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Abstract: In the era of globalisation, decreasing synthetic resources, especially petroleum, have
encouraged global communities to apply biomass waste as a substitute material for green technology
development. The development of plastic products from lignocellulosic fibre-reinforced composites
has been a hot topic among material scientists and engineers due to their abundance, sustainable in
nature, and less toxic towards health. For the Malaysian scenario, sugar palm is a plant found in the
wild and locally planted in certain areas in Malaysia and Indonesia. Generally, sugar palm can be
harvested for traditional foods, fruits, starch sugar (gula kabung), and alcohol, whereas sugar palm
fibre (SPF) is used in conventional products (brushes and brooms). Various researchers are working
on the characterisation of fibre and its composites for engineering and packaging products. The main
drawback of SPF is its hydrophilic behaviour, which leads to high moisture uptake and inhibits a
good bond between the fibre and the matrix. Thus, a solution for this problem is by implementing
chemical treatments on the fibre. From the literature review, no comprehensive review paper has
been published on the influence of chemical treatment on the mechanical behaviour of SPF-reinforced
polymer composites. Thus, the present review examines recent studies on the mechanical properties
of sugar palm lignocellulosic fibres with various chemical treatments to evaluate their potential in
structural applications.
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1. Introduction

Recently, plant wastes, such as sugar palm fibre (SPF), coconut sheath, and kenaf
stem, have been used in various applications due to their widespread availability and
low costs [1]. Lignocellulosic fibres are implemented by industries in many sectors to
grasp the idea of sustainability [2,3]. In general practice, these fibres are implemented
together with a polymer matrix to form biocomposite products. Various lignocellulosic
fibres, including flax [4], kenaf [5], pineapple leaf [6], and sugar palm [7] have been applied
in many engineering applications. The increasing trend in the use of lignocellulosic fibre
composites has shown that composite materials have received significant attention from
the public [8]. This situation is beneficial to global communities in order to reduce the
reliance and dependence on synthetic materials [9]. The main benefits of these polymer
composites include availability and various advantages, eco-friendly to the environment,
good thermal insulation properties, good formability, low cost, renewable, and sufficient
energy requirements [10–12]. In terms of chemical composition, these types of fibres are
mainly composed of cellulose as the structural building material reinforced in the lignin
matrix [13]. Other components, such as hemicellulose, lignin, pectin, waxes, and water-
soluble substances, express green plant characteristics. The components of lignocellulosic
fibres may vary from one to another, depending on plant species, growth conditions,
geographical locations, fibre extraction techniques, as well as the height and parts of the
plant [14–17].

Arenga pinnata or SPF exhibits significant fibre strength and stiffness that can be applied
for composite reinforcement. Generally, SPF is one of the widely available fibres that can be
found in Malaysia, Indonesia, and other South Asian countries. SPF has also been widely
used in various product development activities, including packaging, food container,
furniture, helmets, and boats, indicating that this fibre contributes to the advancement of
green technology [18–22]. The various SPF-reinforced polymer composites are beneficial
due to their good mechanical performance, which is useful for structural and automobile
sectors. Many engineers and scientists have demonstrated higher mechanical performance
of SPF-reinforced polymer composites than that of other types of lignocellulosic fibre
polymer composites; hence, lignocellulosic fibre-reinforced polymer composites are suitable
for high-structural performance [23,24]. According to Misri et al. [25], SPF-reinforced
polymer composites have been used to develop fishing boats, which exhibit good resistance
to water permeability, as well as high mechanical strength. This shows that SPF has the
potential to be embedded in automotive components [26,27], body armour [28], structures
in transmission tower [29–32], and tissue engineering products [33].

Even though lignocellulosic fibres, such as SPF, possess various advantages, they
exhibit hydrophilic characteristics with high water absorption [34]. This reduces their
bonding wettability with hydrophobic polymer resin, leading to a lack of interfacial bond-
ing between the fibre and the matrix. This condition may induce non-uniformity that
limits the mechanical strength of the composites and consequently results in unfavourable
properties [35–38]. In order to resolve this issue, SPF pretreatment is suggested by several
researchers either via physical or chemical techniques [39,40]. The performance of the com-
posites can be enhanced by altering the compatibility between fibre and polymer to form
effective composites. Specifically, the treated lignocellulosic fibre has a rougher surface,
which contributes to more activation areas for chemical bonding with matrix [41–43]. A
good network of fibre/matrix subsequently provides superior composite strength and
enhances the use of lignocellulosic fibre for structural, automobile, aerospace, aircraft, and
household products [44–49].
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Currently, numerous review articles elaborate on SPF and its composites with var-
ious characterisation techniques [50–53]. To the best knowledge of the authors, these
reviews are still limited, inadequate, and slightly informative, especially considering the
influence of chemical treatment on the mechanical performance of SPF-reinforced poly-
mer composites. Thus, this review aims to comprehensively gather and discuss recent
works accomplished on the influence of various chemical treatments on the mechanical
properties of SPF-reinforced polymer composites. At the end of the manuscript, specific
discussions are presented on current usage and potential applications of SPF-reinforced
polymer composites to replace synthetic materials (e.g., glass fibres). A general overview
of the comparison of natural (lignocellulosic) fibres and synthetic fibres is shown in Table 1.
It is expected that this review article can encourage researchers and manufacturers to make
progress in the development of SPF-reinforced polymer composites for various engineering
applications to reduce carbon emissions.

Table 1. Comparison of natural fibres with synthetic fibres [54–59].

