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Cerenkov luminescence tomography (CLT) is a promising non-invasive optical imaging
method with three-dimensional semiquantitative in vivo imaging capability. However, CLT
itself relies on Cerenkov radiation, a low-intensity radiation, making CLT reconstruction
more challenging than other imaging modalities. In order to solve the ill-posed inverse
problem of CLT imaging, some numerical optimization or regularization methods need to
be applied. However, in commonly used methods for solving inverse problems, parameter
selection significantly influences the results. Therefore, this paper proposed a probabilistic
energy distribution density region scaling (P-EDDRS) framework. In this framework,
multiple reconstruction iterations are performed, and the Cerenkov source distribution
of each reconstruction is treated as random variables. According to the spatial energy
distribution density, the new region of interest (ROI) is solved. The size of the region
required for the next operation was determined dynamically by combining the intensity
characteristics. In addition, each reconstruction source distribution is given a probability
weight value, and the prior probability in the subsequent reconstruction is refreshed. Last,
all the reconstruction source distributions are weighted with the corresponding probability
weights to get the final Cerenkov source distribution. To evaluate the performance of the
P-EDDRS framework in CLT, this article performed numerical simulation, in vivo
pseudotumor model mouse experiment, and breast cancer mouse experiment.
Experimental results show that this reconstruction framework has better positioning
accuracy and shape recovery ability and can optimize the reconstruction effect of
multiple algorithms on CLT.
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1 INTRODUCTION

Cerenkov radiation (CR) is a physical phenomenon that occurs
when a particle traveling through an object travels faster than the
speed of light in the medium (1). The first radiographic imaging
using CR was made in 2009 and is known as Cerenkov
luminescence imaging (CLI) (2). Since its inception, CLI has been
widely used in surgical guidance, drug development, endoscopic
imaging, tumor detection, and other fields (3–7). The most
significant advantage of CLI over other optical imaging methods
is that it can use many approved radioactive sources for clinical
imaging (8–10). However, CLI is a planar imaging method and
cannot obtain the depth information and three-dimensional (3D)
distribution of radioactive sources. Therefore, a new optical imaging
method, Cerenkov luminescence tomography (CLT), combined
with CLI and 3D anatomical imaging modality, has been
developed. Compared with CLI, CLT can obtain the internal and
external contour or boundary of biological tissues with the 3D
anatomical imaging modality and determine the 3D spatial
distribution of radioactive source in biological tissues (11–15).

However, the Cerenkov photon energy mainly concentrated
in the short-wavelength band with a high scattering in biological
tissues, which leads to the difficulty for CLT reconstruction (16).
Therefore, compared with bioluminescence tomography (BLT)
and fluorescence molecular tomography (FMT), CLT requires
more prior information constraints and more robust algorithms
to optimize its solution (17, 18). Therefore, researchers have
carried out a series of work in algorithms and feasible region
constraints for CLT reconstruction.

From the algorithm’s point of view, improving the current
reconstruction algorithm is a research focus, such as L1 norm
regularization (19), L2 norm regularization (11), LP(0<p<1) norm
regularization, and other regularization methods (12), that has been
used in the CLT field. Although these regularizationmethods can be
applied to CLT, they depend on the selection of regularization
parameters. In addition to regularization algorithms, there are other
areas of inverse problem algorithms; non-regularization methods
such as orthogonal matching pursuit (OMP) (20) do not require
regularization parameter selection, but they have poor performance
in CLT reconstruction.

From the perspective of the feasible region, some feasible region
iterative methods, such as iterative shrinking permissible region
(ISPR) (21), three-way decision (TWD) (22), and feature extraction
from the autoencoder (3), have already been applied to optical
molecular imaging. These methods constrain the solution space by
regions of interest (ROIs) to obtain better reconstruction results.
However, the current feasible region method has the following
shortcomings: first, the feasible region only shrinks and may lose
some nodes; second, the final reconstruction results are only affected
by the previous one, ignoring the intermediate process; and third,
errors in the iterative process will be passed to the subsequent
iterative methods, leading to polluted results. In general, most of the
reconstruction algorithms or strategies are limited by the weak
signal intensity of CR, which leads to the difficulty of solving the
inverse problem, or the parameter tuning of the reconstruction
algorithm itself needs to be carried out at a high cost. Fromwhat has
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been discussed above, many inverse problem algorithms or feasible
region strategies are challenging to apply to the CLT field.

To optimize the feasible region method in CLT and improve
the performance of traditional algorithms in CLT reconstruction,
this paper proposed a multilevel probabilistic energy distribution
density region scaling (P-EDDRS) framework for CLT. In this
framework, L2 norm error rate and cosine similarity were used to
evaluate the quality of each iteration reconstruction result, and
normalized weight was assigned to each reconstruction result
according to the evaluation. This normalized weight represents
the probability that the corresponding iteration result is the final
result. By this weight, the initial iteration reconstruction result
becomes a probabilistic result. Then, the probabilistic result is
regarded as random variables distributed in 3D space, and ROI
for the next iteration is divided according to the distribution
density of these random variables. Besides, to stabilize the rate of
ROI change, the formula proposed by Naser et al. was introduced
(23). After several iterations, all the initial reconstruction source
distribution and the corresponding normalized weight are
weighted to get the final Cerenkov source distribution.

To evaluate the performance of the P-EDDRS frame in CLT,
several groups of numerical simulations and in vivo experiments
were implemented. The optimized Lasso and Least Square QR-
factorization (LassoLSQR) algorithm based on L1 norm
regularization (24), Tikhonov regularization algorithm based on
L2 norm regularization (25), damped singular value decomposition
(DSVD) algorithm based on SVD (26), and OMP algorithm based
on matching pursuit (20)—these algorithms include regularization
algorithm and greedy algorithm—was used to evaluate the
performance of the framework combined with various
reconstruction algorithms. In addition, to compare this CLT
framework’s performance with those of other ROI methods, ISPR
and TWD methods are introduced (21, 22). The parameters of all
reconstruction algorithms and methods take their default values.
The results prove that the P-EDDRS framework for CLT can
combine various algorithms to reconstruct radioactive sources of
different sizes and shapes, which has higher applicability. In
addition, in vivo experiments show that the framework is still
reliable and stable in living animals.
2 METHOD

2.1 Inverse Problem
Most of the energy of CR is concentrated in the short wavelength
band, characterized by high scattering and low absorption in
biological tissues. So the diffusion approximation (DA) model
can be used as the mathematical basis to describe the Cerenkov
photon transport process in tissues. DA models with Robin
boundary conditions are often described as follows (27):

