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Abstract

Motivation: Whole metagenome shotgun sequencing is a powerful approach for assaying the

functional potential of microbial communities. We currently lack tools that efficiently and accur-

ately align DNA reads against protein references, the technique necessary for constructing a func-

tional profile. Here, we present PALADIN—a novel modification of the Burrows-Wheeler Aligner

that provides accurate alignment, robust reporting capabilities and orders-of-magnitude improved

efficiency by directly mapping in protein space.

Results: We compared the accuracy and efficiency of PALADIN against existing tools that employ

nucleotide or protein alignment algorithms. Using simulated reads, PALADIN consistently outper-

formed the popular DNA read mappers BWA and NovoAlign in detected proteins, percentage of

reads mapped and ontological similarity. We also compared PALADIN against four existing protein

alignment tools: BLASTX, RAPSearch2, DIAMOND and Lambda, using empirically obtained reads.

PALADIN yielded results seven times faster than the best performing alternative, DIAMOND and

nearly 8000 times faster than BLASTX. PALADIN’s accuracy was comparable to all tested solutions.

Availability and Implementation: PALADIN was implemented in C, and its source code and docu-

mentation are available at https://github.com/twestbrookunh/paladin

Contact: anthonyw@wildcats.unh.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

As high-throughput sequencing technologies improve, the analysis

of microbial community composition and function has rapidly

advanced. Historically, this has mostly focused on taxonomic sur-

veys using a small number of phylogenetically informative genes

such as the small subunit of ribosomal RNA (Scholz et al., 2012;

Tap et al., 2009). The ability to taxonomically profile communities

provided new insights into the role of microbiomes in human health

(Cho and Blaser, 2012; Qin et al., 2010), soil ecology (Hultman

et al., 2015; Rinke et al., 2013) and environmental remediation

(Fierer et al., 2013). Nevertheless, the gene survey approach

provides limited functional knowledge because microorganisms

with similar or even identical rRNA sequences often differ signifi-

cantly with respect to genomic content, and therefore may have

vastly different functional roles in their environment (Sentausa and

Fournier, 2013).

Functional profiling of microbial communities based on Whole

Metagenome Shotgun (WMS) sequencing data attempts to catalog

the genes present in a community. An inventory of the protein cod-

ing functions of a microbial community can be created by either

matching the individual reads to annotated reference databases or

by assembling the reads and annotating the resulting chromosomal
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segments (Nagarajan and Pop, 2013). Conventional methods such

as BLAST are robust but computationally intensive and techniques

for rapidly mapping DNA reads to annotated reference genes fail

when the references within the curated databases diverge moderately

from DNA sequences of homologous genes in the metagenome sam-

ple. To mitigate these challenges, researchers often turn to metage-

nome assembly and subsequent annotation, which has profound

shortcomings, such as chimeric assembly of closely related se-

quences, strong bias toward abundant organisms, and substantial

human and computer resource requirements (Nagarajan and Pop,

2013; Scholz et al., 2012). Therefore, current approaches are not

sufficient to satisfy the requirements of researchers attempting to

understand functional metagenomics.

To improve the sensitivity and performance of metagenomic

functional profiling, we developed PALADIN—software that modi-

fies and extends the popular mapping tool, BWA (Li and Durbin,

2009), to align in protein space rather than nucleotide space. In

brief, PALADIN identifies and translates six possible open reading

frames within each read, and maps these translated DNA sequences

to a protein reference allowing for rapid identification of functional

homologies. Specifically, by mapping fully in protein space, this

method takes advantage of the general conservation of amino acid

sequences compared to the underlying DNA sequences. In this man-

ner, the speed of BWA’s local alignment algorithm using super-

maximal exact matches is maintained, while the effective results

now favor identification of function over taxonomy. Here we dem-

onstrate the practical application of this modified alignment algo-

rithm using large scale WMS datasets. PALADIN reports mappings

in standard SAM format, and can generate a tab-delimited file from

which additional information can be obtained, including protein

abundance, gene ontology and mapping quality (Figs 1 and 2).