Aspects Synthetic Fibres Natural Fibres

Examples Glass fibres Lignocellulosic fibre such as
SPF

Density High Low

Biodegradability Took long period for the material to
be decomposed. Highly biodegradable

Energy usage Required huge amount of energy
input during processing

Low energy consumption
during its processing

Environmental effect
Huge negative impact toward
environment if disposal is not

handled properly

Environmentally friendly
since it is extracted from

bio-waste

Health effect Serious issues toward
respiratory diseases No effect toward health

Recyclability Cannot be recycled Recyclable

Raw material cost Relatively high price Low price

2. Sugar Palm (Arenga pinnata)

Sugar palm is a Palmae tree family scientifically known as A. pinnata. The Palmae family
has about 181 genera and more than 2600 species worldwide [60]. Currently, there are
abundant lignocellulosic fibres of sugar palm. This tree is commonly found in tropical
climate regions, including the South and Southeast Asian tropics. Geographically, the plant
distribution includes the Indo-Malay archipelago, which includes Southeast Asian nations,
such as the Philippines, Indonesia, and Malaysia [61]. Sugar palm is considered one of the
most economical plants in Asia. A sugar palm tree is tall and has long-shaped leaves with
decorative trunk fibres. Recently, a new way to harvest sugar palm by-products efficiently
has been developed. The first sugar palm factory has recently been constructed in Tomohon,
Indonesia [62]. The by-products of sugar palm include sugar, sago, bioethanol, alcohol,
fibre, and thatch. The bioethanol from sugar palm can be used as an alternative fuel because
the tree has higher alcohol production capability compared to sugarcane, sweet sorghum,
and cassava [63,64]. Besides, SPF is considered a primary by-product of sugar palm. The
fibres can be used in many applications, including brooms, septic tank base filters, and
ropes for sea cordage, and in certain parts of Indonesia, the fibres are used as paintbrushes,
clear water filters, and carpets [50].

3. SPF

Sugar palm fibre is black fibre that can be found naturally in Malaysian and Indonesian
rainforests [65]. Recently, SPF has received growing demands from consumers as the fibre
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can be used in various applications, such as ropes, roofs, brushes, brooms, pultruded
components, mats, and hammocks [66]. The fibre can be harvested after five years, when
the mature fibre is black with an approximate length of 1.19 m [53,67]. Ijuk or Injuk is
the black fibrous hair covering the sugar palm trunk [68]. Sugar palm fibre is generally
considered a waste product from sugar palm cultivation. This fibre also has considerable
potential as reinforcement for biocomposite products. With high cellulose content, many
researchers have studied the utilisation of SPF due to its high potential in industrial
applications, such as photovoltaic backsheet [69], packaging products [40], and automotive
components [70]. Figure 1 shows the extraction of SPF from sugar palm trunk.
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Figure 1. Preparation of SPF from sugar palm tree: (a) locating suitable SPF at the trunk, (b) SPF
bundle, (c) combed SPF, (d) SPF treatment by alkalisation, (e) fibre yarning, and (f) finalised SPF yarn.
Adapted with permission from Ref. [71]. Copyright Elsevier.

3.1. Physical and Mechanical Characteristics of SPF

SPF can have a length of up to 1.19 m with a diameter of approximately 94–370 µm, as
described by Bachtiar et al. [72]. The overall density of SPF is about 1.26 kg/m3, and the
strength of the fibre depends on the maturity and altitude of the fibre harvested from sugar
palm tree [73]. SPF is heat-resistant until 150 ◦C, with a flash point of 200 ◦C [64]. The
harvested SPF from its tree trunk is segregated based on its grade from A to E, depending
on its dimensions (thickness and length), as stated by Ishak et al. [53]. Bachtiar et al. [74]
reported that the tensile strength, tensile modulus, and elongation at break of SPF are
190.29 MPa, 3.69 GPa, and 19.6%, respectively.

According to Nurazzi et al. [75], SPF consists of black fibre with high tensile strength
that is comparable to coir, bamboo, and kenaf fibres. Table 2 presents the comparison of
the mechanical behaviour of SPF with other lignocellulosic fibres. The main advantage
of SPF is that the fibre is durable with a long life, as it is unaffected by heat and moisture
compared to coir fibre. SPF is resilient to seawater; hence, the fibre can be embedded in
marine applications [25]. Concerning the application of SPF as reinforcement in polymer
matrix composites, various studies have been conducted on the properties of SPF-reinforced
polymer composites [76–78].
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Table 2. Comparison of the mechanical performance of SPF with other lignocellulosic fibres. The
data are adapted from Ref. [37]. Creative Common CC BY license.

Fiber Density (g/cm3)
Tensile

Modulus (GPa)
Tensile

Strength (MPa)
Elongation at

Break (%)

Sugar Palm 1.292 4.96 156.96 7.98
Bagasse 1.5 17 290 -
Bamboo 1.25 11 to 17 140 to 230 -

Flax 0.6 to 1.1 27.6 345 to 1035 2.7 to 3.2
Hemp 1.48 70 690 1.6 to 4

Jute 1.3 26.5 393 to 773 1.5 to 1.8
Kenaf 1.45 53 215.4 1.6
Sisal 1.5 9.4 to 22 511 to 535 2.0 to 2.5

Pineapple 0.8 to 1.6 1.44 400 to 627 14.5
Coir 1.2 4 to 6 138.7 30

3.2. Chemical Composition of SPF

The chemical compositions of lignocellulosic fibres are highly influenced by the type
and nature of fibres. Thus, the fibres exhibit different characteristics. The properties of
each component in sugar palm tree have a significant influence on the overall properties
of SPF. The chemical compositions of lignocellulosic fibres depend on maturity, the tree
part where the fibre is harvested, locality, and climatic conditions [51,73]. Sugar palm
fibre is mainly made up of cellulose (α-cellulose), lignin, pectin, hemicellulose, and waxes.
Hemicellulose acts as a compatibiliser between lignin and cellulose components [40,79].
Table 3 lists the chemical composition of SPFs from various tree parts. Cellulose provides
strength and stability to cell walls to maintain the structural integrity of the fibres. Based
on the aforementioned table, it can be seen that frond fibre has the highest cellulose content.
However, SPF is usually obtained from ijuk part as it consists of almost 90% of the total
fibre from a sugar palm tree.