−∇ D(r)∇F(r) + ma(r)F(r) = S(r), r ∈ WF(x) + 2Fnd(x) = 0, x ∈ ∂W

D(r) = 1
3 · ½(1 − g) · ms + ma�−1

F = 1+Rf

1−Rf

8>><
>>:

(1)
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where F(r) denotes the Cerenkov photon flow rate at the point r
in the region W, ma and ms are the absorption coefficient and
scattering coefficient of a tissue, g is anisotropy factor, and D(r)
denotes the diffusion coefficient at position r. The symbol ∇ is
used for the differential operator of vector, ?W is the set of the
surface (boundary) points, and x is the point on the surface of a
tissue. Rf is the internal indicator of refraction of the tissue, and n
is the unit normal vector whose direction is from the inside of the
biological tissues to the outside of ?W. Furthermore, the
continuous space in biological tissues can be discretized into
finite units by using the finite element method (FEM). By using
FEM in solving Eq. (1), a reduced linear relationship between the
unknown Cerenkov source distribution in the tissue and the
surface photon flow rate can be obtained:

AM�N�N�1 = BM�1 (2)

where A is the CLT system matrix, and it gives the mathematical
process of Cerenkov photon propagation in the tissue, B
represents the Cerenkov photon flow rate vector on the surface
of biological tissues measured by a susceptible CCD camera,
length M of B represents the semaphore measured, X represents
the unknown Cerenkov source distribution vector in the
organism, and length N of X represents number of grid nodes
of FEM.

In essence, most of feasible region iterative reconstruction
methods are essentially subtracted columns from A to simplify
the process of solving Eq. (2). For example, the TWD method
divides the initial reconstruction region into positive domain
(POS), negative domain (NEG), and boundary domain (BND);
combines POS and BND into ROI; and deletes the system matrix
column corresponding to NEG. In the ISPR method, each
iteration’s reconstruction results are arranged in descending
order according to the energy intensity of nodes, and the
columns of system matrix corresponding to nodes with lower
energy are removed. Those iterative reconstruction methods based
on feasible region have defects as mentioned in the Introduction.
To optimize the feasible region method in CLT and improve the
performance of traditional algorithms in CLT reconstruction, the
P-EDDRS framework is proposed in this paper.
2.2 Probabilistic Energy Distribution
Density Region Scaling Framework for
Cerenkov Luminescence Tomography
The P-EDDRS framework for CLT mainly includes the
following steps:

1. Reconstruct the CR source based on ROI (initial ROI
is global).

2. Evaluate the quality of each iteration reconstruction result
and generate probabilistic source distributions based on
the evaluation.

3. According to the reconstruction source distribution
density, determine the subsequent ROI.

4. Dynamically change the next ROI size based on the energy
intensity of the current result.

5. Evaluate whether the cutoff conditions are met and
continue if so; otherwise, return to step 1.
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6. The results are post-processed and weighted to get the final
Cerenkov source distribution when the iteration is complete.

Figure 1 shows the flowchart of the P-EDDRS framework
for CLT.

2.3 Evaluate Reconstruction Result and
Generate Probabilistic Source Distribution
To evaluate the error of each CLT reconstruction radiation
source distribution, this section performed the following actions.

First, the index named Index_Sp is initialized based on the
global number of nodes. Next, according to Index_Sp, the
reconstruction algorithm mentioned above is used to
reconstruct the current region (the first time is the whole
FIGURE 1 | Flowchart of P-EDDRS framework for CLT. P-EDDRS,
probabilistic energy distribution density region scaling; CLT, Cerenkov
luminescence tomography.
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region) radiation source distribution, and the first iteration
reconstruction source distribution X1 is obtained. According to
Eqs (3) and (4), the L2 norm error rate EL2(x1) and the cosine
similarity ECos(x1) of X1 can be obtained, respectively.

EL2(Xi) = jjA(,Index _ Sp) · X i − Bjj2 (3)

ECos(Xi) =
S½A(,Index _ Sp) · Xi · B�

jjA(,Index _ Sp) · Xijj2·jjBjj2
(4)

where i is the number of iterations between 1 and the maximum
number of iterations Lmax 50.

For now, evaluation of the reconstruction is obtained through
Eqs (3) and (4). In order to assign the corresponding weight to
each reconstruction source distribution in the overall framework,
the weight value of each iteration reconstruction source
distribution is introduced. The weight here essentially
represents the probability value that the result of each iteration
is the final result, so we can call this weight value as the
probability weight value. Furthermore, from the reconstruction
perspective, the L2 norm error is an inversely proportional
evaluation. To achieve this effect, introduce Eq. (5).

PL2(Xi) =
1:=Si

j=1EL2(Xj)

S½1:=Si
j=1EL2(Xj)�

(5)

The other indicator Ecos is different from EL2. The closer the
similarity is to 1, the more reliable the reconstruction source
distribution is. It is a proportional relationship, which can be
represented by Eq. (6).

PCos(Xi) =
Si
j=1EL2(Xj)

S½Si
j=1EL2(Xj)�

(6)

Now, two metrics can use to evaluate each outcome. To
integrate these two indexes, Eq. (7) can be introduced. Eq. (7)
gives the result of each reconstruction source distribution
corresponding probability weight value. When all iterations are
completed, each iteration’s initial reconstruction source
distribution is multiplied by the corresponding probability
weight, and the sum is the final reconstruction source
distribution.

PErr(Xi) =
PL2(Xi) + PCos(Xi)

2
(7)

Therefore, the normalized probabilistic result of each
reconstruction source distribution can be expressed by Eq. (8).
Through Eq. (8), the initial reconstruction source distribution is
transformed into probabilistic reconstruction source distribution
with weights. The distribution can be combined with the
corresponding grid coordinates as a group of random variables
distributed in 3D space to determine the ROI region in the next
section.

XiP =
Xi · PErr(Xi)

SXi · PErr(Xi)
(8)
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2.4 Determine the Region of Interest
After the probabilistic source distribution of one reconstruction
in Section 2.3 is obtained, the feasible area of the subsequent
reconstruction needs to be determined. We assume that the
probabilistic source distribution XiP is a set of random variables
whose mathematical expectation is m and variance is s2. For any
positive number K, Chebyshev’s inequality holds as in Eq. (9).