2 Methods

To evaluate the overall performance of our protein space read map-

per, we established three primary goals. The first was to verify base

functionality by correctly mapping a positive control simulated read

set generated from six bacterial genomes. Secondly, to investigate

and contrast the effect of protein sequence alignment against com-

parable sequences in nucleotide space, two types of comparisons

were performed: degenerate nucleotide mapping (see Supplementary

Note 1) using NovoAlign (http://www.novocraft.com), a read map-

per documented to align against ambiguous IUPAC characters in the

reference; and standard nucleotide mapping using BWA, the tool

sharing the same codebase as PALADIN, thereby reducing potential

variables. For these tests, the well-curated UniProt Swiss-Prot data-

base was used as the reference, with entries corresponding to the six

bacterial genomes removed to ensure mapping was performed on

function and not exact sequence. Lastly, after accuracy and effi-

ciency of protein mapping was established against both styles of nu-

cleotide mapping, we evaluated the performance of PALADIN

compared with the popular conventional protein alignment algo-

rithm, BLASTX, as well as three more recent alternatives.

2.1 Establishing a positive control
We first generated typical 250 basepair long paired-end reads using

the standard Illumina error model for six well-annotated bacterial

genomes (Pseudomonas fluorescens, Escherichia coli, Acidovorax

avenae, Micrococcus luteus, Halobacillus halophilus and

Staphylococcus epidermidis) using the read simulation package ART

(Huang et al., 2012). The reads for the six genomes were pooled to

create a mock-metagenomic read dataset (see Supplementary

Note 2). As ART includes position indices of the generated read

relative to the original reference within each FASTQ header, scripts

were employed to link each read to its corresponding CDS entry

within the respective reference genome’s GFF annotation, then re-

cord the corresponding GO terms for each entry using cross-

referenced identifiers. This allowed us to definitively determine if a

read was correctly mapped, generate the ontology terms for each

associated gene, and populate the read graph for Jaccard similarity

calculations performed in subsequent tests.

With this source information pre-established, we then mapped

the combined reads using PALADIN against a reference consisting

of the protein sequences corresponding to the CDS entries of the six

original genomes. BWA and NovoAlign were also compared in this

Fig. 1. PALADIN internal pipeline, outlining each step in the indexing and

alignment process, modifications made to the BWA source, and options for

file input. Shading indicates if native PALADIN code or modified BWA code.

See Supplementary Figure 5 for output options and further pipeline details
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fashion, instead using the nucleotide sequences (standard and degen-

erate, respectively) corresponding to the CDS entries of the six ori-

ginal genomes as the reference.

2.2 Evaluating accuracy of functional mapping
By leveraging our prior knowledge about the genes corresponding to

the simulated reads, we evaluated the functional accuracy of map-

ping using four metrics—percentage of reads mapped, average map-

ping quality, Jaccard similarity coefficient (Jaccard, 1901) and the

number of unique proteins found in Swiss-Prot. To calculate the

similarity coefficient, reads and their corresponding aligned targets

were assigned functionality using the standardized Gene Ontology

(GO) language. Each GO term represents a vertex within a graph

formation where conditional edges join parent terms tracing back to

one of three root vertices: biological processes, molecular function

and cellular component. For each read and its matching Swiss-Prot

entry, graphs were constructed by the GO term assignments directed

back to their respective root vertices. Via this method, distance and

overlap between two graphs quantify the functional similarity be-

tween two corresponding sets of GO terms. The ratio of the intersec-

tion and the union of both graphs was then used to determine the

Jaccard similarity coefficient as an alignment accuracy metric (see

Supplementary Note 3). Lastly, the number of unique proteins was

determined based on each distinct Swiss-Prot ID the reads mapped

to, filtered by a minimum mapping quality score.

While mapping mock reads to the well annotated Swiss-Prot

database allows us to assay accuracy via the use of GO-term similar-

ity, it is a relatively small dataset with limited representation of both

functional and taxonomic breadth. A more ideal reference would be

the UniRef90 database which contains taxonomically diverse se-

quences clustered at 90% sequence identity. In a process identical to

above, we mapped DNA reads of three published WMS datasets

from different environments to a large subset of proteins within the

UniRef90 using PALADIN, and mapped these reads to the

nucleotide sequences corresponding to this protein set using BWA.

Results were then analyzed for all metrics except similarity, which

requires prior knowledge of all genomes within the read set.

2.3 Comparing performance
To contrast the differences in computational efficiency between

PALADIN and conventional protein alignment tools, we mapped a

dataset consisting of nearly 240 000 000 reads, and one consisting

of 1 000 000 reads against the UniRef90 database with PALADIN

using 28 cores on a high-end workstation. Using the smaller read

set, tests were run using three recently developed BLAST alterna-

tives: RAPSearch2 (Zhao et al., 2012), DIAMOND (Buchfunk

et al., 2015) and Lambda (Hauswedell et al., 2014). Due to obvious

constraints in execution time, we then further extracted 8000 of

these sequences and performed an alignment with BLASTX

(Altschul et al., 1990). Each test was performed using the same

hardware environment, thread count and resource availability.