Table 3. Chemical compositions of SPF from different tree parts. Data extracted from Ref. [68].
Creative Common CC BY license.

Chemical Composition
(%)

Sugar Palm Tree Parts

Ijuk Trunk Bunch Frond

Lignin 31.5 46.4 23.5 18.9
Hemicellulose 65.6 61.1 71.8 81.2

Cellulose 52.3 40.6 61.8 66.5
Extractive 4.4 6.3 2.2 2.5
Moisture 7.4 1.5 2.7 2.7

Ash 4.0 2.4 3.4 3.1

In addition, the chemical composition of SPF also depends on the height of the tree
where the fibre is harvested, as shown in Table 4. According to Ishak et al. [80], the
chemical composition of SPF (i.e., cellulose, lignin, and hemicellulose) increased as the
height of sugar palm tree increased. Nevertheless, these contents are significantly reduced
as the tree becomes older. The SPF from the bottom part of the tree consists of high
impurities, including silica. This bottom part of SPF indicates higher ash content (30.92%)
in comparison to the fibre obtained from the upper part of the tree (2.06–5.84%) based
on FTIR analysis. Owing to its remarkably high ash content, the fibre from 1 m height
indicated lower moisture content (5.36%) than other fibres at 3–15 m height in the range of
7.72–8.7%.
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Table 4. Chemical composition of SPF obtained from various heights of the tree. Data are adapted
from Ref. [53]. Copyright Elsevier.

Chemical
Composition (%)

Height (m)

15
(Top) 13 11 9 7 5 3 1

(Bottom)

Lignin 24.9 24.3 23.0 23.6 20.5 20.9 18.9 17.9
Hemicellulose 7.5 7.9 7.9 7.9 7.7 7.4 6.1 4.7

Cellulose 53.4 54.4 55.8 56.8 56.6 55.3 49.4 37.3
Extractive 1.0 1.2 1.5 1.4 1.4 1.7 2.0 2.5
Moisture 8.7 8.1 7.7 8.2 8.4 7.9 8.6 5.4

Ash 4.3 4.0 4.1 2.1 4.2 5.8 14.0 30.9

4. Limitation of Lignocellulosic SPF as Reinforcement Material in
Polymer Composites

SPF is lignocellulosic fibre made up of lower cellulose content of approximately
37.3–66.48%. Cellulose content gives lignocellulosic reinforcement material remarkable
mechanical properties because cellulose acts as a building block for fibre. For instance,
Mukhtar et al. [50] determined that flax fibre has higher tensile strength and modulus than
SPF due to the higher cellulose content of flax fibre. Additionally, Dai [81] mentioned that
flax fibre is made of lignin matrix that lies parallel to the fibre axis. Based on the discussion,
cellulose acts as a vital structural component in lignocellulosic fibre that provides good
durability and better structural integrity; hence, the drawback of SPF needs to be overcome.

As SPF is classified as lignocellulosic fibre, lack of interfacial bonding is considered
as the main drawback of reinforcement material in composites. There are four interfacial
bonding issues, such as interdiffusion bonding, mechanical interlocking, electrostatic
bonding, and chemical bonding. The lack of SPF compatibility with the polymer matrix
results in the low mechanical performance of final composites as there is no interaction
with SPF that contains polar moieties. The non-polar nature of SPF usually influences
the low dispersion of the fibre. Subsequently, the SPF experiences agglomeration within
the polymer matrix due to the hydrogen bonds within the hydroxyl group, resulting
in poor fibre dispersion within the matrix and poor matrix–fibre interaction. The non-
polar hydrophobic nature of the polymer matrix impairs the dispersity of SPF, which is
hydrophilic by nature. This phenomenon also leads to low interfacial adhesion, poor
resistance to moisture uptake, and low melting point, which could initiate composite
microcracks [39,82]. The effectiveness of the composites reinforced with lignocellulosic
fibres relies on the fibre–polymer matrix interface and the tendency of transferable stress to
the fibres from the matrix.

The lack of compatibility of lignocellulosic fibre/matrix can reduce the reactive area to
bind the composites [83]. Consequently, this leads to crack propagation in composite lami-
nate due to the occurrence of air voids between the fibre interface and the matrix [84]. There-
fore, this phenomenon reduces the impact and tensile properties of the composites [85,86].
In this case, a comprehensive step needs to be taken, including fibre treatment (e.g., chem-
ical modification) to remove impurities and unwanted components. Subsequently, the
mechanical performance of SPF-reinforced polymer composites can be improved.

