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Abstract The establishment of a landscape of enhancers across human cells is crucial to deciphering the mechanism of
gene regulation, cell differentiation, and disease development. High-throughput experimental approaches, which contain
successfully reported enhancers in typical cell lines, are still too costly and time-consuming to perform systematic
identification of enhancers specific to different cell lines. Existing computational methods, capable of predicting regulatory
elements purely relying on DNA sequences, lack the power of cell line-specific screening. Recent studies have suggested
that chromatin accessibility of a DNA segment is closely related to its potential function in regulation, and thus may
provide useful information in identifying regulatory elements. Motivated by the aforementioned understanding, we in-
tegrate DNA sequences and chromatin accessibility data to accurately predict enhancers in a cell line-specific manner. We
proposed DeepCAPE, a deep convolutional neural network to predict enhancers via the integration of DNA sequences and
DNase-seq data. Benefitting from the well-designed feature extraction mechanism and skip connection strategy, our model
not only consistently outperforms existing methods in the imbalanced classification of cell line-specific enhancers against
background sequences, but also has the ability to self-adapt to different sizes of datasets. Besides, with the adoption of auto-
encoder, our model is capable of making cross-cell line predictions. We further visualize kernels of the first convolutional
layer and show the match of identified sequence signatures and known motifs. We finally demonstrate the potential ability
of our model to explain functional implications of putative disease-associated genetic variants and discriminate disease-
related enhancers. The source code and detailed tutorial of DeepCAPE are freely available at https://github.com/Sheng-
quanChen/DeepCAPE.

KEYWORDS Enhancer prediction; Chromatin accessibility; Data integration; Transcription factor binding motif;
Disease-associated regulatory element

Introduction

Enhancers are distal regulatory elements that can be bound
by transcription factors (TFs) to boost the expression of
their target genes. As important regulatory elements,
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enhancers collaborate with promoters to regulate the tran-
scription of genes in a cis-acting manner, receiving more
and more attention in studies of cell differentiation [1],
human diseases [2], and phenotypic diversity [3]. However,
due to such facts as far away from target genes, the absence
of common sequence features, and the high cell line spe-
cificity, it has long been a challenging task to systematically
and precisely identify enhancers in a specific cell line.

Enhancers are usually identified by high-throughput
biological experiments. For example, Heintzman and
Ren [4] used ChIP-seq experiments to establish a landscape
of binding sites for individual TFs; May et al. [5] mapped
the binding sites of transcription coactivators p300 and CBP
to a large number of enhancers. With the understanding that
enhancers are marked by monomethylation of H3K4 [6],
genome-wide identification of enhancers has been con-
ducted in large-scale projects such as ENCODE [7] and
Roadmap [8]. Besides, using a technique called Cap Ana-
lysis of Gene Expression (CAGE), the FANTOM project [9]
has mapped promoters and enhancers that are active in
mammalian primary cell lines [10]. Considering that ex-
perimental approaches are expensive and time-consuming
for large-scale identification of enhancers, computational
methods have been proposed to predict regulatory elements.
For example, kmer-SVM used k-mer frequencies of a DNA
fragment with a support vector machine (SVM) to classify
regulatory elements [11]; gkmSVM and LS-GKM
allowed gaps in a k-mer and improved the prediction
performance [12,13]; methods based on random forests [14]
and decision trees [15] have also been introduced.

Over the past five years, deep learning has been in-
corporated into bioinformatics studies. For example,
DeepBind used a convolutional neural network (CNN) to
predict binding proteins and showed higher prediction
power than traditional classifiers [16]; DeepSEA learned
DNA regulatory codes via a CNN from epigenomic data
and predicted effects of non-coding variants [17]; Dee-
pEnhancer predicted enhancers purely relying on DNA
sequences and outperformed SVM-based methods [18];
DeepCRISPR unified sgRNA on-target and off-target site
prediction into one framework with deep learning [19]. The
success of these methods suggests that deep learning is a
powerful tool in genomic studies. Nevertheless, these
methods, which use only DNA sequence information, ob-
viously lack the power of making predictions in a cell line-
specific manner, because DNA sequences are identical in
different cell lines.

