0.529 0.984 0.544 0.893

mean 0.968 0.483 0.989 0.552 0.903

weighted 0.969 0.493 0.989 0.556 0.907

To search for the optimized weight distribution, we set w; as the weight for the multi-
IncepResNet-based predictor, w, as the weight for the multi-Xception-based predictor,
and the weight of the LightGBM predictor as determined by 1 — w; — w,. We conducted
a grid search for w; and w; from 0.1 to 0.9 with a step size of 0.1 on both ATP-388 and
ATP-227 datasets over five-fold cross validation; the results are shown in Figures 5 and 6.
Since we needed to represent three variables (weights) on a 2D surface and the sum of
variables was equal to 1, when w; and w; were set, the corresponding weight for LightGBM
was determined by 1 — w; — w;. The x and y axes represent the weights of the multi-
IncepResNet-based predictor and multi-Xception-based predictor, respectively, and the
z axis is the prediction AUC given its corresponding weight distribution. The higher the
AUC, the darker the orange color in the surface diagram. For both ATP-388 and ATP-227,
the optimized weight distributions with the AUCs of 0.910 and 0.907 were obtained when
wy and w; were both set to 0.2 and the corresponding weight for the LightGBM predictor
was 1 — 0.2 — 0.2 = 0.6. The performance on independent testing sets is reported for
this distribution.
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Figure 5. Grid search for optimized weight distribution on ATP-388 over five-fold cross validation.
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Figure 6. Grid search for optimized weight distribution on ATP-227 over five-fold cross validation.

4. Materials and Methods
4.1. Datasets

In this study, two datasets were used: a classic binding dataset and a newly proposed
binding dataset. The reason for applying two datasets is that most previously described
methods were trained and evaluated on the classic dataset; therefore, to enable comparison
between our method and previous methods, the same dataset needed to be used. However,
the classic dataset was proposed in 2011, which means that the number of protein sequences
in the classic dataset is relatively low. To solve this problem, a newly proposed dataset was
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also applied in our study to demonstrate the prediction performance of our method on
recently curated protein sequences.

4.1.1. ATP-227 and ATP-17

In 2011, Chen et al. [16] developed the ATP-227 dataset, which consists of 227 protein
chains with pairwise identities lower than 40% sequence. The binding residue is defined if
at least one of its nonhydrogen atoms is less than 3.9 A away from a nonhydrogen atom
of the ATP molecule. The ATP-17 dataset contains those ATP-binding protein chains that
were released after March 10, 2010. The maximal pairwise sequence identity in ATP-17 was
reduced to 40%. If a given chain shares >40% identity with a chain in ATP-227, then the
chain is removed. This process assures that ATP-17 is independent of ATP-227 and can be
used as a testing set for models that are trained on ATP-227. As a result, 17 ATP-binding
protein chains have been kept in the ATP-17 testing set. The numbers of ATP-binding
residues and nonbinding residues in ATP-227 and ATP-17 are listed in Table 7. The ATP-227
and ATP-17 datasets are available at http:/ /biomine.ece.ualberta.ca/ATPsite/.

Table 7. The numbers of ATP-binding residues and nonbinding residues in applied datasets.

No. of ATP-Binding  No. of Nonbinding

Dataset Residues Residues Ratio *
ATP-227 3393 80,409 23.7
ATP-17 248 6974 28.1
ATP-388 5657 142,086 25.1
ATP-41 681 14,152 20.8

2: Ratio = Number of nonbinding residues/number of ATP-binding residues.

4.1.2. ATP-388 and ATP-41

In 2018, Hu et al. [19] proposed an ATP-binding dataset that consists of 2144 ATP-
binding protein chains, named PATP-2144, which has clear target annotations and was
deposited into the Protein Data Bank (PDB) on November 5, 2016. The redundant sequences
were then removed using CD-hit [37] software with sequence identity <40%, yielding a
total of 429 nonredundant protein sequences. Finally, the 429 nonredundant sequences
were divided into a training set (ATP-388) and a testing set (ATP-41). ATP-388 consists of
388 protein chains, which were deposited into the PDB before November 5, 2014, and ATP-
41 consists of 41 protein chains that were deposited into the PDB after November 5, 2014.
The numbers of ATP-binding residues and nonbinding residues in ATP-388 and ATP-17
are listed in Table 7. The ATP-388 and ATP-41 datasets are available at http://zhanglab.
ccmb.med.umich.edu/ATPbind.

4.2. Feature Representation

A previous study [39] showed that the binding properties of the target residue are
affected by its adjacent residues; therefore, a sliding window was applied in this study to
collect the features of both the target residue and its adjacent residues. A sliding window
of size L contains the feature of the target residue and the features of (L — 1)/2 adjacent
residues on the left and right sides of the target residue. By trialing different sizes of sliding
windows, we found that the prediction models achieved better performance when L = 17
than with other sliding window sizes. Therefore, the size of the sliding window was set to
17 in this study.