5. Fibre Treatments on SPF: Chemical Modification

Chemical pretreatment of SPF can enhance the morphological properties of the fibre,
leading to high tensile and compressive strength. This is due to the enhancement of in-
terfacial linkage of fibre–matrix adhesion [10]. In this point of view, the main contributor
of strength and toughness in lignocellulosic fibre reinforced polymer composites is fibre–
matrix adhesion, and efficient stress distribution of fibre–matrix determines the brittleness
and toughness of composites [87,88]. Chemical treatment techniques for lignocellulosic
fibres help clean the fibre surface, increase the surface roughness of fibres, and reduce
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the moisture absorption process [89]. The modification of lignocellulosic fibre surface
can be performed by various treatments [90–93], such as gamma or electron beam irra-
diation [94,95], seawater [96], UV irradiation [97], plasma [98,99], water retted [100–103],
corona [104,105], mercerisation [60,106–122], hydrothermal [123], and impregnation and
chemical coupling [124,125]. For chemical modification of SPF surface, the treatments
include benzoylation, peroxide treatment, peroxide treatment, graft copolymerisation,
etherification, acetylation, permanganate treatment, mercerisation, and application of cou-
pling agents (e.g., silane) [126]. For chemical treatment of fibre, an optimum fibre volume
in the polymer matrix [127,128] and also manufacturing and processing techniques [30]
allow remarkable improvement in composite strength and stiffness due to a high aspect
ratio that effectively transfers stress to the matrix.

5.1. Alkalisation

Alkali treatment, also known as alkalisation, utilises various concentrations of sodium
hydroxide (NaOH) solution to remove impurities in lignocellulosic fibres, hence elevating
the fibre compatibility in matrices [129,130]. In this chemical treatment, which is well-
known as mercerisation, untreated lignocellulosic fibre is immersed in NaOH solution
for a certain period [131–133]. One of the advantages of alkalisation is the interruption
of hydrogen bonds in the chemical structure, which creates a rough fibre surface. The
immersion of lignocellulosic fibre in NaOH solution allows the removal of certain plant
cellular components, such as hemicellulose, wax, lignin, and oils. These components inhibit
the fibre from being reinforced in the polymeric resin [134]. The treatment allows the fibre to
be fibrillated into fibre bundles, which shortens the fibre diameter, increases the aspect ratio,
and influences the crystalline properties. Subsequently, the treatment converts cellulose I
into cellulose II, as mentioned by Liu et al. [135]. Mercerisation allows the ionisation of the
hydroxyl group to alkoxide, as shown in the following equation:

Fibre−OH + NaOH → Fibre−ONa+ + H2O (1)

From Equation (1), it can be determined that the immersion of SPF in NaOH solution
results in high swelling. A new Na–cellulose lattice is formed after the removal of surplus
NaOH, which is a lattice with relatively large distances between cellulose molecules, and
these spaces are filled with water molecules. At that moment, the OH groups of cellu-
lose are converted into ONa-groups (Equation (1)), expanding the molecules’ dimensions.
Later, rinsing with water will remove the linked Na ions and convert the cellulose to a
new crystalline structure, which is considered a treated cellulose structure [136]. Expand-
ing the molecules’ dimensions means that the number of reaction sites increases, and
therefore, better adhesion between the fibre and the matrix. Hosur et al. [137] found that
lignocellulosic fibre (e.g., flax) treated with 2.5 wt% alkaline solution for 1 h showed the
highest degree of crystallinity, which resulted in the synergistic effect on flexural and water
absorption performance.

Bachtiar et al. [138] discovered that overtreatment of SPF with mercerisation deterio-
rated the fibre. This statement is supported by Ticoalu et al. [139], in which changes in the
morphology of fibre and reduction of tylose content on the surface of lignocellulosic fibre.
Table 5 reviews studies in the literature on alkali treatment of SPF in order to improve fibre
morphology and enhance the overall mechanical performance of biocomposites.

Table 5. Research on alkalisation of SPF with various concentrations and immersion times.

Concentration of NaOH Solution Immersion Time (Hours) References

4 and 6% 1 [140]
5 and 10% 2 [139]

6% 3 [141]
0.25 M and 0.5 M 1, 4, and 8 [138]
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5.2. Silane Treatment

Chemical treatment using coupling agents, such as silane (SiH4), is another pretreat-
ment method to increase fibre/matrix compatibility. This method stabilises biocomposites
by reducing the number of hydroxyl groups in cellulose. Alkoxy silanes can form hydroxyl
group bonds. Coupling agents (e.g., triethoxyvinyl silane and toluene diisocyanate) have
been utilised in natural fibre treatment to enhance the interphase properties of natural fibre
and polymer matrix. Hydrolysis, condensation, and formation of bonding occur in silanes.
Silanols can form polysiloxane structures by reacting with the hydroxyl group of fibres. In
the presence of moisture, the hydrolysable alkoxy group leads to the formation of silanols.
The chemical reaction formula can be deduced from the silane reaction:

Fibre−OH + R− Si(OH)3 → Fibre−O− Si(OH)2 − R (2)

Subsequently, the silanol reacts with the hydroxyl group in SPF to covalently bond
to the cell wall. This phenomenon confines hydrocarbon chains from the swelling of the
fibre, producing an intertwined network from the diffusion of hydrocarbon chains with
polymer matrices [142,143]. Additionally, this silane treatment aids in the restructuring of
hydrocarbon chain, which can influence fibre wettability [144]. Thus, silane pretreatment
enhances the chemical affinity of the matrix, which consequently improves the tensile
strength of the final biocomposite by reducing the effect of moisture [92,145].

