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Haematopoietic stem cells (HSCs) are responsible for maintaining immune

cells, red blood cells and platelets throughout life. HSCs must be located

in their ecological niche (the bone marrow) to function correctly, that is, to

regenerate themselves and their progeny; the latter eventually exit the

bone marrow and enter circulation. We propose that cells with oncogenic

potential—cancer/leukaemia stem cells (LSC)—and their progeny will

also occupy this niche. Mathematical models, which describe the dynamics

of HSCs, LSCs and their progeny allow investigation into the conditions

necessary for defeating a malignant invasion of the niche. Two such

models are developed and analysed here. To characterize their behaviour,

we use an inferential framework that allows us to study regions in parameter

space that give rise to desired behaviour together with an assessment of the

robustness of the dynamics. Using this approach, we map out conditions

under which HSCs can outcompete LSCs. In therapeutic applications, we

clearly want to drive haematopoiesis into such regimes and the current

analysis provide some guidance as to how we can identify new therapeutic

targets. Our results suggest that maintaining a viable population of HSCs

and their progenies in the niche may often already be nearly sufficient to

eradicate LSCs from the system.
1. Introduction
Haematopoietic stem cells (HSCs) are somatic stem cells which reside in the

bone marrow and produce all blood cell lineages [1]. The key characteristic of

an HSC is its stemness, which is defined by the following criteria: it must

have the ability to self renew, enabling maintenance of a stem cell pool; it

must be able to generate multiple cell types through asymmetric division;

and regenerate tissue when transplanted after cultivation ex vivo; finally, it

should also be able to quiesce, enabling a long lifetime [2]. Resulting from

their ability to respond to their environment in such a variety of ways, HSCs

and the haematopoietic system are robust to deviations from the steady state,

for example, following injury [3]. Despite the successful characterization of

the process of haematopoiesis, there remain still large gaps in current under-

standing; for example, it is not known what mechanisms lie behind cell fate

choices that lead to maintenance of the stem cell pool as well as the correct

mix of differentiated myeloid and lymphoid cells, and how in detail HSCs

interact with their environment in health and disease.
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HSCs and their behaviour appear to be also characterized

by their dependency on the so-called niche. In stem cell

biology, the HSC niche comprises the complete set of

environmental signals originating from HSC progeny, bone

marrow stroma cells and other factors that regulate HSC

function [4,5]. There has been much recent work on specify-

ing the location of the HSC niche within the bone marrow

[6–8] and identifying the cells and features that characterize

the HSC niche. Whilst osteoblasts have been shown to play

a crucial role in this niche [9,10], support grows for the

roles of other cells as key niche factors [11].

Owing to the uncertainty about the anatomical constitu-

ents of the niche, an ecological approach is taken here. In

ecological terms, a niche refers to the position of an organism

within its environment defined by its habitat and the finite

set of resources available to it. It is this broader definition

that we will adopt throughout this paper. Our modelling

approach is thus flexible enough to encompass unknown

components because these are (implicitly) contained within

the definition of an ecological niche as considered here. We

will argue below that this ecological perspective allows us

to capture essential aspects of HSC biology and, in particular,

the interplay between normal HSC lineages and leukaemic

stem cells and their progeny.

Leukaemia, a cancer of the blood, which can occur in all

types of blood cell, originates in the bone marrow [12]. There

are several proposed theories for the cellular composition of

cancerous cell populations, the predominant of which is the

cancer stem cell theory [13]. This states that within a population

of cancer cells there exists a sub-population of cells which exhi-

bit stem cell-like properties and which are primarily responsible

for the maintenance of the cancer and its regeneration following

therapy [14]. Thus, within a tumour population there exist cells

analogous to the multipotent stem cells and lineage committed

cells, which are also found in healthy tissue. While the exact

identity of the cell of origin for different leukaemias is still

unclear (and likely different), it is accepted that driving onco-

genic translocations together with additional mutations are

responsible for the transformation of normal haematopoietic

cells into leukaemia stem cells (LSCs; [15]).

We are then faced with a situation where haematopoietic

and leukaemia cells compete for the same niche and function

in similar ways, responding to many of the same signals.

Thus, it is natural to suggest that there exists direct compe-

tition for niche space and resources (such as interactions

with niche-maintaining cells) between these species and

their progeny. Studies have found evidence for such compe-

tition through the homing properties of LSCs [16] and in

cases when HSCs are impaired either as a result of ageing

or irradiation [17,18]. Although much attention has been

paid to the molecular signalling and regulatory pathways

controlling HSC behaviour and, to a lesser extent, how

LSCs could interact with and disrupt this behaviour, to our

knowledge there have been few studies that have framed

this problem in terms of ecological competition (despite the

fact that an increasing number of mathematical and compu-

tational approaches are gaining a foothold in stem cell

biology [3,19–25]).