Because local alignment algorithms execute in linear time, effective

alignment efficiency was calculated for each solution by first sub-

tracting the time involved in loading the indexed reference, then

dividing the remaining time by the number of reads processed.

To ensure performance was evaluated at equivalent levels of sen-

sitivity and accuracy, two metrics were calculated for each aligner.

The first metric linked each read PALADIN successfully aligned, fil-

tered by a mapping quality threshold, to the corresponding align-

ment reported by the comparison tool, noting the percentage of

where both detected proteins were in consensus. This ensured that

reads mapped with high probable accuracy matched between both

tools. The second metric demonstrated the relative lower quality of

the remaining alignments made by the comparison tool that were ei-

ther marked as low quality by PALADIN, or not successfully aligned

by PALADIN due to low scores or ORF detection removal. While a

direct comparison of mapping quality values was not possible as no

tested aligner populates the MAPQ field in the SAM output, the bit

score was instead employed to represent quality. The mean bit score

was noted for all consensus alignments, and for all alignments

PALADIN did not map, with the difference of the two representing

the base-2 magnitude of difference in quality. Lastly, this value was

converted into a base-10 order-of-magnitude score, illustrating the

lower alignment quality of reads left unmapped by PALADIN:

S ¼ log 2ða�bÞ (1)

where a and b represent the respective mean bit scores of the consen-

sus reads and the unaligned reads. In the case of unaligned reads,

only the highest scoring alignment per read was aggregated in calcu-

lating the average.

2.4 Applicability of prior work
In addition to the applications tested, many alternative alignment

tools with documented efficiency gains were considered, but did not

meet the criteria for comparison. The most common attribute re-

stricting read mappers was an inability to query nucleotide se-

quences against degenerate or protein references. Similarly, though

many BLAST competitors are available, most do not allow for dir-

ectly contrasting performance. USEARCH and UBLAST (Edgar,

2010) are only provided for free as 32-bit applications, and are un-

able to index the UniRef90 due to database size. VSEARCH

(Rognes et al., 2016), documented as a competitor to USEARCH,

does not support amino acid sequences. BLAT (Kent, 2002) does

not support the BLASTX combination of 6-frame DNA queries

against protein references. PAUDA (Huson and Xie, 2014)

Fig. 2. PALADIN performance for the given range of minimum score thresh-

old values. Tests were performed by aligning the generated read set against

the UniProt SwissProt reference database. Performance is measured by nor-

malizing the percent of reads mapped, the similarity score, the average map-

ping quality and the number of unique proteins detected. As the maximal

generalized performance of all four metrics centers around the threshold

score of 15, this was used as the default parameter value in PALADIN.

Variations to the score threshold were shown to have a consistently larger

impact on performance than other alignment parameters
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internally maps nucleotide sequences via Bowtie2 (Langmead and

Salzberg, 2012) and does not perform true protein alignment (see

Supplementary Note 4).

3 Results

3.1 Nucleotide alignment versus protein alignment
As expected, when mapping reads to the genomes they were derived

from during the positive control phase, PALADIN, NovoAlign and

BWA all map with high accuracy, yielding respectively 93.39%,

91.65% and 86.23% of these reads correctly mapped (Table 1).

Similarly, all three aligners reported high mapping quality scores,

further suggesting correct alignment. While both PALADIN and

BWA also aligned the majority of reads, the poor performance of

NovoAlign for this metric appears to suggest that while it accepts

degenerate bases in the reference, a penalty is incurred during align-

ment due to ambiguous IUPAC characters.

When we tested the ability of PALADIN to map mock-

metagenomic reads to the Swiss-Prot database, it detected 7855

unique proteins compared to 6314 (BWA) and 2265 (NovoAlign).

Additionally, both percent of reads mapped and similarity scores

were higher in PALADIN (Table 2). While NovoAlign did score

higher in average mapping quality, this was aggregated across a dra-

matically smaller percentage of mapped reads, at 0.56%. Similar

patterns in detected protein counts and mapped percentages were

also found in all three empirical sets (Table 3). These results suggest

that mapping in protein space as implemented in PALADIN is a

more accurate method of establishing a functional profile than exist-

ing nucleotide solutions.