According to Atiqah et al. [146], silane treatment could separate lignin and hemicellu-
lose from the lignocellulosic SPF as the fibres were agitated for 3 h in 2% silane solution.
Moreover, the silane treatment on SPF greatly reduced the number of cellulose hydroxyl
groups in SPF as compared to the mercerisation of SPF. The research also discovered that
this treatment enhanced the degree of crosslinking and increased the active bonding surface
area of SPF. This finding is aligned with the work performed by Huda et al. [147]. In another
study by Zahari et al. [148], the scanning electron microscopy (SEM) analysis found that
narrower gaps were observed at the fracture sites of silane-treated SPF-reinforced polymer
composites, as shown in Figure 2. They concluded that silane treatment provides better
surface compatibility of SPF.
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5.3. Sodium Bicarbonate Treatment

Sodium bicarbonate treatment is another notable chemical modification of SPF, in
accordance with Mukhtar et al. [23]. The researchers treated SPF with 10% sodium bi-
carbonate solution by soaking the fibre for 5 days. For this chemical modification, SPF
was washed thoroughly from excess sodium bicarbonate and the fibres were ensured to
have neutral pH prior to drying for 24 h in an oven. The authors discovered that the
percentage improvement of SPF due to sodium bicarbonate treatment was relatively lower
than alkalisation. From the SEM analysis, it was revealed that the removal of waxy layers
on SPF was lower using this treatment.

5.4. Benzoylation

Benzoylation is a useful chemical treatment of SPF as it can enhance the tensile, thermal,
and morphological properties of the fibre [149]. In common practice, benzoyl treatment
took place when SPF was pre-soaked for 30 min in 18% NaOH solution before being washed
and dried. After that, the fibres were suspended in 10% NaOH solution and agitated with
50 mL benzoyl, based on the experiment conducted by Safri et al. [150]. According to Vijay
et al. [151], the treatment of the lignocellulosic fibre from Ipomoea pes-caprae significantly
improved the fibre surface roughness, providing more activation areas for combination
with polymer matrices. This resulted in the enhancement of fibre wettability in the matrix,
thus improving the flexural and tensile performance of composites. Figure 3 shows the
reaction between the cellulosic –OH group of natural fibre and benzoyl chloride.

Materials 2022, 15, x FOR PEER REVIEW 9 of 23 
 

 

 
Figure 2. SEM analysis of fractured SPF-reinforced propylene composites with (a) 10 wt%, (b) 20 wt%, (c) 30 wt% of untreated SPF; 
(d) 10 wt%, (e) 20 wt%, (f) 30 wt% of silane treated SPF. Adapted with permission from Ref. [148]. Copyright Elsevier. 

5.3. Sodium Bicarbonate Treatment 
Sodium bicarbonate treatment is another notable chemical modification of SPF, in 

accordance with Mukhtar et al. [23]. The researchers treated SPF with 10% sodium bicar-
bonate solution by soaking the fibre for 5 days. For this chemical modification, SPF was 
washed thoroughly from excess sodium bicarbonate and the fibres were ensured to have 
neutral pH prior to drying for 24 h in an oven. The authors discovered that the percentage 
improvement of SPF due to sodium bicarbonate treatment was relatively lower than alka-
lisation. From the SEM analysis, it was revealed that the removal of waxy layers on SPF 
was lower using this treatment. 

5.4. Benzoylation 
Benzoylation is a useful chemical treatment of SPF as it can enhance the tensile, ther-

mal, and morphological properties of the fibre [149]. In common practice, benzoyl treat-
ment took place when SPF was pre-soaked for 30 min in 18% NaOH solution before being 
washed and dried. After that, the fibres were suspended in 10% NaOH solution and agi-
tated with 50 mL benzoyl, based on the experiment conducted by Safri et al. [150]. Ac-
cording to Vijay et al. [151], the treatment of the lignocellulosic fibre from Ipomoea pes-
caprae significantly improved the fibre surface roughness, providing more activation areas 
for combination with polymer matrices. This resulted in the enhancement of fibre wetta-
bility in the matrix, thus improving the flexural and tensile performance of composites. 
Figure 3 shows the reaction between the cellulosic –OH group of natural fibre and benzoyl 
chloride. 

 
Figure 3. A possible reaction between cellulosic-OH groups and benzoyl chloride. Adapted from 
Ref. [152]. Creative Common CC BY license.  
Figure 3. A possible reaction between cellulosic-OH groups and benzoyl chloride. Adapted from
Ref. [152]. Creative Common CC BY license.

5.5. Other Fibre Treatment

Fibre treatment of SPF can also be conducted via seawater treatment, which is con-
sidered a low-cost and efficient pretreatment to improve fibre surface topography. For
SPF, many researchers have studied seawater treatment, where the fibre is con-ventionally
applied in long-term seawater exposure, in accordance with Sanyang et al. [52]. The treat-
ment is usually conducted using SPF immersed in seawater (0.035% salt for 1 L water) for
several days. Hence, this treatment indicates that it is potentially useful to enhance the
properties of SPF at lower costs. Ishak et al. [153] investigated the influence of seawater
treatment on the properties of SPF. They conducted the ex-periment by immersing SPF for
30 days prior to testing. A significant improvement in the surface topography of SPF was
observed, as indicated in Figure 4. They deduced that the seawater treatment improved
the surface properties of SPF by eliminating the outer layers of hemicellulose and pectin,
which subsequently enhanced the fibre rein-forcement potential.

