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Kidney segmentation is an essential step in developing any noninvasive computer-assisted diagnostic system for renal function
assessment. This paper introduces an automated framework for 3D kidney segmentation from dynamic computed tomography
(CT) images that integrates discriminative features from the current and prior CT appearances into a random forest classification
approach. To account for CT images’ inhomogeneities, we employ discriminate features that are extracted from a higher-order
spatial model and an adaptive shape model in addition to the first-order CT appearance. To model the interactions between CT
data voxels, we employed a higher-order spatial model, which adds the triple and quad clique families to the traditional pairwise
clique family.Thekidney shape priormodel is built using a set of trainingCTdata and is updated during segmentationusing not only
region labels but also voxels’ appearances in neighboring spatial voxel locations. Our framework performance has been evaluated on
in vivo dynamic CT data collected from 20 subjects and comprises multiple 3D scans acquired before and after contrast medium
administration. Quantitative evaluation between manually and automatically segmented kidney contours using Dice similarity,
percentage volume differences, and 95th-percentile bidirectional Hausdorff distances confirms the high accuracy of our approach.

1. Introduction

Kidney segmentation fromdynamic contrast-enhanced com-
puted tomography (CT) is of immense importance for any
computer-assisted diagnosis of renal function assessment,
pathological tissue localization, radiotherapy planning, and
so forth [1]. Nevertheless, accurate segmentation of kid-
ney tissues from dynamic CT images is challenging due
to many reasons, including data acquisition artifacts, large
inhomogeneity of the kidney (e.g., cortex andmedulla), large
anatomical differences between subjects, similar intensities
of adjacent organs, and varying signal intensities over the
time course of data collection due to agent transit [2, 3]; see
Figure 1.

Many automated and semiautomated approaches have
been developed to address these challenges. Earlier comput-

erized renal image analysis (e.g., [4]) was usually carried
out either manually or semiautomatically. Typically, a user-
defined region-of-interest (ROI) is delineated in one image
and for the rest of the images, image edges were detected and
the model curve was matched to these edges. However, ROI
placements are based on the users’ knowledge of anatomy
and thus are subject to inter- and intraobserver variability.
Additionally, these methods are very slow, even though
semiautomated techniques reduce the processing time. Tradi-
tional segmentation techniques utilizing image thresholding
or region growing [5–9] have been also explored for CT
kidney segmentation. For example, Pohle and Toennies [7]
developed an automatic region-growing algorithm based on
estimating the homogeneity criterion from the characteristics
of the input images. A semiautomated method was also pro-
posed by Leonardi et al. [9]. First, a region-growing approach

Hindawi Publishing Corporation
Computational and Mathematical Methods in Medicine
Volume 2017, Article ID 9818506, 10 pages
http://dx.doi.org/10.1155/2017/9818506

http://dx.doi.org/10.1155/2017/9818506


2 Computational and Mathematical Methods in Medicine

(a) (b)

(c) (d)

Figure 1: Axial cross-sectional images showing different CT data challenges: (a) low contrast, (b) intensity inhomogeneities, (c) fuzzy
boundary, and (d) contrast and anatomy differences.

is performed to obtain an initial kidney segmentation from
the grayscale image stack. Then, a refinement step utilizing
histogram analysis is employed to the initially segmented kid-
ney regions to reduce incorrectly segmented areas. However,
these traditional methods are not accurate due to the large
overlap of gray level intensity between the kidney and other
surrounding tissues in addition to sensitive to initialization.

To more accurately segment abdominal CTs, recent
segmentation methods consider either visual appearances,
prior shapes, texture features, or hybrid techniques. In par-
ticular, Tsagaan et al. [10] presented a deformable model-
based approach utilizing a nonuniform rational B-spline
surface representation. Their framework incorporated sta-
tistical shape information (e.g., mean and variation) into
the objective function for the model fitting process as an
additional energy term.

A constrained optimization deformable contour byWang
et al. [11] exploited the degree of contour interior homo-
geneity as an extra constraint within the level set energy
minimization framework. Lu et al. [12] developed a coarse-
to-fine approach for kidney segmentation on abdominal
CT images using the Chan-Vese (CV) level set method
[13]. Mathematical morphology operations are performed to
extract the kidney structures interactively with prior anatomy
knowledge. Huang et al. [14] proposed a multiphase level
set approach with multidynamic shape models to segment
the kidneys on abdominal CT images. Campadelli et al.
[15] proposed an automatic, gray-level based segmentation
framework based on a multiplanar fast marching method.