Chromatin accessibility of the genome has received more
and more attention in the recent years. It is known that
putative accessible regions in the genome often work with
TFs, RNA polymerases, and other cellular machines to
regulate gene expression [20]. The development of high-
throughput sequencing techniques, such as DNase-seq and

Assay for Transposase-Accessible Chromatin with high-
throughput sequencing (ATAC-seq), has enabled the accu-
mulation of a vast amount of chromatin profiles across a
variety of cell lines and provides a great opportunity to
study transcription factor binding sites (TFBSs), DNA
methylation sites, histone modification markers, and other
regulatory elements [21,22]. It is therefore natural to in-
tegrate DNA sequences and chromatin accessibility in-
formation in a single neural network model for the study of
cell line-specific enhancers.

With the aforementioned understanding, we propose in
this study DeepCAPE, a deep CNN for the accurate pre-
diction of enhancers, using DNA sequences and DNase-seq
data. Through comprehensive experiments, we show that
our model is not only superior to existing methods in the
prediction of enhancers, but also able to predict enhancers
across cell lines. With a visualization strategy, we show that
sequence motifs discovered by our method successfully
match known motifs. Through joint analysis of prediction
results with genome-wide association study (GWAS) data,
we show the potential ability of our method to identify
genetic variants associated with liver cancer and dis-
criminate enhancers related to lymphoma.

Method

Data collection and processing

We use the promoter enhancer slider selector tool
(PrESSTo) to download experimentally verified enhancers
specific to 9 different cell lines from the FANTOM project,
including epithelial cell of esophagus, melanocyte, cardiac
fibroblast, keratinocyte, myoblast, stromal cell, mesenchy-
mal cell, natural killer cell, and monocyte. We use two
strategies to generate negative samples, i.e., non-enhancer
fragments that do not overlap with enhancers. First, we
randomly sample DNA fragments of variable length from
the background genome, with the constraint that the length
and GC content of negative samples should be identically
distributed as those of known enhancers. The background
genome is defined as the entire human reference genome
(GRCh37), excluding known enhancers, promoters for
coding and non-coding genes, and exonic regions for coding
and non-coding genes. Second, we discard the constraint on
the GC content to demonstrate the adaptability of our
method to different genome contexts. The first model is
more stringent and is used throughout this study. We set the
ratios of positive to negative samples to 1:10 and 1:20, i.e.,
for each positive sample, we generate 10 and 20 negative
samples, respectively.

We download raw sequencing data of 891 DNase-seq
experiments from the ENCODE project [23] and identify
the experiments corresponding to the collected cell lines.
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Given the raw sequencing data of a DNase-seq experiment,
we define the chromatin accessibility score (S) of a DNA
position as the number of reads (N) starting at this position
divided by the average number of reads (N ) starting at a
position in a background region of size W centered at the
given position [24,25]. Formally, S N N= / and
N M W= / , whereM is the number of reads starting within
the background region. A summary of the data is shown in
Table 1. The integration of DNA sequences and DNase-seq
data not only enables the cell line-specific prediction but
also effectively improves the performance of prediction
(Figure S1).

We consider two issues that are crucial to our method.
First, enhancers are of variable length, while a CNN re-
quires inputs of fixed length. Second, a deep neural network
has an appetite for a vast amount of training samples. We
therefore propose a data augmentation strategy to address
both issues (File S1, text A; Figure S2).

Design of DeepCAPE

As illustrated in Figure 1, DeepCAPE consists of four
modules. First, a DNA module is used to extract features of
DNA sequences. Second, an auto-encoder module is
adopted to embed DNase-seq data into a low-dimensional
space. Third, a DNase module is used to extract features of
chromatin accessibility after dimensionality reduction. Fi-
nally, a joint module integrates outputs of the DNA and
DNase modules to predict the probability that an input se-
quence is an enhancer.

DNA module

The DNAmodule is a CNNwith multiple convolutional and
pooling layers. The first layer uses 128 kernels to scan for
sequence motifs of length 8 along the input DNA fragment,
which is represented using the one-hot encoding. The
second layer uses 64 kernels, each of length 1, to reduce the
dimension of features extracted from the first layer by
adopting the Network In Network (NIN) model [26], which
aims to enhance the discrimination power of the model. The

third layer uses 64 kernels, each of length 3, to reduce the
number of parameters by drawing on experiences of
VGGNet [27]. The fourth layer again adopts the NIN
technique and uses 128 kernels, each of length 1, to extract
high-level features. The fifth layer adopts the max-pooling
strategy to reduce the number of parameters and abstract
features learned in the previous layer. The sixth and seventh
layers again adopt the VGGNet technique to further reduce
the number of parameters by using 64 kernels, each of
length 3. Finally, the eighth layer adopts the max-pooling
strategy to abstract final high-level features. In the
convolutional layers, the activation of the k-th convolu-
tional kernel at the i-th position is written as

