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Abstract: Aging is associated with disturbances in iron metabolism and storage. During 

the last decade, remarkable progress has been made toward understanding their cellular and 

molecular mechanisms in aging and age-associated diseases using both cultured cells and 

animal models. The field has moved beyond descriptive studies to potential intervention 

studies focusing on iron chelation and removal. However, some findings remain 

controversial and inconsistent. This review summarizes important features of iron 

dyshomeostasis in aging research with a particular emphasis on current knowledge of the 

mechanisms underlying age-associated disorders in rodent models. 
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1. Introduction  

Iron is an essential nutrient. Disturbances of iron metabolism may have deleterious consequences in 

severe pathological conditions such as cardiovascular diseases [1–3], diabetes [4], cancer [5–7]  

and neurodegenerative diseases [8–12]. It has been widely documented that aging is associated with 

dyshomeostasis of iron metabolism and regulation in both rodents [13–25] (Table 1) and  

OPEN ACCESS



Int. J. Mol. Sci. 2012, 13             

 

 

2369

humans [26–32]. The elderly are more prone to becoming anemic [33–37], which adversely affects 

muscle strength [38], physical performance [39], cognition [40] and longevity [41]. In contrast,  

age-related iron overload is also increasingly being recognized as a public health concern [42–45]. 

Despite the prevalence and adverse health effects associated with these disorders, the mechanisms are 

still not well defined and many questions remain to be answered [2,46,47]. 

2. Impaired Iron Status with Age in Rodent Models 

2.1. Organ-Specific Changes in Iron Content with Age 

During the last decade, a number of studies have documented age-related iron accumulation in 

rodents (Table 1). One of the earliest studies (by Massie et al. [20]) revealed age-related changes in 

iron content in young (1.5–7 months), middle-aged (21 months) and aged (30 months) male C57BL/6J 

mice. They showed that total iron concentrations were significantly elevated in the liver, heart, kidney 

and brain of aged animals. In further support of the finding of iron dyshomeostasis in aging,  

Sohal et al. [24] reported that there was an age-associated increase in non-heme iron levels in liver, 

kidney, brain and heart, which, however, is independent of the increases in redox-active iron 

determined using bleomycin-detectable iron assay. In addition, the observation in the same study that 

life-long 40% caloric restriction had no effect on iron levels in heart and brain and even exacerbated 

iron accumulation in liver and kidney does not support the hypothesis that labile iron plays an essential 

role underlying the age-associated increase in oxidative damage. On the contrary, a successful attempt 

to ameliorate age-related iron accumulation by life-long 40% caloric restriction was published by Cook 

and Yu [19] in 1998. The results of their study in male Fischer 344 rats showed a remarkable  

age-related increase in non-heme iron levels in liver, kidney and brain of animals fed ad libitum. Their 

finding that caloric restriction markedly mitigated iron accumulation in multiple tissue systems of aged 

animals as well as our recent study [17] suggests that caloric restriction beneficially modulates iron 

dyshomeostasis.  

Since iron accumulation is widely accepted as a feature of the aging process particularly in  

post-mitotic tissues by emerging research in the intervening decade [14–18,21,22,25], a substantial 

research effort has been directed at exploring potential iron chelation therapies. Recently, deferiprone 

and deferasirox emerged as promising orally active iron-sequestering agents [23,48,49].  

Arvapalli et al. [21] reported that deferasirox, administrated at a dose of 100 mg/kg body weight on 

alternate days for 6 months, was effective in reducing total iron levels in the heart and liver as well as 

attenuating cardiomyocyte apoptosis in 27-month-old Fischer 344 x Brown Norway rats. However, 

limited information is provided in the same study to warrant that the use of chelator did not exacerbate 

the low serum ferritin usually observed in aged animals. A non-toxic iron chelator or potential 

treatment strategy that locally removes excess iron in particular tissues without affecting systemic iron 

utilization, storage and transport, may represent an ideal therapeutic intervention.  
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Table 1. Summary of studies reporting organ-specific changes in iron content with age in rodents. 