The basic mathematical analysis of ecological competition

between multiple species is now well developed, and a host

of analytical results have been obtained for the canonical

models [26,27]. Here, we are most interested in the cell intrin-

sic factors that exert the greatest influence over the species
they control, under the effects of competition from other

species within the niche. There is a large body of work on

the gene regulatory pathways which are involved in haema-

topoiesis and the related cancers [25,28–30]; we hope that by

taking this slightly higher population-level view of the

interacting species, we will be able to identify types of inter-

vention that will allow us better to understand and control

the differentiation and proliferation of competing HSCs and

LSCs. The current perspective complements the molecular

and mechanistic studies which are aimed at elucidating

cellular decision-making processes. The population dynamics

of cell lineages set constraints on the range of the dynamical

behaviour of HSCs and their differentiation/proliferation

behaviour and vice versa.

Whereas for some biological systems there is a wealth of

data against which models can be fitted or compared with, in

other cases, we have to base our analyses on less detailed infor-

mation. Here, rather than estimating parameter values from

what might be insufficient or irrelevant information, it is pru-

dent to take a more general approach. With a few notable

exceptions [31–34], we are not yet able to identify native

HSCs in vivo with confidence and gather extensive amounts

of data. It is possible to study leukaemia in mice, however,

the experimental models available do not fully reflect the

dynamics of leukaemia development taking place in patients.

Xeno-transplantation of human leukaemia cells into immuno-

compromised mice is widely used, but it leads to inconsistent

engraftment levels and does not take into account the role of

the immune system in recognizing leukaemia development.

Host conditioning prior to injection of human and mouse leu-

kaemia cells is also widely used and provides a far from

physiological starting point for the development of the disease.

In experimental models that do not use conditioning, such as

transgenic mice, leukaemia is initiated through expression of

a driving oncogene in a specific cell population and not in a

single leukaemia initiating clone through the use of artificial

promoters. These initial conditions are very different to what

we would expect to see in leukaemia patients where disease

will typically arise from mutations in a single cell or lineage.

Furthermore, recent results (both experimental and theoretical)

suggest that within a population of cancerous cells, it may be

hard to determine which proportion of cells exhibits stemness

[35,36]. For these reasons, we proceed to explore large regions

of parameter space and characterize the solutions they produce,

rather than investigate models based upon any particular par-

ameter set. By analysing models according to distinct outcomes

that we select, we can test their robustness with regards to

changes in input. We are thus able to home in onto dynamical

regimes that exhibit certain types of behaviour in a compu-

tational affordable manner (even when other tools such as

bifurcation analysis would be inappropriate because we are

interested in quick responses). This, we propose, allows us to

suggest new ways for therapies to coax the behaviour in the

HSC niche into certain desirable directions.
2. Mechanistic models of the haematopoietic
stem cell niche

2.1. Model assumptions
HSCs (species S in the model) are ancestors of all types of

blood cells, a diverse set performing many different
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functions [4]. Here, we are not investigating all the possible

blood cell fates, but the general mechanism of blood cell pro-

duction; so we do not consider each type of blood cell

individually, but group them all under the category of term-

inally differentiated blood cells (D). In between these and the

stem cells, we group together all haematopoietic progenitor

cells that are lineage committed and progressively lose

self-renewal capacity (A). For the questions under investi-

gation in this work, this coarse-grained version of the

haematopoietic tree is sufficient [37]. All species are pro-

duced within the bone marrow ecological niche, but the

population of differentiated cells, D, will leave the niche at

a high rate as these cells enter the bloodstream; in healthy

adult humans, for example, some two million new erythro-

cytes enter the bloodstream from the bone marrow every

second [38].

Complementary to this model of the healthy haemato-

poietic system, we model leukaemia as two sub-populations

of cancer cells, L and T. Here T are terminally differentiated

leukaemia cells and L are proliferating leukaemia cells. We

will mainly refer to the L population as LSCs, but in fact in

our coarse grained model L represent any cell population

driving the growth of leukaemia, including pre-LSCs, LSCs

or leukaemia progenitor cells. This is important because

both pre-LSCs and progenitor cells transforming to LSCs

have been observed to play a role in the progression of

leukaemias [16,39].

We do not have to model the intermediate stage in leukaemia

differentiation explicitly (leukaemic species analogous to A).

Species A is included because we are interested in how

its dynamics change during disease progression; the effects

of healthy species on a leukaemic progenitor population are

of less interest. Furthermore, including an intermediate

leukaemia species does not qualitatively change the results that

are obtained. This statement is qualified in the electronic

supplementary material, where a model with six species

is analysed (see the electronic supplementary material,

figure S1).

2.2. Niche competition
Competition models are based upon the ideas introduced

by Lotka & Volterra and later ecologists, who consider

two or more species that rely on the same limited (environ-

mental) resource for their survival and proliferation

[26,27,40]. In the case of haematopoiesis, this resource is

the niche space available to stem cells, defined through

the molecular signals necessary to maintain correct

function [5].