a w x= ReLU (1)ik
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where x is the input matrix, M is the size of the kernel, N is
the number of input channels, and wmn

k is the weight matrix
of the kernel. For the first convolutional layer, N is equal to
4. For other layers, N is equal to the number of kernels in the
previous layer. The rectified linear unit

x xReLU( ) = max(0, ) activation function sets negative va-
lues to zero. The aforementioned well-designed structure
can effectively extract features of DNA sequences.

Auto-encoder and DNase modules

A DNase-seq experiment usually has a small number of
replicates, and this number varies between cell lines,
making the dimensionalities of input data variable between
cell lines and preventing the use of a CNN in cross-cell line
prediction. To solve this problem, we adopt auto-encoder, a
neural network designed for unsupervised learning of effi-
cient encodings [28], to embed the chromatin accessibility
score of a DNA fragment into a vector of fixed length in a
low-dimensional latent space. Briefly, the auto-encoder
module first uses a batch-normalization layer to reduce the
internal covariate shift and accelerate the training proce-
dure. The output then goes to an encoder component, which
is essentially a feedforward neural network that transfers the

Table 1 Summary of data

Cell line No. of enhancers No. of positive samples ID of DNase-seq experiment

Epithelial cell of esophagus 148 15,188 ENCSR000ENN
Melanocyte 424 45,244 ENCSR518JGY
Cardiac fibroblast 446 49,656 ENCSR000ENH
Keratinocyte 497 54,343 ENCSR000EPQ
Myoblast 499 55,238 ENCSR000EOO
Stromal cell 710 81,295 ENCSR000EMH
Mesenchymal cell 1857 215,096 ENCSR405TXU
Natural killer cell 2677 281,512 ENCSR723JLG
Monocyte 7347 718,064 ENCSR000EPK

Note: Number of positive samples was obtained after performing fixed-stride data augmentation (stride 1).
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Figure 1 Graphical illustration of DeepCAPE
First, a DNA module is used to extract features of the input DNA fragment. Second, an auto-encoder module is adopted to embed DNase-seq data into a
low-dimensional space. Third, a DNase module is used to extract features of chromatin accessibility after dimensionality reduction. Finally, a joint module
integrates outputs of the DNA and DNase modules to predict the probability that an input sequence is an enhancer. Conv, convolutional layer; Pool, max-
pooling layer; Batch norm, batch-normalization layer.
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input data of k channels (corresponding to k replicates) into
a single channel. After another batch-normalization layer, a
decoder component, which is also a feedforward neural
network, transfers the data back to k channels. With the
module well trained, the decoder is able to produce output
similar to the original input, and results of the encoder
component can then be used as features extracted from the
original data and fed to the successive DNase module. Such
an auto-encoder module benefits our model in two aspects.
First, regardless of the number of replicates for different cell
lines, output of the module is of the same dimension, and
thus makes cross-cell line prediction possible. Second, ef-
fective dimensionality reduction significantly alleviates the
computational burden of the successive prediction model.

The DNase module extracts multi-level features from
chromatin accessibility scores and is essentially identical to
the DNA module in structure, except for the number of
input channels. The DNA module is fed with one-hot en-
coded DNA sequence and has 4 channels, while the DNase
module is fed with chromatin accessibility data produced by
the encoder component of the auto-encoder module and has
a single channel. A statistical analysis on a total of 43,011
experimentally verified enhancers in FANTOM shows that
the median and mean lengths of these enhancers are 275 and
288 bp, respectively. We therefore select 300 as the di-
mensionality of the auto-encoder latent space, and thus the
shapes of outputs of subsequent layers in DNA and DNase
modules are symmetrical.

Joint module

The joint module integrates multi-level features from both
the DNA and DNase modules to predict the probability that
the input DNA fragment is an enhancer. Drawing on the
idea of skip connection in ResNet [29], we merge outputs of
the convolutional and max-pooling layers in DNA and
DNase modules to form a multi-channel feedforward net-
work. The merged outputs of different layers contain fea-
tures of different levels, which are integrated via three fully
connected hidden dense layers. Such a skip connection
strategy endows the model the ability to self-adapt to dif-
ferent sizes of training sets. When there are sufficient
training samples, the model may use low-level features.
When there are inadequate training samples, the model in-
clines to explore high-level features automatically.