P XiP − mj j Kf g ≥ 1 −
s 2

K2 (9)

Further, K is expressed as different values:

P XiP − mj j  2sf g ≥ 1 − 1
4

P XiP − mj j  4sf g ≥ 1 − 1
16

(
(10)

It can be seen from the above formula that the distribution of
random variables has its inherent trend. According to this
feature, assume that all nodes with corresponding grid
coordinates are random variables distributed in 3D space. The
distribution of random variables in 3D space also has the rule of
Eq. (10). In other words, the distribution of all reconstruction
source distribution tends to be close to its mathematical
expectation, which is the basis for determining ROI. According
to the characteristics of Eq. (10), cuboid can be used as the form
of ROI. Now, we have a center point, the length of the sides in the
three directions and the deflection angle concerning the
coordinate axes are determined, and the form of ROI (cuboid)
in space can be determined. The average probability of nodes can
be obtained by Eq. (11) as the center of the ROI region.

xP = SN
t=1xt · xiP(t)

yP = SN
t=1yt · xiP(t)

zP = SN
t=1zt · xiP(t)

8>><
>>: (11)

where N represents the total number of nodes in the current
iteration; xt, yt, and zt represent the coordinates of the point t;
xiP(t) is the tth element in XiP; xP , yP , and zP represent the
probabilistic average value of the corresponding coordinate.

Once the center is determined, the deflection angle and side
length of ROI need to be determined. The covariance matrixMcov is
introduced to solve the side length and deflection angle of ROI.

Mcov =

s 2
x Covxy Covxz

Covxy s 2
y Covyz

Covxz Covyz s 2
z

2
664

3
775 (12)

where s 2
x ,s 2

y , and s 2
z represent the probability variance of each

coordinate direction; and Covxy, Covyz , and Covxz represent the
covariance between different coordinate directions. These two
variables are represented by Eqs (13) and Eq. (14):

s 2
x = SN

t=1½(xt − xP)
2 · xiP(t)� · N

N−1

s 2
y = SN

t=1½(yt − yP)
2 · xiP(t)� · N

N−1

s 2
z = SN

t=1½(zt − zP)
2 · xiP(t)� · N

N−1

8>><
>>: (13)
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Covxy = SN
t=1(xt − xP) · (yt − yP) · xiP(t) · N

N−1

Covyz = SN
t=1(yt − yP) · (zt − zP) · xiP(t) · N

N−1

Covxz = SN
t=1(xt − xP) · (zt − zP) · xiP(t) · N

N−1

8>><
>>: (14)

All parameters are multiplied byN/(N − 1) to ensure unbiased
estimates of the variance and covariance. Through the above
calculation, the construction of the overall probability result
covariance matrix is completed. Further, the eigenvalues Val
and eigenvectors Vec of the matrix can be obtained. Val and Vec
are in the form of matrices, in which the three diagonal elements
of Val represent the corresponding eigenvalues in the three
coordinate directions. At the same time, the Vec is the
eigenvector in the three coordinate directions. To realize
dynamic scaling of the region, the ROI side length R can be
defined as in Eq. (15):

R =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Val(1,1)
�� ��,q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Val(2,2)
�� ��q

,
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Val(3,3)
�� ��,q� �

· Size (15)

where Size is the coefficient used to control the ROI, which is
initially set to 1 and will be refreshed in Section 2.5.

By Eqs (11)–(15), a center (xP , yP , zP), three directions (Vec),
and the corresponding length of the sides (Val) can be acquired.
Assuming Eq. (14) to get to the center of the origin, the ROIs of
the cube eight vertices are (+, + +), (+, −, +), (−, −, +), (+, −, +),
(+, −, −), (−, −, −), (+, −, −), and (+, +, −). After the positive and
Frontiers in Oncology | www.frontiersin.org 5
negative signs are determined, the vector direction from the
origin to each vertex can be deflected by multiplying the
corresponding feature vectors. The center point obtained by
Eq. (11) can be added to obtain the eight vertices of the
current ROI. At the same time, we can dynamically adjust the
scaling rate of next ROI by multiplying the size variable
introduced in Section 2.5 with Val.

When the ROI is determined, nodes among this ROI can be
detected, and calculate the spatial distance between the nodes in
the ROI region and the ROI center and arrange them in ascending
order to get the ROI node index named Index_Sp_ROI.

Figure 2 shows how the ROI is generated. Figures 2A–C show
examples of one of the ROI division processes, and Figure 2D
shows examples of all ROI tracks of the overall process.

2.5 Dynamically Change the Region of
Interest Size
The previous step identified the ROI area, but the ROI rate of
change will be significantly accelerated during the mid to late
iteration phases. This phenomenon will cause some nodes to be
directly classified outside the ROI, which will lead to the loss of
the morphological information of the radiation source. To better
retain the nodes that may be the radiation source and more
information about the energy of radiation source, the change rate
of ROI should be controlled. So this paper introduces the
formula of Naser et al., as follows (23):
A B

DC

FIGURE 2 | (A–C) Examples of one of the ROI division processes. (D) The ROI trajectory of the entire iterative process. ROI, region of interest.
October 2021 | Volume 11 | Article 751055
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b =
Cut _Num
Numf

 ! 1
Lmax−1

(16)

where Numf is the expected number of nodes remaining in the
final iteration, because the grid is used as the division unit of
spatial structure, and this value is set as 4 (a tetrahedron).
Cut_Num is size of Index_Sp_ROI at first iteration, and ß
represents the attenuation coefficient.

Now, a judgment condition between the size relationship
between Cut_Num/ß2 and the Cut_Num has been set: if the
quotient is greater than 2, the Size in Eq. (15) is set to 2; if it is less
than 1, the Size is set to 0.5; in other cases, the Size is set to 1. This
variable enables the ROI to shrink or expand.

After the change of ROI region is completed, the current
Index_Sp is arranged in descending order according to the
energy intensity value of the CLT reconstruction source
distribution. The new Cut_Num is made by dividing the
current Cut_Num by ß and rounding the number
toward positive.

The previousCut_Num nodes of Index_Sp are taken as the index
of the current threshold shrinking to generate Index_Sp_Descend.

Concatenate index Index_Sp_Descend after Index_Sp_ROI,
and a new index is obtained, which contains the nodes of the
ROI region and the nodes with the threshold shrunk. After the
duplicate elements of this new index are removed, use Cut_Num
to cut off the new index, and the remaining elements are the
Index_Sp, which will be used for the following CLT
reconstruction. When the remaining elements are still greater
than 1 and the number of iterations does not reach Lmax, return
to Section 2.3.