4.2.1. Position-Specific Scoring Matrix (PSSM)

For a given protein sequence, we generated the PSSM profile by running PSI-BLAST [41]
against the Swiss-Prot database with three iterations and an E-value of 10~2. The size of
PSSM was Lx20, where L represents the length of protein sequence and 20 represents the
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20 categories of amino acids. For each value in the profile, we normalized it to the range of
0 and 1 with the following logistic function:
N s
S =1/(1+e), ®)
where S( ) represents the normalized value and s; ; represents the original value in the

PSSM. Fmally, for the sliding window with size 17, the dimension of the PSSM feature was
17 x 20 = 340.

4.2.2. Predicted Secondary Structure

A previous study [8] showed that protein secondary structure is relevant to ATP-
binding properties. More specifically, the ratios of three secondary structure classes (coil (C),
helix (H), and strand (E)) in ATP-binding residues and nonbinding residues are different.
In this study, PSIPRED [42] was applied to predict the secondary structure for the query
residue based on the sequence information. In the sliding window with size 17, the
dimension of predicted secondary structure feature was 17 x 3 = 51.

4.2.3. Residue One-Hot Encoding

According to the dipoles and volumes of side chains of amino acids, 20 categories
of amino acids can be divided into seven classes [43] as follows: Class A = {Ala, Gly,
Val}, Class B = {lle, Leu, The, Pro}, Class C = {His, Asn, GIn, Trp}, Class D = {Tyr, Met,
Thr, Ser}, Class E = {Arg, Lys}, Class F = {Asp, Glu}, and Class G = {Cys}. Therefore, a
seven-dimensional one-hot binary key was used to encode the physicochemical property
for each residue. In the sliding window with size 17, there were 17 x 7 = 119 dimensions
of one-hot encoding features.

In summary, for each query residue, three types of sequence-based features were
extracted: the PSSM feature, the predicted secondary structure feature, and the one-hot
encoding feature. The feature matrices for each type of features were 17 x 20, 17 x 3, and
17 x 7, respectively.

4.3. Deep Convolutional Neural Network
4.3.1. The Multi-IncepResNet-Based Predictor

In practical applications, using the basic CNN architecture may not produce satisfying
performance; therefore, various CNN-based network architectures have been developed,
such as VGGnet, InceptionNet, and ResNet. Among these architectures, InceptionNet and
ResNet can efficiently overcome the problem of gradient vanishing and maintain stable
performance in practical applications [44,45].

The InceptionNet structure applies multiple convolution operations concurrently with
different sizes of convolution kernels, which detect local features from various receptive
fields. These features are then concatenated for better representation in deeper layers. In the
ResNet structure, the shortcut connection propagates the features from one block directly
into other blocks in the network. This procedure enables the flow of information across
the convolution layers and avoids the attenuation caused by multiple stacked nonlinear
transformations. Therefore, by improving the optimization and reducing the number of
parameters, the ResNet structure avoids network degradation and overfitting.

In this study, we propose a multi-IncepResNet-based predictor which combines the
InceptionNet and ResNet for protein—ATP binding residue prediction. Compared with
normal CNN structures that take the whole feature matrix as the input, we feed the
involved features individually into the network and extract deep features separately via
convolution kernels. Using individual features for convolution may reduce the negative
effects caused by the differences between various features. For the PSSM feature and
one-hot encoding feature, two stacked Inception blocks are applied for deep information
extraction, and the shortcut connection is used to propagate the input feature into the
deeper layer of the network and concatenate with the output of Inception blocks. For the
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predicted secondary structure feature, considering its low dimension, only one Inception
block is used. Finally, the deep representations from three individual features are combined
and perform classification using the following fully connected layers.

During the training process, a batch-normalization layer was used as a regularizer
after any convolution operation to avoid the gradient-vanishing problem. The multi-
IncepResNet-based predictor was implemented on the the Keras framework library (ver-
sion 2.2.4) with a Tensorflow backend. In our experiment, many network parameters and
training parameters were tried. For the results reported, the optimizer used for training
was Adam, the initial learning rate was set to 104, the batch size was 256, and the maxi-
mum number of epochs was set up to 60. To avoid overfitting, the dropout approach was
adopted and the dropout rate was 0.4. The early stopping mechanism from Keras was
used to stop network training when the monitored validation loss stopped improving; the
patience (i.e., the threshold number of epochs with no improvement after which training is
stopped) was set to 8. The structure of the proposed multi-IncepResNet-based predictor is
shown in Figure 7.
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Figure 7. The structure of the proposed multi-IncepResNet-based predictor.

4.3.2. The Multi-Xception-Based Predictor

According to Chollet et al. [35], the purpose of a typical Inception block is to decouple
the cross-channel correlations and spatial correlations. More specifically, a typical Inception
block first looks at cross-channel correlations via a set of 1 x 1 convolutions, mapping the
input data into three or four separate spaces, and then maps all correlations in these smaller
3D spaces using 3 x 3 or 5 x 5 convolutions. Based on this background, a stronger hypoth-
esis can be formed: the mapping of cross-channel correlations and spatial correlations in
the feature maps can be entirely decoupled. Since this hypothesis is the extreme version of
an Inception block, the network structure based on this hypothesis is named Xception.