5.6. Combined Chemical Treatments

A combination of chemical treatments has been experimented on SPF, such as alkalisation-
silane treatment. According to Atiqah et al. [146], they evaluated the bonding strength of
combined alkali-silane treatment of SPF-reinforced thermoplastic polyurethane (TPU) com-
posites. In this work, SPFs were soaked in a combined solution containing 6% NaOH and
2% silane solutions for 3 h. The SEM analysis of combined alkali-silane-treated SPF showed
less impurities and rougher surface topography. Although the combined effect of alkali-silane
treatment was estimated to produce remarkable changes in the fibre morphology, the research
deduced that the combined treatment displayed only a slight improvement in the surface
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topography of SPF. The interfacial bonding strength decreased after the combined treatment,
while the tensile strength improved slightly.
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6. Previous Literatures on the Influence of Chemical Treatments on Mechanical
Properties of SPF-Reinforced Polymer Composites

Various studies have been carried out to evaluate the potential of SPF under the
influence of chemical treatment and the remarkable improvement of the properties of
the fibre and its composites. The SEM results depict that treated fibre aids in removing
the outer layers that contain impurities, such as ash, wax, and pectin. Researchers have
also established significant enhancement in the tensile, flexural, and impact strength and
stiffness of SPF-reinforced polymer composites [149,154]. Among chemical treatments
of SPF include alkalisation, silane treatment, seawater treatment, sodium bicarbonate
treatment, and combined treatments. Table 6 summarises the experimental results of recent
works on chemically-modified SPF-reinforced polymer composites in terms of flexural,
tensile, and impact properties.

Table 6. Reported works on the mechanical properties of SPF-reinforced polymer composites.

Fibre
Condition Matrix Matrix

Type
Chemical

Treatments Details

Flexural Tensile Impact

Ref.Strength
(MPa)

Modulus
(GPa)

Strength
(MPa)

Modulus
(GPa)

Strength
(kJ/m2)

10 wt% of
SPF (long

fibre)
Epoxy Thermo-set Alkali

0.5 M of
NaOH

solution at
8 h

90.68 4672 41.88 3780 6.0 [72,138,155]

30 wt% of
SPF

(powder
fibre)

Phenolic Thermo-set Alkali
0.5% of
NaOH

solution at
4 h

92.59 5.17 - - 7.28 [18]

10 wt% of
SPF (Short

fibre)
PLA Bio-

polymer Alkali
0.25% of
NaOH

solutions
- - 32.5 0.263 - [156]

30 wt% of
SPF

(powder
fibre)

Poly-
propylene

Thermo-
plastics Silane

2 wt% of
silane

solution for
3 h

- - 23.00 1.096 - [148]

SPF (long
fibre)

Poly-
urethane

Thermo-
plastics Silane

2 wt% of
silane

solution for
3 h

- - 173.44 10.07 - [146]
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Table 6. Cont.

Fibre
Condition Matrix Matrix

Type
Chemical

Treatments Details

Flexural Tensile Impact

Ref.Strength
(MPa)

Modulus
(GPa)

Strength
(MPa)

Modulus
(GPa)

Strength
(kJ/m2)

30 wt% of
SPF (mat

fibre)

Poly-
propylene

Thermo-
plastics

Sodium bi-
carbonate

10 wt% of
sodium bi-
carbonate

solution for
5 days

60 2.47 58.76 2.06 17.61 [7]

10 wt% of
SPF (long

fibre)
Epoxy Thermo-set Benzoy-

lation

18% NaOH
solution for

30 min,
10% NaOH
+ Benzoyl
chloride
solution

- - 22.7 3.62 - [157]

30 wt% of
SPF (long

fibre)
Epoxy Thermo-

plastics Seawater Seawater
30 days 54.22 - - - 18.46 [153]

30 wt% of
SPF (long
fibre–15

cm)

Unsatu-
rated

polyester
Thermo-set Seawater

Seawater
30 days

from Port
Klang,

Selangor,
Malaysia

80.80 - 18.33 4.374 - [96]

30 wt% of
SPF (Short

fibre)

Poly-
urethane

Thermo-
plastics Combine

4% of
NaOH

solution
and 70 ◦C

microwave
treatment

- - 18.42 1.307 - [158]

SPF (long
fibre)

Poly-
urethane

Thermo-
plastics Combine

6 wt%
NaOH and

2 wt% of
silane

solutions
for 3 h each

- - 142.09 7.75 - [146]

6.1. Alkalisation

Based on previous literature, alkali treatment of SPF shows remarkable enhance-
ment of the mechanical properties of SPF-reinforced polymer composites. According to
Bachtiar et al. [72,155], the alkali-treated SPF-reinforced epoxy composites revealed an out-
standing increase in flexural and impact strength of approximately 24.41% and 12.85%,
respectively, compared to untreated SPF-composites. Bachtiar et al. [155] discovered a
significant impact of alkali treatment of SPF on the composite properties via the hand
lay-up method. Based on their findings, the impact strength of SPF-reinforced epoxy com-
posites increased by 28.69% via 0.5 M NaOH treatment of SPF for 8 h. They deduced that a
rougher surface on the fibre interface due to chemical treatment created many activation
areas to increase the compatibility with the polymer matrix. This condition allows better
permeability and inhibited detachment, debonding, or pull-out of SPFs [159,160].

Atiqah et al. [161] and Mohamed et al. [162] discovered that the alkali treatment at
an optimum value of 6% concentration resulted in significant results in the mechanical
properties of SPF-reinforced thermoplastic polyurethane composites. Additionally, the
tensile strength of SPF improved under 6% NaOH treatment with optimum immersion
time [163,164]. From these studies, it can be deduced that fibre treatment at 6% NaOH is
good for splitting SPF bundles into very fine fibres. Subsequently, this phenomenon results
in effective entrance of resin and triggers high intertwining of fibres in the matrix [165].
Subsequently, it leads to better interfacial adhesion with enhanced fibre/matrix bonding.