Reference 
Species 

(sex) 
Young 

(months) 

Middle-
aged 

(months)

Old 
(months)

Median 
survival 

age 
(months)

Total iron or 
non-heme 

iron 

Other 
measures 

Increase 
with age 

Decrease with 
age 

No 
change 

Intervention 

Massie  
et al.,  

1983 [20] 

C57BL/6J 
mice (M) 

1.5–7 21 30 27 [50] Total iron *  

Liver, 
Kidney 
Brain 
Heart 

   

Takeda  
et al.,  

1996 [51] 

Wistar rats 
(F) 

0.75, 6 
  

29 [52] Total iron **  

Brain 
Lung 
Heart 
Liver 

Spleen 
Kidney 
Muscle 

   

Cook and 
Yu, 1998 

[19] 

Fischer 
344 rats 

(M) 
6 12 24 24 [50] 

Non-heme 
iron # 

 
Liver 

Kidney 
Brain 

  
Caloric 

restriction 

     
 

 
Hemoglobin

 
Kidney 

Liver, 
Brain  

Sohal  
et al.,  

1999 [24] 

C57BL/6 
mice (M) 

4, 8.5 17 27, 30 27 [50] 
Non-heme 

iron # 
 

Liver 
Kidney 
Brain 
Heart 

  
Caloric 

restriction 

Ahluwalia 
et al., 

2000 [13] 

Lewis rats 
(M) 

2–3 8–10 20–22 24 [53] 
Non-heme 

iron # 
 

 

Liver, 
Spleen, 

Femur marrow 
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Table 1. Cont. 

Reference 
Species 

(sex) 
Young 

(months) 

Middle-
aged 

(months)

Old 
(months)

Median 
survival 

age 
(months)

Total iron or 
non-heme 

iron 

Other 
measures 

Increase 
with age 

Decrease 
with age 

No 
change 

Intervention 

     
 

 

Hemoglobin, 
Hematocrit, 
Plasma iron 

 
Blood 

  

Altun  
et al.,  

2007 [14] 

Sprague-
Dawley 
rats (M) 

4 
 

30 21 [54] 
Non-heme 

iron # 
 

Skeletal 
muscle    

     
 

 
Transferrin 

Skeletal 
muscle    

Jung  
et al., 

2007 [22] 

Fischer 
344 rats 

(M) 
6 

 
24–26 24 [50] 

Non-heme 
iron # 

 
Skeletal 
muscle    

     
 

 
Ferritin 

Skeletal 
muscle    

     
 

 
TfR 

 
Skeletal 
muscle   

Xu et al., 
2008 [17] 

F344xBN 
rats (M) 

8 18 29, 37 34 [50] 
Non-heme 

iron # 
 

Skeletal 
muscle 
Liver 

 
 

Caloric 
restriction 

     
 

 
Hemoglobin 
Hematocrit 

 Blood 
  

Hofer  
et al.,  

2008 [16] 

F344xBN 
rats (M) 

6 
 

32 34 [50] 
Non-heme 

iron # 
 

Skeletal 
muscle    

     
 

 
Free iron 

Skeletal 
muscle    
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Table 1. Cont. 

Reference 
Species 

(sex) 
Young 

(months) 

Middle-
aged 

(months)

Old 
(months)

Median 
survival 

age 
(months)

Total iron or 
non-heme 

iron 

Other 
measures 

Increase 
with age 

Decrease 
with age 

No 
change 

Intervention 

     
 

 
TfR 

Skeletal 
muscle    

Seo et al., 
2008 [18] 

F344xBN 
rats (M) 

8 18 29, 37 34 [50] 
Non-heme 

iron # 
 

Muscle 
mitochondria

 
  

Arvapalli 
et al., 

2010 [21] 

F344xBN 
rats 
(M) 

6 
 

27 34 [50] Total iron **  
Heart 
Liver   

Deferasirox 
100 mg/kg 
BW for 6 
months 

Bulvik  
et al., 

2011 [25] 

Wistar rats 
(F) 

2 
 

24 29 [52] 
Ferritin-

bound iron 
 

Spleen, 
Liver, 

Tongue, 
Sternohyoid 

 
Esophagus

 

Xu et al. 
2011 [15] 

F344xBN 
rats (M) 

6 
 

32 34 [50] 
Non-heme 

iron # 
 

Skeletal 
muscle    

     
 

 
TfR 

 
Skeletal 
muscle   

     
 

 
DMT1 

  
Skeletal 
muscle 

 

     
 

 
Zip14 

  
Skeletal 
muscle 

 

Abbreviation: F344xBN rats, Fisher 344 x Brown Norway rats; DMT1, divalent metal transporter-1; TfR, transferrin receptor; (M), male, (F), female. * measured 
by atomic absorption spectroscopy; ** measured by inductively coupled plasma emission spectrometry; # measured by colorimetric method. 
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In contrast to the above-mentioned studies, Ahluwalia et al. [13] showed that total non-heme iron 

levels in the liver, spleen, and bone marrow of Lewis rats declined with age. The conflicting study 

findings may stem from several factors involved in rodent aging research, such as strain, species, diets, 

and life stages of animals.  