3.2 PALADIN versus protein aligners
Lastly, the difference in performance between PALADIN and the

four conventional protein alignment tools was especially significant.

In regard to the smaller dataset, PALADIN completed execution in

the least amount of time, mapping 1 000 000 reads in approximately

7 min (Table 4). The next fastest, DIAMOND, finished execution in

nearly 52 min. During the full test, PALADIN completed mapping

the set of 240 000 000 reads over a period of 31 h for an efficiency of

approximately 128 000 reads/min. Conversely, BLASTX aligned its

subset of 8000 reads in 8.5 h with an efficiency of about 16 reads/

min. Given the linear time complexity associated with BLASTX, we

estimate that an execution run against the full dataset would take

about 29 years, approximately 8000 times longer than PALADIN.

Accuracy tests also yielded consistent results between PALADIN

and the conventional protein aligners (Table 5). For each read

PALADIN mapped with high quality, all four tools aligned to the

matching protein consistently, with consensus ranging from 96% to

over 99% (see Supplementary Note 5). For reads reported by

PALADIN as mapping with low quality, or those left unmapped, the

four tools produced alignments with orders-of-magnitude worse

mean bit scores than the consensus alignments, ranging up to a mag-

nitude of 14.33 in the case of Lambda. Taken together, these metrics

illustrate PALADIN’s significant performance gains while continuing

to maintain comparable accuracy with other protein alignment tools.

3.3 Limitations
Though results suggest that PALADIN is more effective than nucleo-

tide read mappers at constructing functional profiles, this is inher-

ently at the cost of taxonomic identification sensitivity. The effect of

translating nucleotides to corresponding amino acids results in a loss

of information between synonymous sequences, increasing ambigu-

ity in taxonomic differentiation. Secondly, as this underlying strat-

egy employs pairwise alignment and relies on amino acid sequence

similarity, PALADIN is not well-suited for detecting remote

Table 1. Establishing a positive control

BWA NovoAlign PALADIN

Reads mapped % 96.02 36.39 98.00

Correctly mapped % 86.23 91.65 93.39

Mapping quality (60) 58.67 59.84 59.11

Detected proteins 20461 21889 22127

Positive control was established by aligning the simulated reads against the

coding regions of the original six test genomes. Percentage of reads correctly

mapped and mapping quality were used to demonstrate algorithm and

method correctness. Quality scores are calculated using the Phred scale, with

60 representing the highest level of confidence.

Table 2. Mapping efficiency against filtered Swiss-Prot

BWA NovoAlign PALADIN

Reads mapped % 19.79 0.56 25.65

Similarity index 0.81 0.81 0.85

Mapping quality (60) 25.21 54.51 25.88

Detected proteins 6314 2265 7855

Mapping efficiency against the filtered Swiss-Prot database using simulated

reads. Detected proteins were filtered for reads with 20 or greater mapping

quality scores. Results showed an improvement in both quantity and func-

tional accuracy when aligning in protein space with PALADIN.

Table 3. Detected proteins mapped against the UniRef90

Type Project BWA PALADIN

Lung Cystic Fibrosis Metagenome 60 296 40 251*

Gut HMP Core Microbiome 175 448 190 947

Soil Merlot Microbiome 7921 11 792

Number of proteins detected for three empirical read sets mapped against the

UniRef90: Lung (BioProject:PRJNA71831), Gut (BioSample:SAMN00037421)

and Soil (MG-RAST:4520320.3), when filtered for reads with 20 or greater

mapping quality scores. Note, the lower performance of PALADIN for the lung

set is a result of the proteins being underrepresented in the filtered version of the

UniProt90. Mapping against the full UniRef90 yielded 66 592 proteins

detected.

Table 4. Performance comparison for large read sets

Read Count Aligner Effective Time (HMS) Aligns/min

1 000 000 PALADIN 00:07:10 139 535

1 000 000 RAPSearch2 32:54:59 506

1 000 000 DIAMOND 00:51:42 19 342

1 000 000 Lambda 04:46:23 3492

240 000 000 PALADIN 31:15:02 127 998

240 000 000 BLASTX 250 000:00:00 16

Performance evaluation of the three applicable BLAST competitors was

performed against a 1 000 000 read subset of the full 240 000 000 read set.

To estimate the linear portion of alignments per second, the effective time re-

flects the difference between total time and the constant setup time of loading

the indexed reference. Due to obvious time constraints in the case of the

BLASTX comparison, alignment rate was calculated using an 8000 read sub-

set, from which the effective time was estimated. For this final test, the

PALADIN was given the entire 240 000 000 set as a query. In both tests,

PALADIN outperformed all other alignment tools.
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homologies where structural similarity exists between highly diver-

gent sequences.