Chalid et al. [156] determined that the tensile strength and elastic modulus of SPF-
reinforced polylactic acid (PLA) increased as 20% fibre content was treated using 0.25 M
NaOH solution for 30 min. They concluded that the alteration of the SPF interface strength-
ened the mechanical interlocking of SPF fibrils with PLA resin. Moreover, trapped voids
and fibre pull-out can be reduced by stirring during mixing the fibre with dissolved PLA
resin under the effect of alkali treatment [166,167].
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6.2. Silane Treatment

Atiqah et al. [146] evaluated the influence of alkali, silane, and combined treatment
on SPF-reinforced polyurethane composites. They revealed that 2% silane-treated SPF
exhibited better tensile strength than those of 6% alkali-treated, alkali-silane-treated, and
untreated SPF composites. Specifically, the silane-treated SPF composite exhibited 17.64%
higher tensile strength than the untreated SPF-composite. Meanwhile, the interfacial stress
strength of the silane-treated SPF-composite was higher than alkali- and combined-treated
SPF-composites. The micro-surface of the silane-treated SPF composite was roughened to
induce mechanical interlocking with the polyurethane matrix.

Zahari et al. [148] established that silane-treated SPF/polypropylene (PP) composites
elevated the elastic modulus and tensile strength up to 1.098 GPa and 23 MPa, respectively.
In this case, they implemented 30 wt. % SPF, which was an optimum fibre loading, and
treated the fibre with 2% vinyltrimethoxysilane for 15 min to enhance the adhesion of the
fibre with the polymer matrix. Based on the morphological analysis, the untreated SPF/PP
composites indicated poor interfacial adhesion due to the obvious gaps between the fibre
and the matrix. However, the gaps were significantly less noticeable and became narrower
as the SPF was treated with a silane coupling agent. Therefore, it can be deduced that
SPF and thermoplastic matrix have better compatibility when treated with silane solution.
Moreover, the optimum SPF content along with silane treatment enhanced the stiffness of
composites. The treatment allows better distribution of SPF within the PP matrix [168].

6.3. Sodium Bicarbonate Treatment

Researchers have also used sodium bicarbonate for SPF treatment as an effort to
enhance SPF-reinforced polymer composites. Mukhtar et al. [23] prepared a pretreatment
solution with 10 wt% bicarbonate to modify the SPF. The treatment was conducted with
5 days of immersion and later, the fibre was washed completely with distilled water to
remove excess treatment solution. Later on, Mukhtar et al. [7] conducted an experiment to
evaluate the influence of the concentration of sodium bicarbonate on the tensile properties
of SPF/PP composites. The improvement in tensile performance was observed due to the
sodium bicarbonate-treated SPF that removed excess impurities on the fibre, and the treated
SPF composite recorded 58.76 MPa against 53.01 MPa for the untreated SPF composite.

6.4. Benzoylation Treatment

Safri et al. [157] conducted a study of benzoylation treatment to modify SPF and
also to reinforce epoxy composites. They determined that this treatment mechanism
improved the interfacial adhesion of SPF–reinforced epoxy composites. Major improvement
in the tensile properties of the SPF/epoxy composites was observed upon the benzoyl
treatment of SPF. The rougher surface of the treated SPF after benzoylation treatment
provides more activation areas for combination with polymer matrices. This condition
enhances fibre wettability, which is good for the mechanical properties of SPF-reinforced
polymer composites.

6.5. Seawater Treatments

Seawater treatment is another fibre treatment commonly used by researchers to en-
hance SPF-composites. Ishak et al. [153] discovered that the impact and flexural strength
of 30 wt% SPF-reinforced epoxy composites increased significantly by 5.06% and 7.35%,
respectively. This study established that seawater treatment with 30 days of fibre immersion
improved the surface properties of SPF by removing the outer layers of hemicellulose and
pectin. Subsequently, this leads to improved interfacial bonding between the fibre and
the matrix.

Maisara et al. [96] assessed the effect of fibre length and seawater treatment on
the mechanical properties of SPF-reinforced unsaturated polyester composites. They
found out that 30 wt% SPF with 15 cm length treated with seawater exhibited signifi-
cant tensile and flexural strength of 18.33 and 80.80 MPa, respectively. However, this
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type of SPF/unsaturated polyester composites exhibited the lowest tensile modulus of
4251.96 MPa. They concluded that the removal of impurities (i.e., pectin and waxy sub-
stances) from the SPF surface and the creation of a rougher surface after seawater treatment
promoted mechanical interlocking for better mechanical properties of SPF composites.
However, the effect of seawater treatment degraded the structural integrity of fibre, which
subsequently decreased due to the elasticity of SPF and its composites.

6.6. Combined Chemical Treatments

Atiqah et al. [146] evaluated the influence of combined silane–alkali treatment on SPF-
reinforced polyurethane composites. Although the combined treatment was expected to
improve SPF surface, the treatment resulted in less impact compared to a single treatment.
For instance, the tensile strength and modulus of the combined-treated SPF-reinforced
polyurethane composites were lower than alkali- and silane-treated SPF-composites. This is
because the mixture of both chemicals does not have any effect on SPF [169]. Furthermore,
the combined effect of silane and alkali degraded the structural integrity of SPF, as cellulose
was washed away by both treatment reactions.