On the top of the architecture, a softmax layer predicts
the probability that an input DNA fragment is an enhancer
based on the integrated features, as

f z e
e

( ) = (2)i
z

j
z

i

j

where f z( )i is the predicted probability that the input DNA
fragment belongs to class i (i.e., 1 for enhancer and 0 for
non-enhancer).

Model training

We carry out 5-fold cross-validation experiments to validate
the performance of our method for each cell line. Particu-
larly, in order to avoid information leakage, we partition
both positive (known enhancers) and negative (non-
enhancers) samples into 5 subsets of nearly equal size be-
fore converting sequences of variable length to sequences of
fixed length by the data augmentation strategy. In each fold
of the experiment, we take 4 subsets to train the model and
test its performance using the remaining subset.

Considering that the positive and negative samples are
highly imbalanced, we adopt a two-stage training strategy.
First, we train an initial model using all positive samples
and an equal number of negative samples sampled from the
training set. After this stage, the DNA and DNase modules
obtain the ability to extract features. Then, the joint module
is further trained as usual using all the imbalanced samples
on the training set, with learning rates of DNA and DNase
modules setting to 0 [30]. This strategy also alleviates the
computational burden. During training, the cross-entropy
loss is adopted as the objective function to be optimized
with Adam (File S1, text B).

With a well-trained model, we score all samples aug-
mented from an original sequence on a test set, and then
average over these scores to obtain the final probability that
the sequence is an enhancer. We also used another strategy
that takes the maximum of these scores as the final
probability to study the effects of different statistics on the
results.

We implement DeepCAPE in Python using Keras
(https://keras.io) with Tensorflow as the backend, while the
Theano backend also generated very close results according
to our test. The NVIDIA GeForce GTX 1080Ti GPU is used
to accelerate the computation. We have released our code in
Github (https://github.com/ShengquanChen/DeepCAPE).

Motif visualization

We propose a motif visualization strategy to interpret the
features extracted by DeepCAPE. We convert kernels of the
first convolutional layer to probabilistic position weight
matrices (PWMs) by counting nucleotide occurrences in the
set of sequences that activate the kernels. Briefly, each
kernel of the first convolutional layer is converted into a
PWM by scanning along input sequences for activated po-
sitions and then calculating the PWM by pooling corre-
sponding regions [30–32]. A position i is regarded as being
activated if

w x > EAV (3)
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where is the control coefficient (0 < < 1) and EAV the
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extreme activation value defined as

w n NEAV = max( | 0 1) (4)
m

M

mn
k

=0

1

We set length of kernels in the first convolutional layer to
8 and to 0.9. We identify putative sequence motifs by
using the tool TomTom 4.11.2 [33] with q-value threshold
0.1 to match PWMs identified by our method to the
JASPAR database [34].

Results

DeepCAPE accurately predicts enhancers

To verify the performance of DeepCAPE, we conducted a
series of 5-fold cross-validation experiments using en-
hancers collected from FANTOM and negative data
generated by the background model with the consideration
of GC content (see Method). We compared the performance
of our method with several baseline methods, including
gkmSVM [12], DeepSEA [17], and DeepEnhancer [18].
Using the same training and test sets with DeepCAPE, we
retrained the three baseline methods with parameters or
structures proposed by the respective authors and then
evaluated their performance. We also proposed a variation
of our model, named “DeepCAPE (seq only)”, which dis-
carded the auto-encoder and DNase modules and predicted
enhancers using only DNA sequence information. Con-
sidering our imbalanced classification task, we computed
two widely used metrics, the area under the precision-recall
curve (AUPRC) and the area under the receiver operating
characteristic curve (AUROC).