2.2. Life Stage, Species, Sex and Strain Differences across Studies 

Though research scientists have made considerable progress in defining rodent life stages across 

species and strains, crucial definitional problems remain unsolved. It could be considered as a central 

challenge in investigating age-associated changes in iron homeostasis and metabolism primarily 

because the average lifespan varies greatly depending on sex, strain, and breeding system.  

Outbred strains, such as Sprague Dawley and Wistar rats, have been widely used to investigate iron 

homeostasis and metabolism in aging research, while C57BL/6 mice, Fischer 344 rats, and Lewis rats 

as inbred strains are excellent models as well. Recently, Fischer 344 x Brown Norway rat, a F1 hybrid 

strain, has been proposed as a potential model for aging since it most closely reproduces healthy aging 

in humans [55,56]. A comparative study on the muscle mass and contractile properties between 

Fischer 344 x Brown Norway and Fischer 344 rats by Rice et al. [55] indicated that there were age-

associated decreases in both of the two sub-populations of muscle fibers in Fischer 344 x Brown 

Norway rats, suggesting that the F1 hybrid strain is a better model of sarcopenia than Fischer 344. 

Besides the differences in age-associated physiological or pathological alterations, outbred and F1 

hybrid animals exhibit hybrid vigor with long lifespans. The median survival ages for male and female 

Fischer 344 rats are 24 and 26 months, respectively; however it extends to 34 months for male and 30 

months for female Fischer 344 x Brown Norway rats [50]. In the basic science of aging, two or three 

age cohorts were commonly selected and referred to representative life stages as young and old 

animals or young, middle-aged, and old animals, which may dramatically limit the power of 

investigations and the universality of conclusions. If indeed iron is a contributing factor in the aging 

process, a significant alterations in iron levels or metabolism between young and aged animals will be 

detectable at the point that iron dyshomeostasis has occurred in the study population and remains 

relatively stable. Given the fact that aged rats and mice past the 25% survival age are more prone to 

underlying age-associated diseases and are not a good research model of healthy aging for most 

purposes, the cut-off age at which point iron status has substantially altered while the incidence of 

pathologies is relatively low is crucial in aging research using rodent models. 

Table 1 lists the animal studies reporting organ-specific changes in iron content with age in rodents. 

The median survival age of each strain has been employed to estimate and compare animal life stages 

across studies. Aged cohorts at their median survival ages have been included in these studies except 

for the one provided by Takeda et al. [51], who reported an age-related iron accumulation using young 

(3-week-old) and mature (6-month-old) Wistar female rats. However, other investigators using male 

Fischer 344 [19] and male Fischer 344 x Brown Norway rats [17] indicated that iron levels in liver 

remained unchanged until late middle age. Recently, Hahn et al. [13,57] reported age- and  

sex-dependent changes in tissue iron levels among C57BL/6, DBA/2J, and BALB/c mouse strains and 

further confirmed that there were age-dependent and sex-specific changes in mouse tissue iron by 
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strain. Taken together, these observations suggest the onset of impaired iron status in rodent models 

highly depends on sex and strain.  

2.3. Age-Associated Decrease in Heme Iron Levels vs. Increase in Non-Heme Iron Levels  

Measurements of iron levels in rodent models usually fall into two categories: total iron determined 

by spectrometry techniques, such as atomic absorption spectroscopy [20] or inductively coupled 

plasma emission spectrometry [21,51], and non-heme iron measured by colorimetric methods [13–19]. 

Total iron includes both heme and non-heme iron. The first indication that heme biosynthesis declines 

with age was provided by Bitar and Weiner [58], who examined age-related changes in heme and 

heme proteins in male Sprague-Dawley rats. This finding was further confirmed by studies with 

emphasis on heme deficiency in both neurodegenerative disorders [59–62] and normal aging [19].  