4 Implementation

In order to leverage the stability and extensive capabilities of a pro-

ven application, we elected to make use of the BWA codebase for

PALADIN’s underlying alignment framework(Fig. 1). In particular,

the Super-Maximal Exact Matches (SMEM) algorithm was ex-

tended into protein space via modification of many of the internal

routines, including the Burrows-Wheeler Transform construction

process, substitution matrix generation, mapping quality probability

calculations, data packing, character occurrence counting, param-

eter values and other related data structures. The resulting code

allows both seeding and Smith-Waterman extension to operate on

an input set consisting of amino acid IUPAC characters, and not the

standard nucleotide character set.

Additionally, the holistic end-user experience of PALADIN was

examined, and a number of novel features were introduced to accommo-

date a design that allows for all stages of the internal protein alignment

pipeline to occur seamlessly without manual intervention. First, we

added ORF detection prior to the alignment phase. During this stage,

PALADIN searches all six frames of each read sequence for the existence

of stop codons within a minimum length threshold, as specified by an

absolute length or relative percentage of total length. If no stop codon is

found within at least one frame, the read is considered to originate from

a coding region. Reads with stop codons present in all frames are dis-

carded without further analysis for efficiency. Surviving reads are then

translated for each of the six possible reading frames into the corres-

ponding amino acid sequences, and sent for alignment. The highest scor-

ing frame’s protein sequence is kept for final output, and the five

remaining are discarded. By post-processing all frames in this manner,

the cascading effect of potential frameshift mutations and sequencing

errors is mitigated in cases where indels appear early or late in the read,

allowing the majority of the frameshifted sequence to match the refer-

ence. In scenarios where repeated indel history has led to multiple fram-

ing errors, lower alignment scores are appropriate as these sequences are

less likely functionally similar to the reference sequence in question.

Following the alignment phase PALADIN produces a standard

Sequence Alignment Map (SAM) output along with a detailed tab-

delimited report derived from the reference database (SwissProt and

UniRef90 are currently supported). The software aggregates and cal-

culates abundance, via sorting and grouping successfully aligned

reads against the mapped UniProtKB ID, calculates average map-

ping quality for each entry, then batch submits these entries to the

UniProt REST API (see Supplementary Note 6), requesting

additional information pertaining to each identified Uniprot entry,

including protein, gene, pathway features, gene ontology, organism,

reviewed status, database cross-references, etc. The returned results

are compiled into a tab-delimited report, and are provided alongside

the accompanying SAM file.

Should the user wish to make use of a reference other than a

UniProt database, PALADIN also supports indexing three types of ref-

erences. A nucleotide reference and accompanying GFF annotation

may be provided, in which case the software extracts the CDS features

to create the index. A transcriptome nucleotide reference may be pro-

vided, in which all sequences are treated as coding when creating the

index. Lastly, a protein reference may be provided, in which all se-

quences are again treated as coding when creating the index.

Because PALADIN is constructed from the BWA codebase, it sup-

ports many of the same alignment parameters and corresponding com-

mand line arguments, including seed length, scoring related parameters

and SAM output options. However, since alignment in protein space

operates under a different statistical environment than nucleotide

space, some of the default values, such as seed size, minimum threshold

score (Fig. 2), clipping penalty and gap opening penalties were changed

in response to the higher local performance maxima detected during

extensive parameter testing (see Supplementary Note 7).

5 Conclusion

In summary, we present PALADIN, a tool for accurate functional char-

acterization of metagenomic samples that improves over existing nu-

cleotide and protein alignment solutions, demonstrating an orders-of-

magnitude increase in speed when compared to the latter. This signifi-

cant improvement in efficiency affords researchers unprecedented op-

portunity to gain detailed and novel insight into microbial

communities. Additionally, by constructing this approach upon a

widely used alignment algorithm, reliability and usability are inherently

increased, which promotes faster adoption and easier incorporation

into existing pipelines. Finally, the reduction in required computational

resources creates a more cost-effective solution, thereby increasing via-

bility of analysis capabilities in environments where economic pressures

are present. Given these aspects, PALADIN may potentially aid in any

number of evolving fields that depend on functional characterization,

including personalized medicine, biodefense, environmental remedi-

ation, transcriptomics and the study of emerging pathogens.
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