The performance at different ratios of positive to
negative samples (1:10 and 1:20) with augmentation
stride 1 is shown in Figure 2. Our method consistently
outperforms the three baseline methods. In more detail,
when the ratios of positive to negative samples are 1:10 and
1:20, respectively, the AUPRC scores of our method are on
average 0.474 and 0.590 higher than gkmSVM, 0.522 and
0.598 higher than DeepSEA, and 0.511 and 0.588 higher
than DeepEnhancer. One-sided paired-sample Wilcoxon
signed rank tests consistently suggest that our method
achieves higher AUPRC scores than a baseline method
(P < 2.2E−16 for all the three baseline methods). In terms of
AUROC scores, our method is on average 0.121 and 0.151
higher than gkmSVM, 0.169 and 0.151 higher than
DeepSEA, and 0.150 and 0.150 higher than DeepEnhancer,
when the ratios are 1:10 and 1:20, respectively. One-sided
paired-sample Wilcoxon signed rank tests similar also
consistently report significant results (P < 2.2E−16 for all
the three baseline methods). All these results suggest the
superior performance of our method over existing
sequence-based approaches in predicting enhancers.

We also compared the performance of our method to that
of CENTIPEDE (with default parameters), which integrates
DNA sequences and chromatin accessibility information to
predict TFBSs [35]. With the same test data, DeepCAPE
achieves a mean AUPRC of 0.919 and a mean AUROC of
0.985 for the 9 cell lines when the ratio of positive to ne-
gative samples is 1:10, while CENTIPEDE only achieves
0.760 and 0.826, respectively. Obviously, our method sig-
nificantly outperforms CENTIPEDE (P < 2.2E−16 for
AUPRCs, P < 2.2E−16 for AUROCs; one-sided paired-
sample Wilcoxon signed rank test). Similarly, our method

Figure 2 Classification performance measured by AUPRC and AUROC at different ratios of positive to negative samples (1:10 and 1:20) with
augmentation stride 1
AUPRC, area under the precision-recall curve; AUROC, area under the receiver operating characteristic curve.
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significantly outperforms CENTIPEDE when the ratio of
positive to negative samples is 1:20 (P = 5.24E−16 for
AUPRCs and P < 2.2E−16 for AUROCs; one-sided paired-
sample Wilcoxon signed rank test).

We further validated the performance of our method on
an independent test set with the following experiment [36].
Briefly, we trained our model using GM12878 enhancers
downloaded from FANTOM (where enhancers are defined
by CAGE tags) and corresponding genome background in
chromosomes 1–15, and we tried to distinguish GM12878
enhancers downloaded from ENCODE (where enhancers
are defined by computationally integrating ChIP-seq data)
from corresponding background genome regions in the rest
chromosomes. It is notable that, in this case, the source of
enhancers is independent (CAGE or ChIP-seq), and there
are not any overlaps between the training and test sets.
Because of the massive number of enhancers in the dataset
of GM12878 cell line, the most unbalanced dataset we can
generate has the ratio 1:4 of positive to negative samples. In
this case, our method achieves an AUPRC of 0.841 and an
AUROC of 0.924, while CENTIPEDE only achieves 0.693
and 0.705, respectively. These results not only suggest that
our method is capable of predicting enhancers in a context
independent of the training data, but also demonstrate the
superior performance of DeepCAPE over existing methods
that integrate DNA sequences and chromatin accessibility
information.

Our method demonstrates much higher robustness than
the baseline methods. With the variance of AUPRCs in the
5-fold experiments calculated for each cell line, one-sided
Wilcoxon rank sum tests consistently show that our method
achieves smaller variance than a baseline method (P =
4.019E−4 against gkmSVM, P = 7.908E−4 against
DeepSEA, and P = 4.571E−3 against DeepEnhancer),
suggesting that our method is not sensitive to the partition of
training and test samples. Besides, our method consistently
performs well in all the cell lines, while the performance of
the other three methods shows significant fluctuation across
cell lines, suggesting that they are sensitive to the number of
training samples.

We further conducted a series of experiments to de-
monstrate the performance of DeepCAPE. Firstly, it is
worth noting that the performance of the “DeepCAPE (seq
only)” model is also superior to the three baseline methods
in most cases, suggesting that our model has the advantage
in the case of predicting only with sequences. Secondly,
taking the maximum of the scores of samples augmented
from an original test sequence as the final probability
generates slightly worse performance, and this may be due
to the outliers with high scores in the augmented negative
samples. Finally, the performance on datasets without
considering GC content is slightly superior to that on da-
tasets under the GC content constraint (File S1, text C).