2.6 Post-Processing and Acquisition of the
Final Result
At the end of the overall iteration, all iteration reconstruction
results to Xi, and the corresponding probability error rate PErr(Xi)
has been obtained. Although all reconstruction source
distribution has been recorded, some iterations have
significantly higher probabilistic error rates. From the
description by Ding et al., the iteration result error evaluation
of 3D reconstruction tends to be in the form of Gaussian
distribution (13). Here, the error evaluation can be used as the
criterion for evaluating the results, so the mean value and
standard deviation for EL2(Xi) and Ecos(Xi) can be calculated.
According to the definition of Gaussian distribution, only the
iteration source distribution that is centered on the mean and
within one times the standard deviation is retained. The
intersection of the two Gaussian filtering results is the result of
some iterations that need to retain. Once this step is complete,
use Eqs (5)–(7) again to generate the new parameters and
P’Err(Xi). The final CLT reconstruction source distribution Xfinal

can be obtained by Eq. (17).

Xfinal = SK
i=1P0Err(Xi) · Xi (17)

where K is the number of remaining results after the completion
of filtering treatment in this section.
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3 EXPERIMENTS AND RESULTS

The CLT reconstruction experiments were performed inMATLAB
2020B and run on a desktop computer with a 3.00-GHz Intel Core
i5 CPU and 32 GB of memory.

To verify and systematically evaluate the performance and
characteristics of the CLT reconstruction framework proposed in
this paper, several groups of CLT numerical simulation
experiments and CLT in vivo experiments were designed. The
location error (EL), the dice coefficient (Dice), the tetrahedral
volume ratio (RV), and the global relative residual (RR) are
introduced as quantitative evaluation indicators.

The location error EL is defined as the Euclidean distance
between the reconstruction source distribution center point
coordinates (x,y,z) and the actual radiation source coordinates
(x0’y0’z0):

EL =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x − x0)

2 + (y − y0)
2 + (z − z0)

2
q

(18)

Dice coefficient is used to evaluate the degree of shape
similarity (overlap) between the reconstructed source
distribution area R and the actual radiation source distribution
area T. The closer it is to 1, the higher the similarity between R
and T is. The following formula defines Dice coefficient:

Dice = 2
R ∩ Tj j
Rj j + Tj j (19)

The tetrahedral volume ratio RV is defined as the ratio of the
tetrahedral volume VT of the actual radiation source distribution
to the tetrahedral volume VR of the reconstruction source
distribution. Same as Dice, when RV is closer to 1, the higher
the size similarity of the radiation source. The following formula
calculates RV:

RV =
VT

VR
(20)

The final theoretical error of the evaluation result of global
relative residual RR is calculated by the following equation: the
lesser the RR, the smaller the theoretical error.

RR =
jjB − A · Xfinaljj2

jjBjj2
(21)

3.1 Numerical Simulations
In this section, a non-homogeneous digital mouse model show in
Figure 3 is applied to verify the performance of the CLT
reconstruction framework (28). To reduce the computational
complexity and performance cost, the head and tail of the digital
rat were removed, and only the trunk containing the main organs
was retained, which was composed of the heart, lung, liver,
stomach, and kidney, while the rest were muscle tissues. 2-[18F]-
Fluoro-2-deoxy-D-glucose (18F-FDG) was the Cerenkov
radioactive source used. In the CLT numerical simulation,
Cerenkov photons generated by 18F radioactive source in
tissues were simulated by GEANT4, and the transmission
October 2021 | Volume 11 | Article 751055
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process of these Cerenkov photons in tissues was simulated by
MOSE (29–32).

The CR signal with wavelength of 630 nm was collected for
reconstruction. The optical parameters of each organ and tissue
are given in reference (33), as shown in Table 1. In the CLT
numerical simulation experiment, the radiation source is
distributed in two positions, namely, (9.5, 15.5, 25) mm and
(20, 8, 15) mm, using different shapes and sizes. One set of shapes
is shown in Figures 3A–D show the surface Cerenkov photon
energy distribution maps corresponding to Figures 3A, B.

Four groups of experiments were designed in this section. The
first group of experiments uses Tikhonov, DSVD, LassoLSQR,
and OMP algorithms mentioned above to reverse reconstruct the
radiation source in combination with the framework to verify the
feasibility of this framework. The second set of experiments
compared this framework with ISPR and TWD iterative
reconstruction methods to verify the framework’s effectiveness
in CLT. In the third and fourth groups, radiation sources of
different sizes and shapes were selected for reconstruction to
verify the stability and robustness of the framework in CLT.

3.1.1 The Experiment of Feasibility Verification
This experiment was designed to verify the feasibility of the
proposed framework in CLT and the versatility of different
algorithms. The digital mouse has been discretized into a grid
of 12,831 nodes and 66,085 tetrahedrons using Amira (Visage
Imaging, Australia). A spherical radiation source with a radius of
0.8 mm was placed at coordinates (9.5, 15.5, 25) mm as shown in
Figure 3A. The results are shown in Figure 4, and the
quantitative indexes are shown in Table 2.
Frontiers in Oncology | www.frontiersin.org 7
In Figure 4, the radiation source is marked in red, and the
reconstruction source distribution is shown in a purple grid in all
3D views. In all axial views, the actual location of the radiation
source is marked by a red arrow. It can be seen that in all four
algorithms, the reconstruction source distribution is significantly
improved after the framework is used, and different algorithms
can realize convergence after several iterations and obtain better
reconstruction results. Specifically, Tikhonov and DSVD
algorithms have poor convergence in one-step reconstruction
results and cannot determine the actual radiation source
position. With P-EDDRS, the correct radiation source location
can be obtained. LassoLSQR and OMP algorithms’ initial result
is incorrect and difficult to converge into a single region. After
using the framework, the reconstruction results can be corrected.
In addition, in terms of the degree of shape recovery, this
framework can better restore the shape of the radiation source,
which can be proved from the pictures and the Dice coefficient. It
can also be seen from RR in Table 2 that the results of this
framework are closer to the theoretically more correct results.

3.1.2 The Experiment of Efficiency Verification
This experiment was designed to compare the performance of
the proposed framework with two other typical ROI shrinking
methods: TWD and ISPR (21, 22) in CLT reconstruction. The
grid used and the radiation source placement are the same as
those of the last experiment. The Tikhonov and DSVD
algorithms mentioned above were used to reverse reconstruct
the radiation source combined with the framework. The results
are shown in Figure 5, and the quantitative indexes are shown
in Table 3.