A stochastic level set-based framework by Khalifa et al. [16,
17] integrated probabilistic kidney shapes and image signals
priors intoMarkov randomfield (MRF) for abdominal 3DCT
kidney segmentation. Despite their popularity, deformable
model-based methods fail in the case of excessive image
noise, poor image resolution, or diffused boundaries if they
do not take advantage of a priori models.

Freiman et al. [18] proposed a model-based framework
utilizing maximum a posteriori-MRF (MAP-MRF) estima-
tion of the input CT image. The MAP-MRF estimation is
obtained by using a graph min–cut technique. Lin et al. [19]
proposed a framework that combined region- and model-
based methods. Initial kidney location is estimated using
geometrical location, statistical information, and a priori
anatomical knowledge. Secondly, an elliptic candidate kidney
region extraction approach is proposed. Finally, an adaptive
region-growing approach is employed for kidney segmenta-
tion. Spiegel et al. [20] proposed an active shapemodel (ASM)
based framework that was combined with a curvature-based
nonrigid registration approach to solve the point correspon-
dence problem of the training data. A hybrid framework by
Chen et al. [21] combined active appearance model (AAM),
live wire, and graph-cuts methods for 3D abdominal organ
segmentation. In general, parametric shape-based techniques
depend on the existence of adequate texture features in
abdominal images and may perform poorly due to noise
and the lack of well-defined features. Cuingnet et al. [22]
exploited random regression and classification forests for
CT kidney images segmentation. Initially, global contextual
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information is used to detect the kidney. This is followed
by a cascade of local regression forests for refinement. Then,
probabilistic segmentation maps are built using classification
forest. Finally, an implicit template deformation algorithm
driven by these maps is employed to obtain the final segmen-
tation. A model-based framework by Badakhshannoory and
Saeedi [23] combined low-level segmentation schemes with
a statistical-based modeling approach. First, an organ space
is built using a statistical model and principle component
analysis. Then, each image slice of an input CT volume is
segmented multiple times using a graph-based segmentation
by varying segmentation parameters. Finally, a distance-
based criterion from the organ space is used to choose the
closest candidate as the best segmentation result. In general,
knowledge-based approaches are computationally intensive,
and their accuracy depends on the training data size.

Bagci et al. [24] developed a multiobject segmentation
framework that integrates a statistical shape model and
hierarchical object recognition into a global graph-cuts seg-
mentation model. Wolz et al. [25] developed a hierarchical
two-step atlas registration framework for multiobject seg-
mentation. First, subject-specific priors are generated from
an atlas database based on multiatlas registration and patch-
based segmentation. Final segmentation is obtained using
graph-cuts, incorporating high-level spatial knowledge and
a learned intensity model. Another study by Okada et al.
[26] performed multiobject segmentation using probabilistic
atlases that combines interorgan spatial and intensity a priori
models. Despite the potential to improve the segmentation
accuracy due to the spatial kidney constraints from other
organs, multiobject segmentation schemes require more
comprehensive prior information. A semiautomated Grow-
Cut algorithm by Dai et al. [27] employed a monotonically
decreasing function and image gray features to propagate ini-
tial user-defined labels over all the slices to derive an optimal
cut for a given CT data in space. Zhao et al. [28] proposed
a sliced-based framework for 3D kidney segmentation. First,
an initial segmentation is obtained using the CV approach
[13]. Then, a set of contextual features (e.g., slices overlap, the
distance) and multiple morphological operations are used to
estimate the continuity between slices.Thefinal segmentation
is obtained by discarding the leakage and the weak edges
between adjacent slices using a local iterative thresholding
method. Chu et al. [29] presented an automated MAP-
based multiorgan segmentation method that incorporated
image-space division andmultiscale weighting scheme.Their
framework is based on a spatially divided probabilistic atlases
and the segmentation is performed using a graph cutmethod.
Yang et al. [30] developed on multiatlas framework using a
two-step approach to obtain coarse-to-fine kidney segmen-
tation. A coarse segmentation is obtained by registering an
input down-sampled CT volume with a set of low-resolution
atlas images.Then, cropped kidney images are coalignedwith
high-resolution atlas images using B-Splines registration.The
final segmentation result is obtained by majority voting of all
deformed labels of all atlas images. Liu et al. [31, 32] developed
a framework for kidney segmentation on noncontrast CT
images using efficient belief propagation. A preprocessing
step is applied to extract anatomical landmarks to localize

kidney search regions.Then, an efficient belief propagation is
used to extract the kidney by minimizing an energy function
that incorporates intensity and prior shape information.
However, the method was evaluated on five noncontrast CT
data sets only and additional segmentation of other organs
(e.g., liver, spleen) is required to determine subimages that
envelope the kidneys.