In terms of model training, benefiting from the usage of
dropout layers and the early stop strategy, the performance
on the test set is fairly close to that on the training set,
indicating that DeepCAPE is able to avoid overfitting. In
addition, with regard to the efficiency of model training,
DeepCAPE is superior to other deep learning models due to
the zero-learning-rate strategy in the second training stage.
Take the dataset with augmentation stride 1 of myoblast as
an example, when the ratio of positive to negative samples
is 1:20, the training time for an epoch is about 126 s for
DeepCAPE, 301 s for DeepSEA, and 237 s for
DeepEnhancer.

Contribution of each module

To illustrate the contribution of auto-encoder module, we
compared the performance of DeepCAPE with auto-
encoder to that of DeepCAPE without auto-encoder as well
as other two strategies that average the replicates or ran-
domly select a single replicate. As shown in Figure 3A, the
auto-encoder module not only makes cross-cell line pre-
diction possible, but also maintains the superior perfor-
mance of our method even if the dimensionality of DNase-
seq data is reduced (File S1, text D).

To evaluate contributions of the DNA and DNase
modules, we performed a model ablation analysis. As
shown in Figure 3B, DNase-seq data provide more in-
formation to the prediction than DNA sequences and greatly
improve the performance. In addition, jointly using DNA
sequences and DNase-seq data effectively improves the
performance and stability, indicating that DNA sequences
also play an important role in promoting the performance of
DeepCAPE and making the performance more stable (File
S1, text E).

There are more than 100 million parameters in the whole
neural network of DeepCAPE, and most of them are con-
centrated on the merge-layer of the joint module. As shown
in Figure S1, we visualized activated features on the merge-
layer when DeepCAPE was trained with datasets aug-
mented by different strides. With abundant training sam-
ples, DeepCAPE is inclined to activate only low-level
features, which are extracted by the first three layers. When
the sample size is limited, however, DeepCAPE can also
activate high-level features, which are extracted by the last
three layers, indicating that DeepCAPE has the ability to
self-adapt to different sizes of training sets (File S1, text F).

In order to explore the effect of the number of training
samples to the final performance, we repeated the cross-
validation experiments on datasets of different numbers of
augmentation strides for each cell line. The results show
that although the performance is decreasing overall with the
increasing augmentation strides (Figure 3C), the perfor-
mance is still satisfactory when compared with the three
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baseline methods and the computational burden is sig-
nificantly alleviated (File S1, text G; Table S3).

All the aforementioned observations suggest that
DeepCAPE can not only achieve superior performance with
limited known enhancers, but also achieve satisfactory
performance with longer augmentation strides to effectively
save computational time when there are massive enhancers.

DeepCAPE enables cross-cell line prediction

Experimental approaches are expensive and time-
consuming for large-scale identification of enhancers across
a variety of human cell lines. For a cell line whose en-
hancers have not been identified yet, predicting potential
enhancers has great significance in guiding biological ex-
periments for novel enhancer identification.

To accurately predict enhancers across cell lines, we
employed a collective scoring strategy. Given a cell line of
interest and a DNA fragment, we used models trained on
other cell lines to predict the probability that the fragment is
an enhancer, and then averaged over these predictions to
obtain a final prediction probability. The basic idea of this

strategy is that a DNA sequence may be an enhancer in the
new cell line if it plays a role of enhancer in some other cell
lines. To better support the idea, we calculated the overlap
rates between regions of enhancers of different cell lines. As
shown in Table S1, the mean overlap rates of enhancers of
most cell lines range from 15.4% to 21.8%, although those
of natural killer cell and monocyte are 8.0% and 5.9%,
respectively, due to the large number of enhancer samples in
these two cell lines. In addition, we calculated the overlap
rates between called DNase-seq peaks of different cell lines
and found that the mean overlap rates range from 34.5% to
50.0% (Table S2). The results indicate that there are com-
mon enhancers and chromatin accessibility features in dif-
ferent cell lines, and thus we can utilize information from
other cell lines to predict enhancers in a new cell line. To
avoid introducing extra prior information, we directly
averaged over the predictions from models of other cell
lines to obtain a final prediction probability without other
operation such as weighting different cell lines, thus making
it easier to generalize the model.