In Figure 5, the radiation source is marked in red, and the
reconstruction source distribution is shown in a purple grid in all
3D views. In all axial views, the actual location of the radiation
source is marked by a red arrow. As shown in Figure 5A, ISPR
leads Tikhonov algorithm results to tend to the point with high
energy intensity value, and the correct radiation source depth
cannot be obtained. At the same time, in Figure 5B, similar
trends tend to be of high energy intensity but ignore the shape.
Because ISPR determines the ROI region based on node energy
drop ranking, spatial information between nodes is ignored,
resulting in the follow-up’s discontinuous morphological
A B DC

FIGURE 3 | (A) Model of spherical radiation source radius of 0.8 mm at (9.5, 15.5, 25) mm. (B) Model of spherical radiation sources radius of 1.25 mm at (20, 8, 15) mm.
(C, D) The surface photon energy distributions corresponding to panels (A, B), respectively.
TABLE 1 | Optical parameters of different tissues and organs of the
numerical mouse.

Material ma/mm-1 ms’/mm-1 g

Muscle 0.016 0.510 0.9
Heart 0.011 1.053 0.86
Stomach 0.002 1.525 0.9
Liver 0.065 0.723 0.9
Kidney 0.012 2.472 0.9
Lung 0.036 2.246 0.9
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distribution, leading to multiple high energy points. The value of
RR under TWD+Tikhonov condition is smaller than that under
P-EDDRS+DSVD condition. However, the latter result is more
accurate whether evaluated from other quantitative indicators,
3D views, or cross-section views. As shown in Figures 5C, D,
TWD can obtain the actual radiation source depth relatively
closely. However, the results of TWD depend entirely on the
previous iteration, which will lead to the accumulation of error
results and finally get the error distribution. In Figures 5E, F, our
framework can achieve better results among the three methods in
terms of the results of the two algorithms, whether it is
positioning error, Dice coefficient representing morphology,
global relative residual, or the volume of reconstructed
Frontiers in Oncology | www.frontiersin.org 8
radiation source distribution. In addition, the depth and
distribution of the radiation source are closer to the
actual location.

3.1.3 The Stability and Robustness Experiment I
This experiment is to verify the stability and robustness of the
P-EDDRS framework for different radiation source sizes in CLT.
Four spherical radiation sources with different radii and sizes are
used as targets. The digital mouse has been discretized into a grid
of 28,463 nodes and 159,957 tetrahedrons in the same way. The
spherical radiation source was placed at coordinates (20, 8, 15)
mm as shown in Figure 3B. Different from the first two, four
radiation sources of different sizes have been placed at grid in this
A B

D

E F

G H

C

FIGURE 4 | Results of P-EDDRS framework feasibility verification in CLT. All results include 3D views and corresponding cross-section views at the plane of
Z = 25 mm. (A, B, E, F) The initial reconstruction source distribution of Tikhonov, DSVD, LassoLSQR, and OMP algorithms, respectively. (C, D, G, H) The radiation
source distribution obtained by the corresponding algorithms of panels (A, B, E, F) after using P-EDDRS framework. P-EDDRS, probabilistic energy distribution
density region scaling; CLT, Cerenkov luminescence tomography; DSVD, damped singular value decomposition; LassoLSQR, Lasso and Least Square QR-
factorization; OMP, orthogonal matching pursuit.
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experiment, with radii of 1.0, 1.25, 1.5, and 1.75 mm. The
Tikhonov and DSVD algorithms mentioned above were used
to reverse reconstruct the radiation source in combination with
the framework. The results are shown in Figure 6, and the
quantitative indexes are shown in Table 4.

In Figure 6, the radiation source is marked in red, and the
reconstruction source distribution is shown in a purple grid in all
3D views. In all axial views, the actual location of the radiation
Frontiers in Oncology | www.frontiersin.org 9
source is marked by a red arrow. As shown from the results in
Figure 6, our framework can achieve better performance in four
different sizes of experiments, and all the indicators are satisfactory.
From all the results, the EL of all results is between 0.50 and 0.77,
and the Dice coefficient remained above 71%. All but the minor
radiation source is close to the actual volume. Because the finite
element grid method is adopted in this paper, it has a specific size. If
the radiation source is too small, the grid cannot fit the radiation
A B

D

E F

C

FIGURE 5 | Results of P-EDDRS framework efficiency verification in CLT. All results include 3D views and corresponding cross-section views at the plane of
Z = 25 mm. (A, B) The initial reconstruction source distribution of Tikhonov and DSVD algorithms in ISPR method, respectively. (C, D) The reconstruction source
distribution of Tikhonov and DSVD algorithms in TWD strategy, respectively. (E, F) The reconstruction source distribution of Tikhonov and DSVD algorithms in our
framework, respectively. P-EDDRS, probabilistic energy distribution density region scaling; CLT, Cerenkov luminescence tomography; DSVD, damped singular value
decomposition; ISPR, iterative shrinking permissible region; TWD, three-way decision.
TABLE 2 | Quantitative evaluation results of P-EDDRS framework feasibility verification in CLT.

Method Reconstructed center/mm EL/mm Dice RV RR

Tikhonov 9.11, 15.62, 27.67 2.71 0.11 0.64 0.828
P-EDDRS+Tikhonov 9.60, 15.92, 24.71 0.52 0.72 0.88 0.694
DSVD 8.34, 16.63, 24.86 1.62 0.12 1.50 0.846
P-EDDRS+DSVD 9.80, 15.48, 25.21 0.37 0.87 0.82 0.757
LassoLSQR 7.22, 16.06, 24.74 2.36 0 1.32 0.860
P-EDDRS+LassoLSQR 9.85, 15.51, 25.25 0.43 0.87 0.82 0.859
OMP 8.34, 16.63, 24.86 1.62 0.12 1.39 0.880
P-EDDRS+OMP 9.50, 15.28, 24.96 0.22 0.86 1.14 0.847
October 2021
 | Volume 11 | Article 7
P-EDDRS, probabilistic energy distribution density region scaling; CLT, Cerenkov luminescence tomography; DSVD, damped singular value decomposition; LassoLSQR, Lasso and Least
Square QR-factorization; OMP, orthogonal matching pursuit.
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source volume well. This phenomenon leads to some errors in the
reconstruction of small size radiation sources. This is the limitation
of the grid reconstruction method. This experiment proves that
different reconstruction algorithms can estimate the size of radiation
sources effectively under this framework in CLT.