In summary, during the last few years there have been
numerous studies for abdominal CTs kidney segmentation.
In addition to the above-mentioned limitations, current
methods have the following shortcomings. Most of them are
based on visual appearance and did not take into account
the spatial interaction relationships. Most of the shape-based
methods utilize fixed models and therefore have limited
accuracy for CT data outside their training scope.Most of the
existingmethods work very well with contrast CTs only.Most
of the energy-based methods (e.g., graph-cut) use regional
and boundary information that may not exist in some (e.g.,
precontrast) images and may not achieve globally optimal
results.

To account for these limitations, we developed a 3D kid-
ney segmentation framework that integrates, in addition to
the current CT appearance features, higher-order appearance
models and adaptive shape model features into a random
forests (RF) classification model [33]. The integrated features
increase the ability of our framework to account for the
large CT images’ inhomogeneities and therefore accurately
segment both contrast and noncontrast CTs. Particularly, the
spatial features are based on a higher-order Markov–Gibbs
random field (MGRF) model that adds to the traditional
pairwise cliques [34] the families of the triple and quad
cliques. The spatial-appearance kidney shape prior is an
adaptive model that is updated during segmentation and
accounts not only for region labels, but also intensities in
neighboring spatial locations. Moreover, compared to other
tissue classification methods the RF is employed due to its (i)
powerful ability to learn the characteristics of complex data
classes [35], (ii) less sensitivity to data outliers, (iii) ability to
overcomes overfitting of the training set, and (iv) ability to
handle high dimensional spaces as well as large number of
training examples.

A detailed description of our developed methodology for
kidney segmentation from dynamic CT images including the
details of the discriminative features is given in Section 2. It
is worth mentioning that, in addition to our methodology
presentation in [33], this paper provides (i) a more compre-
hensive reviewof the related literaturework on the abdominal
CT images segmentation (Section 3); (ii) detailed description
of the metrics that are used for segmentation evaluation of
our and compared techniques (Section 3); and (iii) expansion
of the experimental results by adding an essential metric
that is used to evaluate the robustness of segmentation
techniques, namely, the receiver operating characteristics
(ROC) (Section 4).

2. Methods

A block diagram of our kidney segmentation framework is
shown in Figure 2. Our technique is based on random forests
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Figure 2: Block diagram of our kidney segmentation framework from abdominal CT images using random forest (RF).
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Figure 3: A schematic illustration of the random decision trees for random forests (RF) classification.

(RF) classification and incorporates spatial-appearance fea-
tures for better separation of the CT data classes. RF is
an efficient multiclass machine learning technique, which
is increasingly being utilized in data clustering as well as
image classification. As an ensemble learning classifier, RF
typically consists of many decision trees (DTs) and combines
two main concepts [36]. The first is the random selection of
features and the second is “bagging” [37], which implies the
training of each DT with a randomly chosen and overlapping
subset of the training samples. In general, as numbers of
the DTs increase the results get better. Nevertheless, there
is a threshold beyond which the performance benefit from

adding more DTs will be lower than the computational cost
for learning these additional DTs [38].

During the RF training phase, each DT recursively
processes its randomly selected training samples’ features
along a path starting from the tree’s root node using binary
classification tests, as shown in Figure 3. The latter tests
compare the features’ values at each internal tree node to a
certain threshold that is selected using a certain criterion.
A leaf node of the DT is reached if all samples belong to a
single class; the number of data samples is smaller than a
predefined value, or the maximum tree depth is reached [35].
Once occurred, the most frequent class label of the training
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data at the node is stored for the testing phase. For testing,
a given data sample is handled by applying respective tests
in line with the path it traverses from the tree root node
to the leaf. When a leaf node is reached, the DT casts a
vote corresponding to the class assigned to this node in the
training stage. Finally, a majority voting is used to class-label
test samples. The final class probabilities are estimated by the
fraction of votes for that class by all DTs.