Xception consists of two steps: pointwise convolution and depthwise convolution.
In pointwise convolution, a 1 x 1 convolution is used to transform the number of input
channels to a new channel depth. In depthwise convolution, each channel of the input is
convolved separately and then stacked together. To improve the overall performance, the
residual connection is adopted in Xception between different layers.

In our proposed multi-Xception-based predictor, the features are separately fed into
the corresponding Xception network structures to extract deep representations and reduce
feature differences. The PSSM feature and one-hot encoding feature deploy six stacked
convolution layers with residual connections for feature extraction; the predicted secondary
structure feature deploys two stacked convolution layers without residual connection be-
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cause of its low dimensionality. The multi-Xception-based predictor was also implemented
on TensorFlow and Keras. The settings of hyperparameters were the same as for the Multi-
IncepResNet-based predictor. The dropout procedure and early stopping mechanism were
also adopted to avoid overfitting. The full structure of the multi-Xception-based predictor
is shown in Figure 8.
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Figure 8. The structure of the proposed multi-Xception-based predictor.

4.4. Light GBM Predictor

Gradient Boosting Decision Tree (GBDT) [46] is an iterative algorithm based on deci-
sion tree and can be used for classification and regression. Given a training dataset {x;, x,,
..., Xy}, after each gradient enhancement iteration, a negative gradient {g7, g2, ... , gu} of
the loss function from the model output is obtained. The feature with the largest informa-
tion gain is then selected in the decision tree to partition each node. The information gain
in the GBDT is defined as follows:

2 2

Viold) = ni (Z{xie(j):x,-j<d} gi) <Z{xie§?:xij>d} gi) -
o) ”z\o(d> ”r|o(d)

no = Y I[x; € 0], 8)

n§|O: Y I[x; € O:x; < dJ, ©)

nfr"o = Yl €0:x;>dl. (10)

The majority of the computational time required by the traditional GBDT algorithm
is typically consumed in the construction of a decision tree, which needs to find the
optimal segmentation point. The general method involves sorting feature values and
enumerating all possible feature points, which wastes considerable time and memory.
To solve this problem, the LightGBM algorithm was proposed, which uses an improved
histogram algorithm. LightGBM divides the continuous eigenvalues into K intervals and
the division point is selected from among the K values. This process greatly speeds up the
forecasting speed and reduces memory usage without reducing the prediction accuracy.
In addition to the histogram algorithm, LightGBM applies another two techniques to
improve the performance and computational efficiency: gradient-based one-side sampling
(GOSS) and exclusive feature bundling (EFB). The absolute gradient of each training
instance is calculated and sorted in GOSS. The training instances with larger gradient
have greater impacts on the information gain. Therefore, the first ax100% instances with
larger gradients are selected as a Subset A. The remaining instances with smaller gradients
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are randomly sampled to obtain Subset B, with an instance size of b x |A¢|. Finally, the
information gain is calculated as follows:

1-a 2 1-a 2
V@ = 1 ( (Z{xiEA:x,-jgd}gi + 75" LixeBu<d) 8:’) N (2{x,~eA:x,-j>d}gi + 75 LB >d) 8;’) ) an
! n n(d) nr(d)

In the EFB method, one of the features is selected as a vertex, and the other features
are selected in turn. If the other features are not mutually exclusive with the selected
feature, edges are added for each feature. The greedy algorithm is used to produce good
bundling characteristics. An offset is then added to the original value of the feature so that
the proprietary feature residues can be retained in different bins to construct the feature
bundle, and the value of the original function can be identified from the function package.
Finally, the features in the same bundle are merged to divide the features into a minimum
number of bundles.

4.5. Complementary Template-Based Prediction Method

If two protein sequences share similar amino acid compositions and are homologous,
the similar segments in their sequences are likely to have common functions [47]. Based on
this, we tried to find the homologous sequences for a query protein sequence in the training
set in which the ATP-binding residues were clearly annotated. The homologous sequences
from the training set can be regarded as the sequence template for the query sequence.
In this study, the PSI-BLAST program was applied to search the sequence templates for
the query sequence against the training set. The bit score in the output of PSI-BLAST
reflects the homology between the query sequence and each sequence in the training
set. If the bit score was larger than the threshold, we checked the segments that were
similar between the query sequence and the template to determine whether ATP-binding
residues existed in these segments. If ATP-binding residues were detected in segments
similar to the template sequence, the corresponding residues in the query sequence were
predicted as ATP-binding residues. Otherwise, if there was no ATP-binding residue in
the similar segment or the template sequence could not be found in the training set, the
sequence template-based prediction method was not applied. We trialed various bit-score
thresholds and set the threshold to 50, which produced the most accurate performance.
Finally, the result of the sequence template-based method was combined with the result
from ensemble predictors to form the final prediction. According to the experimental
results, the sequence template-based method produced good accuracy for positive samples,
which means the ATP-binding residue predictions produced by the template-based method
were relatively accurate. However, we also found that the prediction coverage in the
results of template-based method was not satisfactory, which means there were many
true ATP-binding residues that could not be identified because the number of protein
sequences in the training set was very limited, so the method could not find enough
templates for prediction. Therefore, in this study, the sequence template-based method was
regarded as a complementary method that was used to further improve the performance
of ensemble predictors.