We used the datasets of 9 cell lines from FANTOM to
demonstrate the ability of DeepCAPE to predict enhancers

Figure 3 Contribution of each module
A. Performance of DeepCAPE with or without the auto-encoder module and other two strategies that average the replicates or randomly select a single
replicate. B. Performance of DeepCAPE with either the DNA or DNase module. C. Performance of DeepCAPE on datasets of different numbers of
augmentation strides.
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in a cross-cell line manner. For each cell line, we first ex-
cluded the samples that overlap with samples in other cell
lines to make sure that there are not common samples with
other cell lines, thus making the task more challenging. On
average, 35.2% and 37.6% of samples are left in the datasets
of 9 cell lines when the ratios of positive to negative sam-
ples are 1:10 and 1:20, respectively, and the corresponding
ratios become 1:8.3 and 1:18.1 averagely. We next used the
models of other 8 cell lines to make predictions for the
filtered samples of the cell line of interest, and then
averaged over the resulting 8 probabilities to obtain the final
prediction probability. We also used other three baseline
models to predict enhancers in this cross-cell line manner.

As shown in Figure 4 and Figure S3, DeepCAPE with
our cross-cell line prediction strategy is consistently su-
perior to other three baseline methods. In more detail, when
the ratio of positive to negative samples is 1:10, the average
AUPRC and AUROC scores of DeepCAPE in 9 cell lines
are 0.902 and 0.971, respectively; when the ratio is 1:20, the
average AUPRC and AUROC scores are 0.862 and 0.971,
respectively. These results suggest that DeepCAPE can
accurately predict enhancers across cell lines and thus es-
tablish a landscape of potential enhancers specific to a cell
line that still lacks systematic exploration of enhancers. The
relatively low performance on the dataset of stromal cell
may be caused by the fact that we can find only DNase-seq
data of stromal cell of bone marrow in ENCODE, which
may not match the cell line in FANTOM very well.

DeepCAPE recovers known TF binding motifs

To interpret features extracted by DeepCAPE, we used a
motif visualization strategy (see Method) to obtain se-
quence signatures (i.e., PWMs) learned from the first con-
volutional layer of the DNA module. We further identified
putative motifs by using the tool TomTom [33] to match
these PWMs to the JASPAR database [34].

For each cell line, we displayed the sequence logo of one

of the matched motifs in Figure 5. In the dataset of cardiac
fibroblast, DeepCAPE recovers a binding motif (BM) of
SOX21, whose ectopic expression in embryonic stem cells
induces their differentiation into specific cell types, in-
cluding those that express markers representative of heart
development [37]. In the dataset of keratinocyte,
DeepCAPE recovers a BM of TBX2, which represses the
transcription from the long control region of human pa-
pillomaviruses [38]. In the dataset of myoblast, DeepCAPE
recovers a BM of NR4A2, which has been previously
shown to contain consensus cAMP response element
binding protein (CREB) binding sites that are occupied by
CREB and phospho-CREB in myoblasts [39]. In the dataset
of natural killer cell, DeepCAPE recovers a BM of GATA3,
which is a critical regulator for natural killer cell terminal
maturation [40]. In the dataset of monocyte, DeepCAPE
recovers a BM of EGR2, which shows prominent, transient
induction in β-glucan-exposed monocytes [41]. It has been
demonstrated that enhancers with EGR2 motifs are mainly
associated with genes involved in lipid metabolism and
biosynthesis and lysosome function [41]. To sum up,
DeepCAPE can help us find potential TF binding in specific
cell lines.

Applications of DeepCAPE

To demonstrate potential applications of DeepCAPE, we
collected 334 single nucleotide polymorphisms (SNPs) that
were possibly associated with liver cancer from GRASP
[42]. Each SNP has an association P value obtained from a
GWAS regarding liver cancer. We identified a liver cancer
cell line (HepG2) in ENCODE and trained a DeepCAPE
model using enhancers and DNase-seq data specific to this
cell line. We then calculated a probability that indicates
whether a DNA fragment of 300 bp surrounding a SNP is an
enhancer for each of the 334 SNPs. We finally classified the
SNPs into 5 groups according to log10-transformed P values
of the SNPs and drew box plots of the predicted

Figure 4 Performance of the cross-cell line prediction strategy
The cross-cell line prediction performance of DeepCAPE is consistently superior to other three baseline methods at the ratio of positive to negative samples
(1:20).
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probabilities for each group. As shown in Figure 6A, the
predicted probabilities for SNPs with smaller P values are
relatively higher than those with larger P values. This ob-
servation suggests that predictions given by our method
using genomic and epigenomic data are potentially corre-
lated with P values obtained from genetic studies.