In order to build an accurate RF model that provides
better separation of data classes, discriminative and robust
features are needed.Therefore, in this paper multiple features
from the CT data are extracted, for both training and testing
phases. These features include (i) first-order appearance
(Hounsfield units (Hus) values) features; (ii) higher-order
spatial interaction features; and (iii) appearance-based shape
model features. Those features are extracted at each voxel’s
location p = (𝑥, 𝑦, 𝑧) in the 3D arithmetic lattice R =
{(𝑥, 𝑦, 𝑧) 0 ≤ 𝑥 ≤ 𝑋 − 1, 0 ≤ 𝑦 ≤ 𝑌 − 1, 0 ≤ 𝑧 ≤
𝑍 − 1} supporting the grayscale CT images, g = {𝑔p : p ∈
R, 𝑔p ∈ Q}, and their region, or segmentation maps, m =
{𝑚p : p ∈ R, 𝑚p ∈ L}. Here, Q = {0, 1, . . . , 𝑄 − 1}
and L = {“KT”, “OT”} is a finite set of integer gray levels
and region labels (kidney object tissues “KT” and other back-
ground tissues “OT”), respectively. Since spatial and shape
features are based on probabilistic models, the first-order
appearance-based features were also normalized to reduce
the domination of a specific feature during RF classification.
Details of the employed features are given in the following
sections.

2.1. First-Order Appearance Features. Thefirst type of features
that are used in our framework is the CT voxel-appearance
features. Those features were extracted at each voxel p
regionally from the CT data after normalization. Due to
image noise presence and reconstruction artifacts, we used,
at each voxel p, regional intensity features in addition to the
local CT Hounsfield units (HU). Namely, we used the mean
HU values of a symmetric 3D cube (i.e., voxels’ 26-neighbors)
centered around p and the mean of the HUs of a 3 × 3 in-
plane symmetric window (i.e., voxels’ 8-neighbors) centered
around p.

2.2. Shape Prior Features. The ultimate goal is to accu-
rately segment the kidney from the CT data such that the
extracted kidney borders closely approximate the expert
manual delineation. However, due to the similar visual
appearance between some kidney structures (e.g., medulla)
and background, the segmentation should not rely only
on image signals. Therefore, shape features of the expected
kidney shape are also used in our segmentation framework.
In this paper, we employed an adaptive, probabilistic kidney
shape model that takes into account not only voxels’ location,
but also their intensity information [39, 40].

For training, a shape database is constructed using a set
of training data sets that is collected from different subjects;
each contains multiple CT scans acquired at different phases
of contrast-enhancements. The ground truth segmentation
(labeled data) of the training images is obtained by manual
delineation of the kidney borders by an expert. In order to

reduce the variability across subjects and maximize overlaps
of the kidneys for estimating the shape prior probability,
the training grayscale images are coaligned using a two-step
registration methodology. First, a 3D affine transformation is
used with 12 degrees of freedom (3 for the 3D translation,
3 for the 3D rotation, 3 for the 3D scaling, and 3 for the
3D shearing) to account for global motion [41]. Second,
local kidney deformations are handled using a 3D B-splines
based transformation proposed in [42]. Finally, the obtained
transformation parameters for each scan are applied to its
binary (labeled) data to be used during segmentation to
estimate the shape prior probability.

For testing, an input grayscale 3D CT kidney image, gt,
to be segmented is first coaligned with the training database
using the two-step registration methodology described
above. Then, a subject-specific shape, gi, 𝑖 = 1, 2, . . . , 𝑁, is
extracted by computing the conventional normalized cross
correlations (NCC) between the coaligned input grayscale
image and all grayscale images in the database, to select
the top 𝑁 similar kidneys (𝑁 = 19 in our experiments
below). Finally, visual appearances of both the input 3D
grayscaleCT image and the selected grayscale training images
guide adapting the shape prior. Namely, the voxel-wise
probabilities, 𝑃𝑠:p(𝑙) for the adaptive shape prior 𝑃𝑠(m) =
∏p∈R𝑃𝑠:p(𝑚𝑝), are estimated based on the found voxels 𝑙 ∈ L.
Let v𝑖:p(𝑙) = {𝜌 : 𝜌 ∈ R; 𝜌 ∈ Cp; |𝑔𝑖:𝜌 − 𝑔𝑡:p| ≤ 𝜏} be a subset of
similar training voxels within a search cubeCp in the training
image 𝑔𝑖, where 𝜏 is a predefined fixed signal range and 𝑔𝑡:𝑝
is the mapped input signal. Let V𝑖:p = card(v𝑖:p) denote the
cardinality (number of voxels) of this subset vp = ∑𝑁𝑖=1 v𝑖:p
and 𝛿(𝑧) be the Kronecker’s delta-function: 𝛿(0) = 1 and 0
otherwise. Then 𝑃𝑠:p(𝑙) is given as [39]