4.6. Imbalanced Learning Problem

Since ATP is a fairly small molecule, the number of nonbinding residues is much
larger than the number of binding residues in ATP-binding protein sequences. Therefore,
ATP-binding residue prediction is a typical imbalanced learning problem. In training set
ATP-227, the ratio between nonbinding residues and binding residues is about 23.70; in
training set ATP-388, the ratio is 25.12. Thus, if any classification algorithm is directly
applied to such an imbalanced dataset, the classifier will easily predict every residue
as nonbinding. Previous studies [17,19] have often used undersampling or upsampling
techniques to construct a relatively balanced dataset, but these procedures inevitably
lose some information or pollute the original dataset. In this study, a balanced-learning
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approach was adopted to handle the problem. For CNN-based predictors, the weighted
cross-entropy was used as the loss function in the network, which is defined as follows:

H=Y Wsxy«H(), (12)
Vie [O/ N)/ H(Z) == Zi Yip * logy;,l/ (13)
N (14)

= T bincount(y;)’

where N is the total number of data instances, [ is the number of classes, W is the weight
for each class, y; is the ground truth label with one-hot encoding, #; is the predicted
probability from the classifier, H(i) is the cross-entropy for one datum instance, and H is
the weighted cross-entropy. Using the weighted cross-entropy as the loss function, an
imbalanced learning problem can be solved by assigning different weights to rescale the
prediction of each class.

For the LightGBM classifier, the hyper parameter scale_pos_weight can be set to give a
larger weight for positive data instances. We used a similar method, which was applied in
CNN-based predictors to calculate the weight for positive instances, i.e., Equation (11).

4.7. Architecture of Proposed Ensemble Prediction Method

Figure 9 illustrates the architecture of the proposed ensemble prediction method for
protein—ATP binding residues. For a query protein, three types of features are extracted
from the protein sequence: the PSSM, the predicted secondary structure, and the one-
hot encoding. The three features are then separately sent into the CNN-based classifiers,
including the multi-IncepResNet-based predictor and the multi-Xception-based predictor.
After the feature combination, the combined feature is sent to the LightGBM predictor. The
outputs of three subclassifiers are merged by the ensemble learning algorithm. Finally,
complemented with the template-based method, a residue is identified as ATP-binding if
its ensemble predictor probability is larger than the prediction threshold, or if it is matched
by the template from the training set.

4.8. Performance Evaluation

In this study, four routinely used evaluation criteria were applied to examine the
overall performance of the proposed method: overall accuracy (ACC), sensitivity (Sen),
specificity (Spe), and Matthews correlation coefficient (MCC). These evaluation criteria are
commonly applied in bioinformatics research [38,40] to reveal classification performance.
The definitions of these criteria are as follows:

ACC = (TP+TN)/(TP+ TN +FP +FN), (15)
e TP
Sensitivity = TP T EN’ (16)
o TN
Specificity = TN T ED’ (17)
TP+« TN —FPx*F
MCC = #IN - PP+ PN (18)

V(TP + FP)(TP + FN)(TN + FP)(TN + FN)’

where TP, TN, FP, and FN represent the number of true positive instances, true negative
instances, false positive instances, and false negative instances, respectively. Since these
evaluation criteria are threshold-dependent, they reflect the prediction performance under
a specific threshold. To fairly compare our proposed method with other sequence-based pre-
diction methods, we applied the same procedure as used with other methods [8,17,19,48,49]
to determine the prediction threshold, in which the threshold that maximizes the MCC
value is selected. For a soft-type classifier that outputs a continuous numeric value to
represent the probability of an instance belonging to a predicted class, selecting different
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prediction thresholds produces different corresponding prediction confusion matrices,
which leads to fluctuation of threshold-dependent criteria. If severe imbalances exist in the
benchmark dataset, threshold-dependent criteria sometimes fail to objectively report the
performance, as they are strongly affected by the ratio of positive and negative instances in
the dataset. Therefore, the receiver operating characteristic (ROC) curve was adopted to
reveal the performance of the proposed prediction method. The x axis and y axis in the
ROC curve were false rate (FPR) and true positive rate (TPR), respectively, which can be
described as follows:

FPR = FP/(TN + FP), (19)

TPR = TP/ (TP + FN). (20)

The definition of TPR is the same as that of sensitivity—it mainly concerns how many
true positive instances are correctly predicted—and FPR mainly concerns how many true
negative instances are incorrectly predicted. Thus, the values of TPR and FPR do not
change when the ratio between the positive and negative instances fluctuates because TPR
and FPR concern the predicted classes (TPR for positive instances and FPR for negative
instances). This is why the ROC curve is not greatly affected by an imbalanced distribution
in the dataset, and can more objectively evaluate the performance under an imbalanced
learning situation. The area under curve (AUC) which is totally threshold-independent,
can be calculated to reveal the performance of a classification algorithm. A classification
algorithm with a larger AUC value means the algorithm shows a stronger and more stable
prediction performance.
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Figure 9. The architecture of the proposed ensemble prediction method.