In considering the findings of age-associated decline in heme biosynthesis and increases in non-heme 

iron levels, total iron measurements per se may not fully reflect iron dyshomeostasis in aging research, 

in particular when the conclusion of unaltered iron levels over time was reached using  

spectrometry techniques. 

2.4. Ferroportin—The Only Way out for Cellular Iron 

Cellular iron balance is coordinated by iron uptake, storage and export [63–65]. Iron cannot diffuse 

through cellular membranes unassisted. Either a receptor-mediated or non-receptor-mediated pathway 

is required to facilitate cellular iron import into the cytoplasm (Figure 1). The primary route of cellular 

iron acquisition is through receptor-mediated endocytosis of transferrin (Tf) [66]. Cells take up Tf-bound 

iron in proportion to their cell-surface expression of transferrin receptor (TfR) [67]. Divalent metal 

transporter-1 (DMT1), a ferrous iron transporter, can import iron into the cell, a mechanism which is 

essential for intestinal uptake of inorganic sources of dietary iron [65]. Zip14, a member of the SLC39 

metal-ion transporter family, has also been shown to mediate iron uptake by cells [68,69]. Cellular iron 

export is mediated by ferroportin, the only known iron exporter in mammals [70]. 

Ferroportin is a transmembrane protein expressed on the surface of absorptive enterocytes, 

macrophages, hepatocytes, and placental cells [70]. Tissue-specific ablation of ferroportin results in 

embryonic lethality [70]. McKie et al. [71] reported that ferroportin was weakly expressed in kidney, 

liver, and testis and absent in brain, heart, lung and skeletal muscle of mice fed on a normal diet [71]. 

A recent study on muscle iron metabolism in Fischer 344 x Brown Norway rats by us [15] further 

supported the finding that the absence of ferroportin in skeletal muscles significantly contributes to the 

iron accumulation in aged animals. Thus, the lack of a cellular iron export mechanism in post-mitotic 

tissues could be one of the essential factors contributing to iron accumulation in aging. 
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Figure 1. Cellular labile iron pool. The transferrin-transferrin receptor (Tf-TfR) pathway is 

the primary route of cellular iron acquisition [67]. Cells assimilate iron when Fe3+-Tf binds 

to TfR at the cell surface, and the complex is internalized into endosomes. Endosomal 

acidification promotes iron to dissociate from Tf, and the metal is then reduced to Fe2+ and 

transported into the cytosol by the transmembrane protein divalent metal transporter 1 

(DMT1) and Zip14. The non-Tf-bound iron pathway, the shaded area, appears mainly 

during states of iron overload. Much of the iron normally assimilated by cells is destined to 

the mitochondria via mitoferrin, the site of heme and iron-sulfur cluster biosynthesis. Iron 

is exported from the mitochondria in the form of iron-sulfur clusters or heme. Export of 

iron-sulfur clusters involves ABCB7. Cells export iron through ferroportin. The absence of 

ferroportin in skeletal muscles and other post-mitotic tissues may result in iron 

accumulation over time. 

 

2.5. Animal Diets 

Although iron balance is tightly regulated at the site of absorption (duodenum) [72], rodent diets 

with different iron levels may alter iron homeostasis across studies. The AIN-76 diet (American 

Institute of Nutrition, 1977) or AIN-93 [73], a substitute for the original AIN-76 diet to improve the 

performance of animals, is a widely used purified diet for laboratory rodents formulated with 35 mg 

iron/kg diet, an amount considered to meet the minimum requirement of iron for normal growth and 

hematopoiesis [74]. Natural-ingredient and typical rodent diets, which usually contain 198 to 270 mg 

iron/kg diet, have also been used to provide good health and reproduction in laboratory rodents [74,75]. 

In early 1970s, Sorbie and Valberg [76] observed that 25 to 100 mg iron/kg diet was associated with 

low iron storage in liver of male C57BL/6J mice and that higher concentrations may be necessary for 

reproduction. A recent study published by Cooksey et al. [77] also indicated that the mice on the 35 

mg·iron/kg diet did exhibit remarkable decreases in hepatic iron and serum ferritin compared with 

mice on the 500 mg·iron/kg diet. In agreement with these observations, a long-term study on AIN-93M 



Int. J. Mol. Sci. 2012, 13             

 

 

2376

(maintenance formulation) diet by Ahluwalia et al. [13] showed that iron status and stores in liver, 

spleen and femur marrow decline with age in male Lewis rats. Despite the low iron stores in animals 

fed AIN purified diets, Jung et al. [22] demonstrated that non-heme iron and ferritin levels significantly 

increased with age in the plantaris muscle of male Fischer 344 rats during short-term feeding with 

AIN-93M diet, suggesting that skeletal muscles are extremely vulnerable to iron accumulation in 

aging. Long-term studies on dietary modification or adjustments are warranted to create an optimal 

diet containing a maintenance-level of iron that is suitable for rodent models at different life stages. 