𝑃𝑠:p (𝑙) =
1
Vp

𝑁

∑
𝑖=1

∑
𝜌∈v𝑖:p
𝛿 (l − 𝑚𝑖:𝜌) . (1)

More details about the adaptive shapemodel can be found
in [39, 40]. Our experiments were conducted using three
shape features, like the voxel-appearance features. Namely, we
used the 𝑃𝑠(m) value at p, the average 𝑃𝑠(m) value for the 26
neighbors of a 3D cube aroundp, and the average𝑃𝑠(m) of the
8 in-plane neighbors for a 3 × 3 symmetric window centered
at p.

2.3. Spatial Features. To improve the segmentation accuracy
and account for the large inhomogeneity of the kidney, we
incorporated into our segmentation approach the spatial
features that describe the relationships between the kidney
voxels and their neighbors. These relationships are described
using a higher-order spatialmodelwith analytically estimated
potentials. The spatial modeling enhances the segmentation
by calculating the likelihood of each voxel to be kidney or
background on the basis of the initial labeling,m, of the adja-
cent voxels, formed by a voxel-wise classification using shape
and intensity values Our spatial interactions model adds the
triple and quad clique families to the traditional pairwise
clique family [34] using the 18-connectivity neighborhood.
Thus, it is an extension of the conventional Potts model [43],
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differing only in that the potentials are estimated analytically.
Formoremathematical details about our higher-order spatial
model, please see [33, 44]. Similar to the other features, three
spatial-based features were used: the local spatial probability
at p and the average probabilities for a 3D cube and a 3 × 3
window centered around p. In total, the whole segmentation
approach is summarized in Algorithm 1.

Algorithm 1 (3D kidney segmentation steps).

Step 1 (data coalignment and shape database selection)

(a) Register the input grayscale CT volume to the
training database using the two-step registration in
Section 2.2.

(b) Calculate the NCC between the input coaligned data
and all training volumes.Then, select theNCC-19-top
ranked training samples.

Step 2 (features extraction)

(a) Estimate the voxel-appearance features of the
coaligned CT volume.

(b) Estimate the higher-order Potts-MGRF spatial prob-
abilities 𝑃𝐺(m).

(c) Estimate the appearance-based shape prior 𝑃𝑠(m)
using the method described in [39, 40].

Step 3 (RF training)

(a) Construct the RF training model for the selected 19-
top-ranked training images.

Step 4 (tissue segmentation)

(a) Obtain the final segmentation of the input CT volume
using the model in Step 3.

3. Segmentation Evaluation Metrics

The performance of our segmentation is evaluated using two
metrics. The first is a volumetric-based similarity that char-
acterizes spatial overlaps and volume differences between the
segmented and “ground-truth” kidney regions. This type of
metrics is important for studying area measurements, for
example, total kidney volumes. The second is a distance-
basedmetric thatmeasures how close the edge of a segmented
region is to the ground truth, that is, how accurate the shape
of a segmented object is with respect to ground truth. Here,
we used the Dice coefficient (DC) and percentage volume
difference (PVD) to describe the volumetric-based similarity,
while the bidirectional 95th-percentile Hausdorff distance
(BHD95) is used to characterize the distance-based error
metric: G ↔ S.

Let G and S denote sets of ground-truth and segmented
kidney voxels, respectively. The similarity volumetrics evalu-
ate an overlap between these sets and account for cardinalities
(i.e., voxel numbers) 𝑐𝑖 = |𝑉𝑖| of true positive (tp), false

True positive (tp)

False positive (fp)
False negative (fn)

Ground truth (G)
Segmentation (S)

Figure 4: 3D illustration of DC measurement for segmentation
evaluation between the ground truthG and model segmentation S.

positive (fp), and false negative (fn) subsets𝑉𝑖; 𝑖 ∈ {tp, fp, fn};
see Figure 4.