3.1.4 The Stability and Robustness Experiment II
This experiment is similar to the last in verifying the stability and
robustness of the P-EDDRS framework for different radiation
source shapes in CLT. Four different shapes of radiation sources
were placed in the grid: a sphere with a radius of 1.25, a cube with
sides of 2.5, a cylinder with a radius of 1.25 and a height of 2.5,
and an ellipsoid with a = 2 and b = c = 1.25. The grid is the same
as in the last experiment. The radiation source was placed at
coordinates (20, 8, 15) mm. The results are shown in Figure 7,
and the quantitative indexes are shown in Table 5.

In Figure 7, the radiation source is marked in red, and the
reconstruction source distribution is shown in a purple grid in all
3D views. In all axial views, the actual location of the radiation
source is marked by a red arrow. From all the results, the EL of all
results is between 0.50 and 0.86, and the Dice coefficient
remained above 65%. All of the reconstruction source
distribution volume is close to the actual radiation source
volume. This experiment proves that different reconstruction
algorithms can estimate the shape of radiation sources effectively
under this framework in CLT.

3.2 In Vivo Experiments
To verify the feasibility and performance of our framework in an
actual CLT situation, two groups of in vivo experiments are
designed. The first group verifies the reconstruction ability of the
framework in the case of relatively deep radioactive sources by using
the pseudotumor model, and the second group verifies the
reconstruction ability of the framework in the case of shallow
radioactive sources by using subcutaneous breast cancer. Two
approximately 7-week-old female nude mice (BALB/c Nude)
served as the imaging model. All animal procedures were
performed under isoflurane gas anesthesia (2% isoflurane–air
mixture) to minimize the suffering of the mice. Animal
experiments comply with the Regulations on the Management of
Experimental Animals. All procedures follow the Animal Ethics
Committee of the Northwest University of China (No. NWU-
AWC-20210901M). The optical data were acquired using the iXon
Ultra electron double CCD camera manufactured by ANDOR
(Northern Ireland). The X-ray source is the L9181-02 microfocus
Frontiers in Oncology | www.frontiersin.org 10
ray source, and the X-ray detector is C7942CA-22, all manufactured
by HAMAMATSU (Japan). The optical lens is EF 24 mm f/1.4L II
USMmanufactured by Canon (Japan). The band-pass filter is FF01-
630/92-25 manufactured by Semrock (USA). The CCD camera is
pre-cooled to −80°C, and the fuzzy local information C-means and
curvature-driven diffusion (FLICMCDD) method in reference (34)
is used to reduce the influence of noise signals. Exposure time is set
to 5 min, the gain value is set to 300, shift speed is set to 13 ms, and
the read rate is set to 1 MHz at 16 bits. In in vivo experiments, 18F-
FDG is used as the Cerenkov radioactive source. The data
acquisition equipment is shown in Figure 8A.

3.2.1 The Experiment of Pseudotumor
The pseudotumor model used in this study was made of plastic and
was a cylindrical tube with the most extended length of 2.3 mm, the
widestwidthof1.1mm,and thehighest lengthof1.5mm,as shownin
Figure 8B. This pseudotumor model was injected with about 800 ±
50mCiof 18F-FDGasCerenkov radioactive source.Thepseudotumor
model was implanted in the mouse abdominal cavity, at the back of
the left inner lobe of the liver, close to the liver, and implantation
depth is deeper. Themousewas dispersed into a grid of 13,475 nodes
and 69,923 tetrahedrons usingFEMas shown inFigure 8B. This grid
also removed the head and tail to reduce computational complexity,
leaving only the main organs in the trunk. The difference from the
numerical simulation is that this grid contains bones. The
corresponding optical parameters of animal tissues were the same
with numerical simulations. In this experiment, the approximate
central coordinates of the pseudotumor model are (19.68, 18.40,
19.20) mm. The Tikhonov and DSVD algorithms mentioned above
wereused to reverse reconstruct it in combinationwith theP-EDDRS
framework.The reconstruction results are shown inFigure8, and the
quantitative indexes are shown in Table 6.

In Figure 8, the radiation source is marked in red, and the
reconstruction source distribution is shown in a purple grid in all
3D views. In all axial views, the actual location of the radiation source
ismarked by a red arrow. As shown in Figures 8C,D, Tikhonov and
DSVD algorithms in one-step reconstruction cannot obtain the
correct radiation source depth in the in vivo CLT experiment. In
addition, it canbe seen fromFigures8C,D thatTikhonovandDSVD
algorithms identify multiple radiation source distribution. However,
in Figures 8E, F, the P-EDDRS framework can ensure that the
distribution of the reconstructed radioactive sources tends to be a
whole, and the center position of the reconstructed radioactive
sources with the P-EDDRS framework was relatively close to the
actual pseudotumor model. According to the quantitative results in
TABLE 3 | Quantitative evaluation results of P-EDDRS framework efficiency verification in CLT.

Method Reconstructed center/mm EL/mm Dice RV RR

ISPR+Tikhonov 8.34, 16.63, 24.86 1.62 0.15 2.37 0.891
ISPR+DSVD 9.03, 15.10, 24.77 0.66 0.44 0.39 0.980
TWD+Tikhonov 8.95, 15.92, 24.91 0.70 0.49 0.46 0.656
TWD+DSVD 10.81, 16.17, 24.96 1.47 0.16 1.98 0.923
P-EDDRS+Tikhonov 9.60, 15.92, 24.71 0.52 0.72 0.88 0.604
P-EDDRS+DSVD 9.80, 15.48, 25.21 0.37 0.87 0.82 0.757
October 2021
 | Volume 11 | Article 7
P-EDDRS, probabilistic energy distribution density region scaling; CLT, Cerenkov luminescence tomography; ISPR, iterative shrinking permissible region; DSVD, damped singular value
decomposition; TWD, three-way decision.
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TABLE 4 | Quantitative evaluation results of P-EDDRS framework stability and robustness experiment I.