We further collected 14 enhancers that are shown to be
associated with lymphoma from the literature [43] and
showed the ability of our method to discriminant these en-
hancers from their nearby DNA fragments. For this purpose,
we first used enhancers and DNase-seq data specific to a
lymphocyte cell line (GM12878) in ENCODE to train a

DeepCAPE model. We then used this model to calculate
prediction probabilities for the 14 lymphoma-related en-
hancers and the same number of their adjacent sequences
sampled from either 1-kb or 3-kb upstream and downstream
regions. We drew box plots of the predicted probabilities in
Figure 6B. It is obvious that prediction probabilities of the
lymphoma-related enhancers are significantly higher than
those of the adjacent sequences (P = 7.915E−6 for adjacent
1 kb, P = 9.032E−7 for adjacent 3 kb; one-sided paired-
sampleWilcoxon signed rank test). These results suggest that
our method has the potential ability to discriminant enhancers
related to lymphoma from their nearby DNA fragments.

Figure 5 Visualization of TF binding motifs learned by DeepCAPE from kernels of the first convolutional layer
In each panel, a known TF BM from the JASPAR database is shown on the top, while the motif learned by DeepCAPE is shown at the bottom. TF,
transcription factor; BM, binding motif.

Figure 6 Applications of DeepCAPE
A. The distributions of predicted functional implication scores of the liver cancer-related SNPs according to different intervals of transformed P value
(−Lg P value). B. The distributions of predicted probabilities of the lymphoma-related enhancers and their adjacent sequences sampled from either 1-kb or
3-kb upstream and downstream regions. SNP, single nucleotide polymorphism.
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Discussion

We have introduced a deep learning framework named
DeepCAPE to integrate DNA sequence information and
chromatin accessibility data for predicting enhancers.
Benefitting from the integration of DNase-seq data, the
well-designed feature extraction modules, the skip con-
nection strategy, and the adoption of auto-encoder,
DeepCAPE is superior to existing methods in the im-
balanced classification of cell line-specific enhancers
against background sequences, self-adaptable to different
sizes of datasets, capable of making cross-cell line predic-
tions, and interpretable in extracted features. We have fur-
ther demonstrated the potential ability of DeepCAPE to
explain functional implications of genetic variants and
discriminate disease-related enhancers. Our method has two
main application scenarios. Firstly, one can use our method
to establish a landscape of potential enhancers specific to a
cell line that still lacks systematic exploration of enhancers,
thereby promoting the deciphering of regulatory
mechanisms for the cell line. Secondly, one can use our
method to explore functional implications of genetic
variants or DNA fragments specific to a cell line, thereby
bridging genomic and genetic studies toward the under-
standing of disease development.

Certainly, our work can further be improved in several
aspects. Firstly, the incorporation of the long short-term
memory (LSTM) network, a kind of recurrent neural net-
work architectures, into our framework may further im-
prove the performance, because LSTM may be able to
capture very long-range interaction in the sequence. In ad-
dition, the adaptation of an embedding representation of
DNA sequences instead of the use of the one-hot encoding
may also benefit the prediction accuracy [44]. Secondly,
since we have shown that the first convolutional layer is an
effective motif discoverer, researchers may use our model to
learn the complex grammar of TF binding in specific cell
lines. In addition, one can also explore interactions of motifs
in higher convolutional layers. Thirdly, the inclusion of
other epigenetic features like methylation and histone
modifications may further improve the performance. Con-
sidering it is costly to obtain such experimental data, we can
further include other epigenetic features in the future.
Fourthly, the definition of negative samples can be further
improved in future work. For example, a technique, An-
notating Genes with Positive Samples (AGPS), refines the
negative set in an iterative manner [45]; a hybrid sampling
algorithm, which integrates both ensemble classifier and
over-sampling techniques, is proposed to deal with im-
balanced data [46]. Fifthly, we can further study the
pathways possibly affected by the predicted enhancers [47].
Sixthly, our deep learning framework can possibly be used
to identify other functional elements and model gene

regulation [48–50]. Seventhly, our data integration frame-
work can possibly be adapted for the characterization of
single-cell chromatin accessibility sequencing data [51–53].
Finally, our framework can also be generalized for the
prediction of functional impacts of genomic mutations and
the prioritization of candidate variants in whole-genome
sequencing studies, thereby facilitating both research and
practice of precision medicine [54].

Code availability

The source code and detailed tutorial of DeepCAPE are
freely available at https://github.com/ShengquanChen/
DeepCAPE.
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