The subsets contain true kidney voxels labeled as kidney,
nonkidney (background) voxels labeled as kidney, and true
kidney voxels labeled as background, respectively:

𝑉tp = {V : V ∈ G, V ∈ S} ; 𝑐tp =
𝑉tp



𝑉fp = {V : V ∉ G, V ∈ S} ; 𝑐fp =
𝑉fp


𝑉fn = {V : V ∈ G, V ∉ S} ; 𝑐fn =

𝑉fn
 .

(2)

Obviously, G = 𝑉tp ∪ 𝑉fn; S = 𝑉tp ∪ 𝑉fp; 𝑉tp = G ∩ S;
and 𝑉tp ∪ 𝑉fp ∪ 𝑉fn = G ∪ S where ∪ and ∩ denote the set
union and intersection, respectively. Therefore, it holds that
|G| = 𝑐tp + 𝑐fn; |S| = 𝑐tp + 𝑐fp, and |G ∪ S| = 𝑐tp + 𝑐fp + 𝑐fn. The
DC [45] and the PVD are defined as

DC = 100
2𝑐tp

2𝑐tp + 𝑐fp + 𝑐fn
≡ 1002 |G ∩ S|

|G| + |S|

PVD = 100
(𝑐tp + 𝑐fn) − (𝑐tp + 𝑐fp)

𝑐tp + 𝑐fn
≡ 100 |G| − |S|

|G|
.

(3)

In addition to the DC and PVD, the 95th-percentile
bidirectional Hausdorff distance (BHD95) is used to measure
dissimilarities between the G and S boundaries; see Figure 5.
TheHD fromG to S is themaximumdistance from the points
𝑔 fromG to their closest points 𝑠 in S [46]:

HD𝐺→𝑆 = max𝑔∈G {min𝑠∈S𝑑 (𝑔, 𝑠)} , (4)

where 𝑑(𝑔, 𝑠) is the Cartesian distance between two 3D
points. The HD is asymmetric, as generally HD𝐺→𝑆 ̸=
HD𝑆→𝐺. The symmetric BHD between these two sets is
defined as

HDG↔S = max {HDG→S,HDS→G} . (5)

To decrease the sensitivity to outliers, the 95th-percentile
BHD is used in this paper to measure the segmentation
accuracy.
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Ground truth (G)
Segmentation (S)

d(g, s)

Figure 5: Schematic illustration for the calculation of the Haussdorf
distance between the ground truth (green) and segmented (red)
objects.

4. Experimental Results

Performance assessment of our framework is carried using
dynamic CT kidney data, which were collected from 20
subjects. Each subject dataset consists of three 3D CT scans
obtained at the pre- and postcontrast medium administra-
tion, namely, noncontrast, postcontrast, and late contrast 3D
scan. The CT data were obtained using a GE light speed
plus scanner (General Electric, Milwuakee, USA). The CT
data acquisition parameters were 120KV, 250mA, in-plane
resolution: 0.64 × 0.64mm2, slice thickness: 0.9mm, field-
of-view (FOV): 360mm, the 3D image sizes range from
512 × 512 × 232 to 512 × 512 × 366. In order to minimize
the effect of interobserver variability, two experts delineated
the kidney borders independently on the CT images and
the ground truth labels were considered as the common
segmented region of their delineations.

Quantitative evaluation is performed using a leave-one-
subject-out approach and the number of decision trees was
set to 400. First, all the 3D CT scans (60 scans in total) from
all of the 20 subjects are coregistered using our registration
methodology described in Section 2.2. To segment a test
subject, all of its pre- and postcontrast scans are removed
from the training database. Then, the 19 NCC-top-ranked
scans are selected from the remaining training scans to build
the test scan adaptive shape prior, described by (1) and the
method in [39, 40]. Lastly, all regional features described in
Sections 2.1 and 2.3 are extracted for (i) the NCC-selected
scans to build the training model of the RF; and (ii) the 3D
coregistered test scan to be classified using the built RFmodel.
The above steps are repeated for all of the 60 CT volumes of
the 20 subjects.