5. Conclusions

Using sequence-based computational model to predict ATP-binding residues in pro-
teins is significant for protein function annotation and protein structure detection. Since
the number of proteins with known structure is relatively smaller than the number of
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proteins with known sequence, for a certain protein sequence with no structure informa-
tion, computational model can accurately predict the ATP-binding residues in the protein
sequence which provides guiding significance in function analysis and drug development
on this protein. Moreover, when facing with large-scale protein data, using computation
model to predict ATP-binding residues is much economical and time-saving compared
with biochemical experimental methods.

In this study, we constructed an ensemble-learning-based prediction method for
protein—ATP binding residues, which combines a deep convolutional neural network and
the LightGBM. The predictor uses the protein sequence information features as features,
which include the PSSM, the predicted secondary structure, and the one-hot encoding.
Since protein—ATP binding residue prediction is a typical imbalanced learning problem,
we distributed the specific weights in the loss functions, which were calculated according
to the ratio between the positive instances and the negative instances to solve the imbal-
ance problem. As the core of the prediction method, we developed three subclassifiers: a
multi-IncepResNet-based predictor, a multi-Xception-based predictor, and a LightGBM
predictor. For each query residue, the classification probability of the ensemble predictor
was obtained by combining the probabilities from the three subclassifiers with an optimized
weight distribution. To further improve the overall prediction performance, a comple-
mentary template prediction method was also adopted. The outstanding performance
of our proposed ensemble predictor indicates that using ensemble learning algorithm in
combination with a deep convolutional neural network and LightGBM is a useful tool
for protein—-ATP binding residue prediction. Our work enriches the protein—ATP binding
residue prediction ability using sequence information, and the method could be applied to
other protein-ligand binding residue prediction problems in future works.

Author Contributions: Conceptualization, J.S. and G.L.; methodology, J.S.; software, ].J.; validation,
J.S.; data curation, P.Z.; writing—original draft preparation, J.S.; writing—review and editing, Y.L.;
supervision, G.L.; project administration, Y.L.; funding acquisition, J.J. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was supported by the National Natural Science Foundation of China (grants
61972174, 61662057, 61772226, and 61862056), the Science and Technology Planning Project of Guang-
dong Province (grant 2020A0505100018), Guangdong Key Project for Applied Fundamental Research
(grant 2018KZDXMO076), the Natural Science Foundation of Jilin Province (grant 20200201159JC), and
the Key Laboratory for Symbol Computation and Knowledge Engineering of the National Education
Ministry of China, Jilin University. The APC was funded by the National Natural Science Foundation
of China (grant 61662057).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Souza, P.C.T.; Thallmair, S.; Conflitti, P.; Ramirez-Palacios, C.; Alessandri, R.; Raniolo, S.; Limongelli, V.; Marrink, S.J. Protein—
ligand binding with the coarse-grained Martini model. Nat. Commun. 2020, 11, 1-11. [CrossRef] [PubMed]

2. Xie,L,; Xu, L,; Chang, S.; Xu, X.; Meng, L. Multitask deep networks with grid featurization achieve improved scoring performance
for protein-ligand binding. Chem. Biol. Drug Des. 2020, 96, 973-983. [CrossRef] [PubMed]

3. Verteramo, M.L,; Stenstrom, O.; Ignjatovi¢, M.M.; Caldararu, O.; Olsson, M.A.; Manzoni, F.; Leffler, H.; Oksanen, E.; Logan, D.T.;
Nilsson, U.J.; et al. Interplay between conformational entropy and solvation entropy in protein-ligand binding. J. Am. Chem. Soc.
2019, 141, 2012-2026. [CrossRef]

4. Yuan, C; Shui, LM.; Wilson, K.M.; Stampfer, M.].; Mucci, L.A.L.; Giovannucci, E.L. Circulating 25-hydroxyvitamin D, vitamin D
binding proteinand risk of advanced and lethal prostate cancer. Int. . Cancer 2019, 144, 2401-2407. [CrossRef] [PubMed]

5. Miller, WP, Sunilkumar, S.; Giordano, ].F.; Toro, A.L.; Barber, A.].; Dennis, M.D. The stress response protein REDD1 promotes
diabetes-induced oxidative stress in the retina by Keapl-independent Nrf2 degradation. J. Biol. Chem. 2020, 295, 7350-7361.
[CrossRef] [PubMed]

6. Sun, D, Qiao, Y,; Jiang, X.; Li, P; Kuai, Z.; Gong, X.; Liu, D.; Fu, Q.; Sun, L.; Li, H.; et al. Multiple antigenic peptide system
coupled with amyloid beta protein epitopes as an immunization approach to treat alzheimer’s disease. ACS Chem. Neurosci. 2019,
10, 2794-2800. [CrossRef] [PubMed]

7. Maxwell, A.; Lawson, D.M. The ATP-binding site of type II topoisomerases as a target for antibacterial drugs. Curr. Top. Med. Chem.