Method Size/mm Reconstructed center/mm EL/mm Dice RV

P-EDDRS+Tikhonov R = 1.00 19.92, 8.38, 14.68 0.50 0.71 0.82
P-EDDRS+DSVD R = 1.00 19.65, 8.51, 14.57 0.76 0.72 0.87
P-EDDRS+Tikhonov R = 1.25 19.92, 8.38, 14.68 0.50 0.80 1.23
P-EDDRS+DSVD R = 1.25 19.65, 8.50, 14.56 0.75 0.73 1.15
P-EDDRS+Tikhonov R = 1.50 19.92, 8.38, 14.68 0.50 0.78 1.24
P-EDDRS+DSVD R = 1.50 19.64, 8.51, 14.55 0.77 0.80 0.95
P-EDDRS+Tikhonov R = 1.75 19.92, 8.38, 14.68 0.50 0.78 1.09
P-EDDRS+DSVD R = 1.75 19.64, 8.50, 14.57 0.75 0.76 0.97
Frontiers in Oncology | www.frontiersi
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P-EDDRS, probabilistic energy distribution density region scaling; DSVD, damped singular value decomposition.
A B

D

E F

G H

C

FIGURE 6 | Results of P-EDDRS framework stability and robustness experiment I. All results include 3D views and corresponding cross-section views at the plane
of Z = 15 mm (A, C, E, G). The reconstruction source distribution of spheres with radii of 1.0, 1.25, 1.5, and 1.75 mm combined with Tikhonov algorithm in our
framework, respectively (B, D, F, H). The reconstruction source distribution of spheres with radii of 1.0, 1.25, 1.5, and 1.75 mm combined with DSVD algorithm in
our framework, respectively. P-EDDRS, probabilistic energy distribution density region scaling; DSVD, damped singular value decomposition.
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TABLE 5 | Quantitative evaluation results of P-EDDRS framework stability and robustness experiment II.

Method Shape Reconstructed center/mm EL/mm Dice RV

P-EDDRS+Tikhonov Sphere 19.92, 8.38, 14.68 0.50 0.80 1.23
P-EDDRS+DSVD Sphere 19.65, 8.50, 14.56 0.75 0.73 1.15
P-EDDRS+Tikhonov Cubic 20.59, 8.27, 14.60 0.76 0.73 1.31
P-EDDRS+DSVD Cubic 20.15, 8.13, 14.65 0.40 0.73 1.19
P-EDDRS+Tikhonov Cylinder 19.92, 8.38, 14.68 0.51 0.80 1.15
P-EDDRS+DSVD Cylinder 19.68, 8.54, 14.47 0.82 0.76 1.13
P-EDDRS+Tikhonov Ellipsoid 19.45, 8.50, 14.65 0.82 0.65 1.08
P-EDDRS+DSVD Ellipsoid 20.61, 8.52, 14.67 0.86 0.73 1.03
Frontiers in Oncology | www.frontiersi
n.org
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P-EDDRS, probabilistic energy distribution density region scaling; DSVD, damped singular value decomposition.
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FIGURE 7 | Results of P-EDDRS framework stability and robustness experiment II. All results include 3D views and corresponding cross-section views at the plane
of Z = 15 mm (A, C, E, G). The reconstruction source distribution of different shapes with sphere, cubic, cylinder, and ellipsoid combined with Tikhonov algorithm in
our framework, respectively (B, D, F, H). The reconstruction source distribution of different shapes with sphere, cubic, cylinder, and ellipsoid combined with DSVD
algorithm in our framework, respectively. P-EDDRS, probabilistic energy distribution density region scaling; DSVD, damped singular value decomposition.
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Table 6, the EL of all results is between 0.78 and 0.89, and the Dice
coefficient directly rises from 0 in the initial result tomore than 50%.

3.2.2 The Experiment of Subcutaneous
Breast Cancer
In this experiment, a mouse implanted with 4T1 breast cancer cells
was used as the target animal. The optical parameters, equipment,
and experiment setting are the same as in Section 3.2.1. Special
thanks to the Institute of Automation, Chinese Academy of Sciences
for the data provided. Themouse was dispersed into a grid of 14,289
nodes and 71,838 tetrahedrons using FEM. The difference is that
this experiment used the subcutaneous tumor and is not influenced
by other tissues and organs. Therefore, to reduce the computational
complexity, the tissues and organs inside the mouse were removed,
and the mouse was regarded as a homogeneous structure composed
of muscle tissues; 1 × 106 4T1 cells were subcutaneously injected
into the back of the mouse. After 6 days of culture, about 800 ± 50
mCi of 18F-FDG was injected through the tail vein as a radioactive
source. After 40 min, a CCD camera was used, the exposure time
was 5min, and the image in Figure 9Awas collected. The Tikhonov
and DSVD algorithms mentioned above were used to reverse
reconstruct it in combination with the framework. In this
experiment, the approximate central coordinates of the tumor are
(22.7, 24.4, 11.0) mm. Breast cancer tumor was used as the focus in
this experiment, and PET is currently the gold standard for imaging
tumors, so PET data were introduced as a reference in Figure 9A.
The figure of collected data, approximate tumor location obtained
by PET, and reconstruction results are shown in Figure 9, and
quantitative indicators are shown in Table 7.

In Figure 9, the radiation source is marked in red, and the
reconstruction source distribution is shown in a purple grid in all
3D views. In all axial views, the actual location of the radiation
source is marked by a red arrow. PET scan results were compared
in this experiment to better compare with the actual situation, as
shown in Figure 9A. It can be seen from Figure 9A that the noise
signal collected in CLT contains many high-energy particles and
thermal noise caused by prolonged exposure. This makes noise
reduction of CLT particularly important and necessary.
Therefore, this paper introduces the FLICMCDD denoising
algorithm to preprocess the collected signals (34).

It can be seen from Figure 9B that the radiation source
distribution obtained by Tikhonov algorithm in a single calculation
is too sparse, with only a few nodes. The same conclusion can be
reached in the volume ratio of quantitative results. Compared with
Tikhonov algorithm, the radiation source distribution obtained by
DSVD algorithm is larger than the actual tumor, because the noise
obtained by this group of data is too large, resulting in severe artifacts.
The comparison of Figures 9B–E shows better results. According to
the quantitative results, Tikhonov and DSVD algorithms have
improved radiation source positioning accuracy, size, and shape
using this paper’s framework in CLT. From all the results, the EL of
all the results stays below1.However, artifacts appeared in the results
of different methods. This is because the grid of our group is too
simplified and ignores the influence of other tissues ofmouse on CR,
whichultimately leads to amore significant distortionof the collected
CR signal. This phenomenon also leads to a low Dice coefficient
compared with numerical simulation experiments. However, it can
Frontiers in Oncology | www.frontiersin.org 13
be seen fromthecomparisonofFigures9D,E that the frameworkhas
a specific elimination effect on artifacts. This phenomenon happens
because the reconstruction results with artifacts have a sizeable error
rate, which leads to a significant decrease in their weight. In the final
result, the intensity will be weakened accordingly, reducing the
impact on the overall result, which will be shown as weak artifacts
from the cross-section diagram. On the whole, the reconstructed
radioactive source distribution in Figures 9C, E can be consistent
with PET.
4 DISCUSSION AND CONCLUSIONS