Another combined treatment conducted by Mohammed et al. [158] implemented
microwave and alkaline treatments on SPF-reinforced polyurethane composites. This
offers excellent tensile properties compared to the use of alkaline-treated and untreated
SPF/polyurethane composites. Based on their findings, microwave treatment at 70 ◦C as-
sisted the fibre treatment process by removing impurities at the outer layer of the fibre after
alkali treatment. Additionally, the microwave treatment reduced excess moisture in SPF,
which in turn increased the interfacial adhesion of fibre/matrix [170]. Nevertheless, this
combined treatment does not significantly improve the overall strength of SPF composites
because higher temperatures may lead to fibre damage, consequently reducing the reactive
sites for mechanical interlocking.

7. Applications of SPF-Reinforced Polymer Composites

Currently, issues related to environmental pollution have become increasingly promi-
nent among global communities due to global warming and haze [171,172]. Many strategies
and efforts have been aligned by conducting new research and developing new technolo-
gies to reduce the effect of these catastrophic events. Thus, many material scientists and
engineers have utilised agricultural wastes as a substitute for current synthetic materials as
these wastes are renewable resources. Sugar palm fibre is seen as an emerging natural-based
material that can fulfil the needs to mitigate the current issue due to its high mechanical
performance and lightweight in engineering applications. These benefits enable SPF to
compete with the majority of natural fibres on the market, including coir, kenaf, cotton,
and jute due to its improved mechanical characteristics through fibre treatment [88,173].
For instance, SPF-reinforced epoxy composites have been implemented to develop a safety
helmet. This is because SPF exhibits good water resistance and can endure high impact
forces [174]. The SPF/epoxy helmet is referred to as Helmet-Ijuk Reinforced Composite
(HIReC) [175].

Sugar palm fibre is well-known due to its high durability in seawater. The fibre
exhibits good resistance to seawater; hence, the fibre is usually applied as shipping
ropes [52,176]. Figure 5 displays the fabrication process of a natural fibre composite boat
made from SPF and glass fibre-reinforced unsaturated polyester (UPE) composites [25,72].
The SPF/glass fibre/UPE composite boat was manufactured using compression moulding
and the hand-layup technique. The weight of the SPF-composite boat declined by approxi-
mately 50% as SPF was used to replace a certain amount of glass fibre. The density of SPF
is 1.22–1.26 kg/m3, which is approximately half of the density of E-glass fibre (2.55 kg/m3)
that is commonly used in manufacturing fishing boats.
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SPF possesses outstanding mechanical performance, where the fibre becomes a promis-
ing candidate as a reinforcement material in the polymer matrix. Recently, many develop-
ments in design have been executed to develop automotive parts from SPF-reinforced poly-
mer composites, including automobile engine mounting [27], side door impact bar [177],
parking lever brake [178], antiroll bar [179], and automotive bumper [180]. Other than
automotive applications, SPF is also highly potential for construction applications, as it
is composed of lignin, in accordance with Jędrzejczak et al. [181]. In their project, they
recommended deriving lignin from lignocellulosic fibre, such as SPF, to harvest and imple-
ment sustainable epoxy and phenol-formaldehyde resins for construction usage. There are
many potential applications of SPF as nanocellulose by reinforcing the fibre in starch-based
composites for packaging applications [20,119].

8. Conclusions and Future Outlook

This article focuses on previous literature related to the chemical treatment of SPF and
the mechanical properties of SPF-reinforced polymer composites. Sugar palm fibre has
notable mechanical performance, such as flexural, tensile, and impact strength. Different
tests have been applied to determine the strength and stiffness in impact, tension, and
bending mode. The fibre shows good hydrophilic properties, elevating the water absorption
capacity of the fibre. This property inhibits the wettability of lignocellulosic fibre with the
polymer matrix to form good compatibility fibre/matrix for high-strength composites. The
drawback of SPF is also influenced by inhibitors, such as wax and pectin, which further
reduce the interfacial adhesion between the fibre and the matrix. Several researchers have
suggested the use of chemical treatments on SPF to resolve this issue, such as alkalisation,
silane treatment, sodium bicarbonate treatment, benzoylation, and seawater treatment.
Several studies have also proposed combined treatments and evaluated the effectiveness
of the treated SPF-reinforced polymer composites. Based on previous literature, silane
treatment of SPF with 2% concentration for 3 h significantly improved the fibre compatibility
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with thermoplastic matrix composites. Additionally, combined treatments, such as silane–
alkali and alkali–microwave treatments, are ineffective in improving the fibre topography
and wettability to be reinforced in the polymer matrix as compared to a single treatment.
This is due to the double actions from two distinct treatments, which can degrade fibre
structure. Overall, silane-treated SPF-reinforced polyurethane composites demonstrate
superior mechanical properties to other treated SPF-reinforced polymer composites. It can
be seen that treated SPFs have high potential to substitute synthetic fibres (glass fibres)
for tensional, bending, and impact applications. Subsequently, the application of SPF as
fibre reinforcement of polymer composites shows significant possibility for the automotive,
locomotive, construction, and housing sectors.

At the end of the review, it can be established that treated SPF-reinforced polymer
composites can be used in various sectors, especially in high impact equipment, such as
helmets, antiroll bars, and anticrash boxes. Additionally, seawater-treated SPF-reinforced
polymer composites are ideal to be implemented in fishing boat manufacturing because
the composites have great resistance to seawater. Construction and building materials are
the most interesting application field, given that SPF can improve the properties of wood,
concrete, steel, and glass as the primary construction materials. For future work, it is sug-
gested to apply treated SPF-reinforced polymer composites for construction and structural
components, such as concrete beams, cross-arms in transmission towers, and wind turbine
beams. Thus, SPF can potentially be a serious contender in advanced material applications.
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