2003, 3, 283-303. [CrossRef] [PubMed]


http://doi.org/10.1038/s41467-020-17437-5
http://www.ncbi.nlm.nih.gov/pubmed/32709852
http://doi.org/10.1111/cbdd.13648
http://www.ncbi.nlm.nih.gov/pubmed/33058459
http://doi.org/10.1021/jacs.8b11099
http://doi.org/10.1002/ijc.31966
http://www.ncbi.nlm.nih.gov/pubmed/30411792
http://doi.org/10.1074/jbc.RA120.013093
http://www.ncbi.nlm.nih.gov/pubmed/32295843
http://doi.org/10.1021/acschemneuro.9b00020
http://www.ncbi.nlm.nih.gov/pubmed/31042358
http://doi.org/10.2174/1568026033452500
http://www.ncbi.nlm.nih.gov/pubmed/12570764

Int. J. Mol. Sci. 2021, 22, 939 20 of 21

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

Yu, D.; Hu, J.; Tang, Z.; Shen, H.B.; Yang, J.; Yang, ].Y. Improving protein-ATP binding residues pre-diction by boosting SVMs
with random under-sampling. Neurocomputing 2013, 104, 180-190. [CrossRef]

Zhang, Y.-N.; Yu, D.-].; Li, S.-S.; Fan, Y.-X.; Huang, Y.; Shen, H.-B. Predicting protein-ATP binding sites from primary sequence
through fusing bi-profile sampling of multi-view features. BMC Bioinform. 2012, 13, 118. [CrossRef] [PubMed]

Boutet, S.; Lomb, L.; Williams, G.J.; Barends, TR.M.; Aquila, A.; Doak, R.B.; Weierstall, U.; DePonte, D.P; Steinbrener, J.; Shoeman, R.L.; et al.
High-resolution protein structure determination by serial femtosecond crystallography. Science 2012, 337, 362-364. [CrossRef]
Cavalli, A.; Salvatella, X.; Dobson, C.M.; Vendruscolo, M. Protein structure determination from NMR chemical shifts. Proc. Natl.
Acad. Sci. USA 2007, 104, 9615-9620. [CrossRef]

Vangone, A.; Schaarschmidyt, J.; Koukos, P.; Geng, C.; Citro, N.; Trellet, M.E.; Xue, L.C.; Bonvin, A.M.].]. Large-scale prediction of
binding affinity in protein—small ligand complexes: The PRODIGY-LIG web server. Bioinformatics 2019, 35, 1585-1587. [CrossRef]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, LN.; Bourne, PE. The protein data bank.
Nucl. Acids Res. 2000, 28, 235-242. [CrossRef]

Bairoch, A.; Apweiler, R. The swiss-prot protein sequence data bank and its new supplement TREMBL. Nucl. Acids Res. 1996,
21, 21-25. [CrossRef]

Chauhan, J.S.; Mishra, N.K.; Raghava, G.P. Identification of ATP binding residues of a protein from its primary sequence.
BMC Bioinform. 2009, 10, 434. [CrossRef] [PubMed]

Chen, K.; Mizianty, M.; Kurgan, L. ATPsite: Sequence-based prediction of ATP-binding residues. Proteom. Sci. 2011, 9, S4.
[CrossRef] [PubMed]

Yu, D.; Hu, J.; Huang, Y.; Shen, H.-B,; Qi, Y,; Tang, Z.-M.; Yang, ].-Y. TargetATPsite: A template-free method for ATP-binding
sites prediction with residue evolution image sparse representation and classifier ensemble. J. Comput. Chem. 2013, 34, 974-985.
[CrossRef] [PubMed]

Fang, C.; Noguchi, T.; Yamana, H. Simplified sequence-based method for ATP-binding prediction using contextual local
evolutionary conservation. Algorithms Mol. Biol. 2014, 9, 7. [CrossRef]

Hu, J.; Li, Y.; Zhang, Y;; Yu, D. ATPbind: Accurate protein-ATP binding site prediction by combining se-quence-profiling and
structure-based comparisons. J. Chem. Inf. Model. 2018, 58, 501-510. [CrossRef]

Cheng, F; Zhang, H.; Fan, W.; Harris, B. Image recognition technology based on deep learning. Wirel. Pers. Commun. 2018,
102, 1917-1933. [CrossRef]