Cross-sectional segmentation results in the axial, sagittal,
and coronal views using our technique are demonstrated in
Figure 6 for CT data from four subjects at different contrast-
enhancement phases. The 3D kidney surface is constructed

II IIII

Figure 6: Cross-sectional axial (I), sagittal (II), and coronal (III)
segmentation results of our approach for multiple subjects at differ-
ent contrast-enhancement phases, showing reliable determination
of kidney borders (red) compared with the ground truth (green)
contours.

Table 1: Segmentation accuracy of our method compared with
Zhang et al. [47] approach based on the DC, PVD, and BHD95
metrics. Note that DC, PVD, BHD95, and SD stand for Dice coef-
ficient, percentage volume difference, bidirectional 95th-percentile
Hausdorff distance, and standard deviation, respectively.

Metric
Segmentation method

𝑝 valueOur Zhang et al. [47]
Mean ± SD Mean ± SD

DC (%) 97.27 ± 0.83 91.60 ± 2.29 ≤10−4

BHD95 (mm) 0.93 ± 0.49 5.36 ± 1.12 ≤10−4

PVD (%) 2.92 ± 2.21 5.00 ± 3.28 ≤10−4

by accounting for the object labels in the output of the
RF classifier. Followed by a postprocessing step using a
3D median filter to smooth the noisy output labels of the
classifier. The segmentation accuracy of our framework is
assessed using the evaluation metrics described in Section 3.
The overall accuracy for all subjects in terms of mean and
standard deviation is summarized in Table 1.
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I IIIII

A B A B A B

Figure 7: Cross-sectional axial (I), sagittal (II), and coronal (III) segmentation results from multiple subjects at different contrast-
enhancement phases of our approach (A) and the approach proposed by Zhang et al. [47] (B). The red and green contours refer to model
segmentation and the ground truth, respectively.

In order to demonstrate the high accuracy of our kidney
segmentation framework, we compare it with the image
segmentationmethod that was proposed by Zhang et al. [47],
which has a freely available software package and thus avoids
reimplementing an existing method. Figure 7 demonstrates
sample segmentation results comparing our method versus
the approach proposed in [47] on multiple subjects. The
results in Figure 7 show reliable determination of the kidney
borders of our technique compared to Zhang et al. [47]
method. Additionally, a summary of the overall segmentation
accuracy of our and Zhang et al. [47] methods, with respect
to the ground truth delineation, for all data sets, is given in
Table 1. According to the higher DC and lower HD95 and
PVD values in Table 1, our technique performs notably better
compared with [47]. This has been documented using the
statistical significance of the statistical paired 𝑡-test as shown
in Table 1 (𝑝 value is < 0.05).

In addition to the segmentation evaluation metrics
described in Section 2.2, the robustness of our segmentation
framework is assessed using the receiver operating char-
acteristics (ROC) [48] as an alternate metric to evaluate
the performance of segmentation systems. Generally, the
ROC analysis assesses the sensitivity of a segmentation

method relative to the choice of its operating point (e.g.,
a classification threshold). This is achieved by plotting the
relationship between the true positive and false positive
rates for different operating points. Figure 8 shows the ROC
curves of our method and Zhang et al. [47] approach. The
figure clearly demonstrates that our technique attained higher
performance compared with [47], as evidenced by the area
under the ROC curve (AUC) of 0.96 compared with 0.92 for
Zhang et al. approach [47].

5. Conclusions

In conclusion, a random forests-based framework is pro-
posed for 3D kidney segmentation from dynamic contrast
enhanced abdominal CT images. In order to account for large
kidney inhomogeneity and nonlinear intensity variation of
the dynamic CT data, our framework integrated two spatial-
appearance features, namely, the higher-order spatial inter-
actions features and appearance-based adaptive shape prior
features, in addition to the Hounsfield appearance features.
Qualitative and quantitative evaluation results confirmed
reliable kidney tissue segmentation using our approach at
different contrast-enhancement phases of agent transit. This
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Figure 8: The ROC curves for our segmentation method and the
method proposed in [47]. The “AUC” stand for the area under the
curve.

has been evaluated on CT data sets collected from 20 subjects
using both volumetric anddistance-based evaluationmetrics.
In the future work we will investigate the addition of other
features (e.g., scale space, local binary patterns). Also, we plan
to test our framework on larger data sets to assess its accuracy,
robustness, and limitation. Ultimately, we plan to include this
segmentation approach into a kidney-dedicated CAD system
for early detection of acute renal transplant rejection and
treatment planning.
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