3. Iron Accumulation and Labile Iron 

Cells maintain a pool of available labile iron [78] (Figure 1) identified by several terms, including 

“transition iron”, “free iron”, “low-molecular-weight iron”, “redox-active iron” or “chelatable iron” [79], 

which exists in dynamic equilibrium with various cellular components. Optimal function of cells highly 

depends on the maintenance of cellular iron levels [80]. When iron prevails over cellular iron 

sequestration, labile iron may be released from either loosely bound iron proteins or storage sites, 

particularly under conditions of cellular stress [81]. Labile iron is highly reactive and has the potential 

to catalyze the formation of harmful reactive oxygen species, ultimately leading to oxidative damage 

and cell death [82,83]. In light of previous studies showing catastrophic cellular damage by labile iron, 

Simunek et al. [84] showed that H2O2-induced collapse of mitochondrial membrane potential was 

completely prevented by pre-treatment with the lipophilic iron chelator, salicylaldehyde isonicotinoyl 

hydrazone (SIH), in cultured H9c2 cardiac myoblasts, suggesting that hydrogen peroxide per se is not 

harmful, but it may become highly toxic if labile iron coexists. Furthermore, the observation that iron 

chelation by an iron chelator, deferoxamine, mitigated immobilization-induced muscle loss in male 

Wistar rats implies that labile iron could be one of several potential contributors to accelerate muscle 

atrophy during prolonged inactivity [85].  

4. Iron Dyshomeostasis in Age-Associated Disorders in Humans 

Clinical and epidemiological studies have shown that iron plays important roles in multiple aging-

associated disorders, such as cardiovascular diseases [1,2], inflammatory diseases [86], 

neurodegenerative diseases [10,11], and cancer [5–7,87]. Salonen et al. [88] reported that men with 

serum ferritin greater than or equal to 200 µg/L had a 2.2-fold increased risk of acute myocardial 

infarction compared with men with a lower serum ferritin at age of 42 to 60 in eastern Finland. In 

agreement with the epidemiological finding, Tuomainen et al. [89] demonstrated that men with high 

body iron stores were at a 2- to 3-fold increased risk of the first acute myocardial infarction. In healthy 

subjects [90] and anemic patients [91], the level of serum ferritin showed an age-related tendency to 

increase. Recently, Tull et al. [92] indicated that these subjects are likely to have anemia of chronic 

diseases with adequate iron stores and unable to utilize iron from storage sites. Therefore, the most 

common cause of anemia in the elderly is anemia of chronic disease, which has been identified as 

impaired iron status rather than iron deficiency.  

Age-associated decline in hematologic variables has been the subject of extensive investigation in 

animal models [13,17,93–95] and humans [28,32,36,96]. A number of studies have shown that aging is 

associated with an erythropoietic decline [93,97] as well as a reduced reserve capacity in the 
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hematopoietic system [98–100]. However, an early study reported by Boggs and Patrene [94] using 

B6D2 F1 female mice argued that an expanded plasma volume in aged animals substantially 

contributed to the decrease in hematocrit, whereas circulating red cell mass remained unchanged in 

aged animals, suggesting an age-related “dilutional” anemia. In a follow-up study using a 

mathematical model of erythropoiesis, Loeffler and Pantel [101] revealed that the lower hematocrits in 

aged mice were due to plasma volume expansion, rather than changes in red cell mass between young 

and aged animals. A clinical study of dietary iron intake and excretion in healthy elderly subjects aged 

70 to 85 years indicated that hemoglobin levels were within the established reference range for  

adult individuals. 

It has been proposed that age-related anemia may be associated with increased hepcidin levels in 

response to elevated interleukin-6 levels [102]. Hepcidin is the principal regulatory hormone produced 

by hepatocytes in response to iron loading [103] or inflammation [104]. Under iron overload conditions, 

hepcidin downregulates ferroportin expression in enterocytes and macrophages, thereby reducing 

serum iron levels via decreasing intestinal iron absorption and macrophage iron recycling [105]. 