Yu, Z.; Li, T,; Luo, G.; Fujita, H.; Yu, N.; Pan, Y. Convolutional networks with cross-layer neurons for image recognition. Inf. Sci.
2018, 433, 241-254. [CrossRef]

Voulodimos, A.; Doulamis, N.; Doulamis, A.; Protopapadakis, E. Deep Learning for Computer Vision: A Brief Review.
Comput. Intell. Neurosci. 2018, 2018, 1-13. [CrossRef] [PubMed]

Singhal, A.; Sinha, P;; Pant, R. Use of deep learning in modern recommendation system: A summary of recent works. Int. J.
Comput. Appl. 2017, 180, 17-22. [CrossRef]

Wang, W.; Gang, J. Application of convolutional neural network in natural language processing. In Proceedings of the 2018
International Conference on Information Systems and Computer Aided Education (ICISCAE), Changchun, China, 6-8 July 2018.
Cheng, J.; Liu, Y.; Ma, Y. Protein secondary structure prediction based on integration of CNN and LSTM model. . Vis. Commun.
Image Represent 2020, 71, 102844. [CrossRef]

Li, Y;; Shibuya, T. Malphite: A convolutional neural network and ensemble learning based protein secondary structure predictor.
In Proceedings of the 2015 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Washington, DC, USA,
9-12 November 2015; pp. 1260-1266.

Cao, Z.; Zhang, S. Simple tricks of convolutional neural network architectures improve DNA-protein binding pre-diction.
Bioinformatics 2019, 35, 1837-1843. [CrossRef] [PubMed]

Pan, X.; Shen, H.-B. Predicting RNA—protein binding sites and motifs through combining local and global deep convolutional
neural networks. Bioinformatics 2018, 34, 3427-3436. [CrossRef]

Golkov, V.; Skwark, M.].; Golkov, A.; Dosovitskiy, A.; Brox, T.; Meiler, J.; Cremers, D. Protein contact prediction from amino acid
co-evolution using convolutional networks for graph-valued images. In Proceedings of the Conference on Neural Information
Processing Systems (NeurlIPS), Barcelona, Spain, 5-10 December 2016.

Zhou, J.; Lu, Q.; Xu, R.; Gui, L.; Wang, H. CNNisite: Prediction of DNA-binding residues in proteins using convolutional neural
network with sequence features. In Proceedings of the 2016 IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), Shenzhen, China, 15-18 December 2016; pp. 78-85.

Nguyen, T.-T.-D.; Le, N.-Q.-K.; Kusuma, R.M.L; Ou, Y.-Y. Prediction of ATP-binding sites in membrane proteins using a
two-dimensional convolutional neural network. J. Mol. Graph. Model. 2019, 92, 86-93. [CrossRef]

Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. In Proceedings of the
International Conference on Learning Representations, San Diego, CA, USA, 7-9 May 2015.

Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the inception architecture for computer vision. AIP Conf. Proc.
2016, 2818-2826. [CrossRef]

He, K.; Zhang, X.; Ren, S.; Sun, ]J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27-30 June 2016.


http://doi.org/10.1016/j.neucom.2012.10.012
http://doi.org/10.1186/1471-2105-13-118
http://www.ncbi.nlm.nih.gov/pubmed/22651691
http://doi.org/10.1126/science.1217737
http://doi.org/10.1073/pnas.0610313104
http://doi.org/10.1093/bioinformatics/bty816
http://doi.org/10.1093/nar/28.1.235
http://doi.org/10.1093/nar/24.1.21
http://doi.org/10.1186/1471-2105-10-434
http://www.ncbi.nlm.nih.gov/pubmed/20021687
http://doi.org/10.1186/1477-5956-9-S1-S4
http://www.ncbi.nlm.nih.gov/pubmed/22165846
http://doi.org/10.1002/jcc.23219
http://www.ncbi.nlm.nih.gov/pubmed/23288787
http://doi.org/10.1186/1748-7188-9-7
http://doi.org/10.1021/acs.jcim.7b00397
http://doi.org/10.1007/s11277-018-5246-z
http://doi.org/10.1016/j.ins.2017.12.045
http://doi.org/10.1155/2018/7068349
http://www.ncbi.nlm.nih.gov/pubmed/29487619
http://doi.org/10.5120/ijca2017916055
http://doi.org/10.1016/j.jvcir.2020.102844
http://doi.org/10.1093/bioinformatics/bty893
http://www.ncbi.nlm.nih.gov/pubmed/30351403
http://doi.org/10.1093/bioinformatics/bty364
http://doi.org/10.1016/j.jmgm.2019.07.003
http://doi.org/10.1109/CVPR.2016.308

Int. J. Mol. Sci. 2021, 22, 939 21 of 21

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

Chollet, E. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21-26 July 2017; pp. 1251-1258.

Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chem, W.; Ma, W.; Ye, O,; Liu, T. LightGBM: A highly efficient gradient boosting decision
tree. In Proceedings of the 31st Conference on Neural Information Processing System, Long Beach, CA, USA, 4-9 December 2017.
Li, W.; Godzik, A. Cd-hit: A fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics
2006, 22, 1658-1659. [CrossRef]

Le, N.Q.K,; Do, D.T.; Hung, TN.K,; Lam, L. H.T.; Lin, C.-M.; Nguyen, N.T.K. A computational framework based on ensemble
deep neural networks for essential genes identification. Int. . Mol. Sci. 2020, 21, 9070. [CrossRef]

Zhou, J.; Lu, Q.; Xu, R.; He, Y,; Wang, H. EL_PSSM-RT: DNA-binding residue prediction by integrating ensemble learning with
PSSM relation transformation. BMC Bioinform. 2017, 18, 1-16. [CrossRef] [PubMed]

Lam, L.H.T,; Le, N.H,; Van Tuan, L.; Ban, H.T.; Hung, TN.K.; Nguyen, N.T.K,; Dang, L.H.; Le, N.-Q.-K. Machine Learning Model
for Identifying Antioxidant Proteins Using Features Calculated from Primary Sequences. Biology 2020, 9, 325. [CrossRef]
Altschul, S.F; Madden, T.L.; Schiffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389-3402. [CrossRef]

McGuffin, L.J.; Bryson, K.; Jones, D.T. The PSIPRED protein structure prediction server. Bioinformatics 2000, 16, 404-405. [CrossRef]
[PubMed]

Wauthrich, K.; Billeter, M.; Braun, W. Pseudo-structures for the 20 common amino acids for use in studies of protein conformations
by measurements of intramolecular proton-proton distance constraints with nuclear magnetic resonance. J. Mol. Biol. 1983,
169, 949-961. [CrossRef]

Fang, C.; Shang, Y.; Xu, D. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure
prediction. Proteins Struct. Funct. Bioinform. 2018, 86, 592-598. [CrossRef] [PubMed]

Lu, S;; Hong, Q.; Wang, B.; Wang, H. Efficient resnet model to predict protein-protein interactions with gpu computing.
IEEE Access 2020, 8, 127834-127844. [CrossRef]

Friedman, ].H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189-1232. [CrossRef]

Walia, R.R.; Xue, L.C.; Wilkins, K.; EI-Manzalawy, Y.; Dobbs, D.; Honavar, V. RNABindRPlus: A predictor that combines machine
learning and sequence homology-based methods to improve the reliability of predicted RNA-binding residues in proteins.
PLoS ONE 2014, 9, €97725. [CrossRef]

Chen, K.; Mizianty, M.].; Kurgan, L. Prediction and analysis of nucleotide-binding residues using sequence and sequence-derived
structural descriptors. Bioinformatics 2012, 28, 331-341. [CrossRef]

Hu, J; Li, Y;; Yan, W.-X; Yang, ].-Y.; Shen, H.-B.; Yu, D.-J. KNN-based dynamic query-driven sample rescaling strategy for class
imbalance learning. Neurocomputing 2016, 191, 363-373. [CrossRef]


http://doi.org/10.1093/bioinformatics/btl158
http://doi.org/10.3390/ijms21239070
http://doi.org/10.1186/s12859-017-1792-8
http://www.ncbi.nlm.nih.gov/pubmed/28851273
http://doi.org/10.3390/biology9100325
http://doi.org/10.1093/nar/25.17.3389
http://doi.org/10.1093/bioinformatics/16.4.404
http://www.ncbi.nlm.nih.gov/pubmed/10869041
http://doi.org/10.1016/S0022-2836(83)80144-2
http://doi.org/10.1002/prot.25487
http://www.ncbi.nlm.nih.gov/pubmed/29492997
http://doi.org/10.1109/ACCESS.2020.3005444
http://doi.org/10.1214/aos/1013203451
http://doi.org/10.1371/journal.pone.0097725
http://doi.org/10.1093/bioinformatics/btr657
http://doi.org/10.1016/j.neucom.2016.01.043

	Introduction 
	Results 
	Performance Comparison with other Sequence-Based Prediction Methods 
	Case Study 

	Discussions 
	Feature Importance Analysis 
	Proposed CNN-Based Models Showed Better Performance than Simple 2D CNN Model 
	Applying Separate Features as Inputs in CNN Models can Improve Performance 
	Ensemble Learning for CNN Predictors and the LightGBM Predictor 

	Materials and Methods 
	Datasets 
	ATP-227 and ATP-17 
	ATP-388 and ATP-41 

	Feature Representation 
	Position-Specific Scoring Matrix (PSSM) 
	Predicted Secondary Structure 
	Residue One-Hot Encoding 

	Deep Convolutional Neural Network 
	The Multi-IncepResNet-Based Predictor 
	The Multi-Xception-Based Predictor 

	LightGBM Predictor 
	Complementary Template-Based Prediction Method 
	Imbalanced Learning Problem 
	Architecture of Proposed Ensemble Prediction Method 
	Performance Evaluation 

	Conclusions 
	References