This paper proposed a multilevel ROI-scaled CLT reconstruction
framework based on probabilistic energy density. In this framework,
all nodes with energy are regarded as random variables of 3D spatial
distribution, and the cuboid ROI region is used to ensure spatial
continuity between nodes. Optimize the defect of neglecting the
spatial distribution of nodes in the iterative reconstruction method
only based on energy intensity. In order to ensure a stable ROI
regional change rate, a shrinking formula based on energy intensity
is introduced to ensure that energy information and spatial
information of nodes are considered simultaneously. By the idea
of iterative reconstruction, the corresponding probability value is
assigned to the result of each reconstruction and dynamically
refreshed in each iteration to avoid the contamination of the
global result by some iteration errors such as radioactive source is
too sparse and scattered or the artifact is too prominent in CLT.

To verify and evaluate the feasibility and performance of the
proposed framework in CLT, numerical simulation and in vivo
experiments are introduced. Four reconstruction algorithms,
Tikhonov, DSVD, LassoLSQR, and OMP, were used for
qualitative and quantitative analyses and comparison. The
following conclusions can be obtained from the experimental
results: first, the feasibility experiment shows that our framework
can improve the radioactive source positioning accuracy of different
algorithms in CLT; all EL values stay below 1; second, our frame has
advantages in positioning accuracy and radioactive source shape
recovery ability for CLT compared with other one-step
reconstruction or iterative reconstruction method, the Dice
coefficient of all numerical simulation experiments is above 0.65
and above 0.43 in vivo experiments; third, the experimental results
of different sizes and shapes of radioactive sources show that our
frame is robust and can better obtain the size and shape of
radioactive sources for CLT; finally, in vivo experiments for CLT
verified the feasibility of this framework in the detection of the
radioactive source in live animals. It is worth noting that the
reconstruction result of in vivo experiment is slightly worse than
that of the numerical simulation experiment. This is because in in
vivo experiments, the CCD camera collected a relatively weak CR
signal and a large number of high-energy rays produced by
radionuclides and thermal noise of the CCD camera itself.
Furthermore, the deviation will inevitably occur in the process of
energy mapping to the grid.

There are still some deficiencies in the framework. First of all,
this framework is based on the idea of iterative multiple times.
Compared with a one-step reconstruction, the calculation cost is
October 2021 | Volume 11 | Article 751055
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high. Second, this framework is based on the finite element mesh
method, resulting in inconsistent reconstruction performance for
different shapes and sizes of radioactive sources. In addition, the
cube ROI does not fit the irregular radioactive source well,
Frontiers in Oncology | www.frontiersin.org 14
leading to the low Dice coefficient in some cases. Subsequent
work will attempt to reconstruct using other structures such as
voxels or point clouds and try ROI of other shapes to overcome
current deficiencies.
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FIGURE 8 | Results of the CLT in vivo pseudotumor experiments. All results include 3D views and corresponding cross-section views at the Z = 19.2 mm,
Y = 18.4 mm, and X = 19.68 mm. (A) Picture of the test bench where the data were collected. (B) The mouse used, and the dashed box is the pseudotumor
model planting area. (C, D) The initial reconstruction source distribution of Tikhonov and DSVD algorithms, respectively. (E, F) The reconstruction source
distribution obtained by the corresponding algorithms of panels (C, D) after using our framework. CLT, Cerenkov luminescence tomography; DSVD, damped
singular value decomposition.
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TABLE 7 | Quantitative evaluation results of the CLT subcutaneous breast experiments.

Method. Reconstructed center/mm. EL/mm. Dice. RV

Tikhonov 22.54, 26.36, 10.75 1.98 0.06 10.07
P-EDDRS+Tikhonov 23.53, 24.95, 10.96 0.99 0.46 1.84
DSVD 23.61, 25.35, 12.45 1.83 0.21 0.43
P-EDDRS+DSVD 23.57, 24.79, 10.94 0.69 0.43 1.57
Frontiers in Oncology | www.frontiersin.org
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CLT, Cerenkov luminescence tomography; P-EDDRS, probabilistic energy distribution density region scaling; DSVD, damped singular value decomposition.
TABLE 6 | Quantitative evaluation results of the CLT pseudotumor in vivo experiments.

Method Reconstructed center/mm EL/mm Dice RV

Tikhonov 15.67, 15.65, 19.83 4.91 0 1.33
P-EDDRS+Tikhonov 18.97, 18.51, 19.51 0.78 0.51 1.69
DSVD 18.63, 14.81, 18.55 3.80 0 1.11
P-EDDRS+DSVD 19.28, 18.16, 19.95 0.89 0.50 1.09
5

CLT, Cerenkov luminescence tomography; P-EDDRS, probabilistic energy distribution density region scaling; DSVD, damped singular value decomposition.
A B D EC

FIGURE 9 | Results of the CLT subcutaneous breast experiments. All results include 3D views and corresponding cross-section views at the plane of X = 22.7,
Y = 24.4 mm, and Z = 11 mm. (A) The image collected by the CCD camera; and PET results in YOZ, XOZ, and XOY planes. (B, D) The initial reconstruction results
of Tikhonov and DSVD algorithms, respectively. (C, E) The results obtained by the corresponding algorithms of panels (B, D) after using our framework. CLT,
Cerenkov luminescence tomography; DSVD, damped singular value decomposition.
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On the whole, the P-EDDRS frame treats the nodes resulting
from each reconstruction as 3D random variables. According to
the distribution characteristics of random variables, cuboid ROI
was used to delimit molecular regions to ensure the spatial
continuity of reconstruction results. Shrinking formula based
on energy intensity is introduced to ensure that energy node
information and spatial information jointly control regional ROI
changes. Dynamic probabilistic results can guarantee the
correctness of reconstruction results. The reconstruction results
of numerical simulations and in vivo experiments demonstrate
that our framework can improve the ability of multiple
reconstruction algorithms to locate the radioactive source and
recover the shape of the radioactive source.
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