Despite the important role of hepcidin in systemic iron homeostasis, quantification of plasma hepcidin 

has proved to be technically difficult. The development of the first validated serum enzyme-linked 

immunosorbent assay (ELISA) by Ganz et al. [106] has allowed significant advances in studies of age-

associated alterations in plasma hepcidin levels. A recent study using the ELISA assay in anemic 

patients by Lee et al. [107] showed that anemia in the elderly was not associated with increased plasma 

hepcidin levels. The observation in the same study that both the mean and median hepcidin levels were 

lower in anemic elderly patients suggests that elevated plasma hepcidin levels may be secondary to 

age-associated pathology, acute or chronic infections and inflammation. The findings further support 

the conclusion reported by Tull et al. [92] that aging is associated with impaired iron status, a most 

common cause of anemia in the elderly. 

5. Iron and Mitochondrial Function in Aging 

The mitochondrion is the central site of heme and iron-sulfur cluster biosynthesis [108]. Recent 

studies in both yeast and mammalian systems have shown that mitochondrial iron increase with age, in 

particular under conditions of cellular stress, which may be a potential causative factor in age-related 

mitochondrial dysfunction [18,109–111]. Rauen et al. [79] have developed a selective mitochondrial 

iron fluorescent probe, rhodamine B 4-[(2,20-bipyridin-4-yl)aminocarbonyl]benzyl ester (RDA), which 

shows that labile iron was about 16.0 µM in rat hepatocyte mitochondria. A study on muscle 

mitochondrial function in aged rats from our group [18] showed that aging was associated with 

elevated mitochondrial non-heme iron levels in skeletal muscle, which is significantly correlated with 

mitochondrial susceptibility to permeability transition pore opening, an important factor in the 

pathogenesis of cell death. Moreover, Veatch et al. [109] established a link between defects in iron-

sulfur cluster biosynthesis and genomic instability in yeast aging research. It has been shown that yeast 

cell aging was associated with an impairment of mitochondrial DNA integrity, which in turn affects 

the transport efficiency of iron-sulfur proteins between cytoplasm and mitochondria. Furthermore, 

impaired mitochondrial iron-sulfur biosynthesis contributed to increased cellular iron acquisition, iron 

regulon activation and mitochondrial iron accumulation. These observations highlight the mechanism 
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of altered iron homeostasis in mitochondria, which may cause multiple defects in mitochondrial heme 

and iron-sulfur cluster biosynthesis as well as iron accumulation.  

6. Future Research 

Age-associated iron dyshomeostasis is a process of progressive changes in multiple organ systems. 

Much research effort is directed at developing therapeutics or interventions to combat these changes. 

Some impressive successes have been achieved in non-mammalian models using iron chelators to 

mitigate iron overload and iron-related disorders, such as Alzheimer’s disease [112,113], Parkinson’s 

disease [114,115], Friedreich’s ataxia [116,117] and retinal disease [118,119]. A major concern arises 

from iron chelation therapy against the aging process is that compounds available to date cannot 

specifically target individual organs or systems. This may dramatically limit the use of iron chelators in 

elderly persons, in particular when considering the finding that altered iron status is characterized by 

adequate iron stores and low hematologic variables in both rodent [17] and human studies [92,120].  

A major research challenge will be to develop novel, safe and feasible interventions that mitigate 

age-associated iron dyshomeostasis. Indeed, calorie restriction has been shown to be effective in 

modulating the age-associated iron accumulation in rat muscle, liver, brain and kidney [17,19,121]. 

Late-onset caloric restriction has proven to be less effective [122,123]. Dietary compounds that inhibit 

iron absorption (e.g., polyphenols in tea and coffee [124,125]) may offer alternative approaches to 

mitigate iron accumulation during the aging process. Future research is warranted to test dietary 

interventions.  

7. Conclusions 

In summary, impaired iron status and iron dyshomeostasis are associated with organ-specific 

changes in iron levels in multiple organ systems with age. Lack of ferroportin expression, at least in 

part, exacerbates iron accumulation over time in various tissues, such as skeletal muscle. Future 

research can be directed to late-onset therapeutics or interventions for modulating impaired iron status 

in aging. 
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