In general terms, the competition, which exists between

two species, x and y, where X and Y define the population

size of each type, can be expressed in mathematical form as

dX
dt
¼ Xða� gðX þ YÞÞ ð2:1Þ

and

dY
dt
¼ Yðb� gðX þ YÞÞ; ð2:2Þ

where a and b represent the growth rates of species x and y,

respectively, g is the strength of the feedback signal and a,

b, g � 0; further examples of competition are given in

Hofbauer & Sigmund [26]. This system assumes that the

effect from feedback is linear and that both x and y experience
feedback proportional to the combined population sizes of the

two species. In a more general case, the feedback effect from

(Xþ Y ) could vary for each species, or the individual contri-

butions could be altered. In this (simple) example, the

equilibrium solutions can be trivially characterized. For all sol-

utions with a= b, the species with the greater growth rate

will dominate and the other will go to zero. If (2.1) and (2.2)

are generalized so that the feedback parameters for each

term vary, coexistence or bistability (in which case the initial

conditions affect the steady state taken up by the system) are

also possible.

In the models presented here the number of species

increases from two to five, but the number of parameters

increases considerably as the model grows. In May [27], it

is suggested that as species are added to a competition

model, its stability, as measured by the smallest eigenvalue

of the feedback coefficient matrix, will not increase but

usually decreases. This general trend should be kept in

mind when comparing real scenarios with the simple case

described above.

2.3. Model A
In model A, we describe five species with competition mod-

elled by linear feedback. The first three species are

haematopoietic stem cells (S), progenitor blood cells (A)

and terminally differentiated blood cells (D). Leukaemic

stem cells (L) and fully differentiated leukaemia cells (T )

complete the set (figure 1). The equations which fully specify

the dynamics of model A are given below.

dS
dt
¼ a1SðK � ZÞ � b1S ð2:3Þ

dA
dt
¼ b1Sþ c1AðK � ZÞ � e1A ð2:4Þ

dD
dt
¼ e1A� fD ð2:5Þ

dL
dt
¼ a2 LðK � ZÞ � b2 L ð2:6Þ

and
dT
dt
¼ b2 L� gT: ð2:7Þ

Here, Z ¼ S þ A þ D þ L þ T, the parameter set (a1, b1, c1,

e1, f, a2, b2, g) characterizes the phenotypes of the five species

involved (table 1) and K represents the so-called carrying
capacity, i.e. the total number of cells that can exist within

the bone marrow. In this case K is ‘hard’ in the sense that it

provides an exact upper limit for the total population size

of the niche. (In model B below, the carrying capacity is

‘soft’ and is not equal to the maximal total population size.)

In simulations K ¼ 1 is used such that the population sizes

are given as concentrations.

2.4. Model B
Model A appeals owing to its simple form that ought to facili-

tate explanation of its behaviour. There are, however, certain

aspects of the haematopoietic system, which have not been

included but which will be important biologically (and math-

ematically owing to the effects they would have on the

dynamics of the system). These are addressed with our

second model. Here, stem cell fates are modelled explicitly;

that is, the terms controlling the rates of symmetric renewal

(S! 2S), asymmetric renewal (S! S þ A), symmetric
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Figure 1. A model of competition within the HSC niche. Normal haematopoiesis occurs through HSC production of progenitor cells (A) that differentiate to mature
blood cells (D). Alongside, a pool of mature leukaemia cells (T ) is maintained by self-renewing LSCs. Mature cells are able to leave the niche by migration into the
bloodstream.

Table 1. Parameter set which describes model A.

parameter definition

a1 rate of self-renewal of S

b1 rate of transition S! A

c1 rate of self-renewal of A

e1 rate of transition A! D

f rate of disappearance of D

a2 rate of self-renewal of L

b2 rate of transition L! T

g rate of disappearance of T
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differentiation (S! 2A) and loss of S (S! ;) are incorpor-

ated explicitly (similarly for L). This is in contrast to, for

example, a1 in model A which accounts for production of

species S by any means. This allows for more detailed inves-

tigation of the relationships between fate choices, at the cost

of increasing the size of the parameter space. In Mangel &

Bonsall [37], haematopoietic stem cells and their descen-

dants were modelled in a similar fashion. There feedback

terms associated with stem cell fates were given an exponen-

tial form; in model B, this form is adopted. It is arguably

more realistic that as the niche fills (or becomes crowded)

the feedback effect increases faster than linearly, due, for

example, to complex patterns of feedback from other cells

in the niche.

The third important distinction between the models

regards, therefore, the form of the niche. Within the bone

marrow niche the location of HSCs (and LSCs) may be lim-

ited to specific sub-regions governed by particular signals

[10,41]. In order to capture this behaviour, we separate the

feedback terms into one containing the stem cell species S
and L, and one containing all other species.

The assumption that there exists no overlap of species

between these sub-niches may be oversimplifying matters

in principle, but ought not to matter in practice as we will

argue later. Thus, for the present at least, this assumption is

upheld, also in an attempt to keep model complexity under

control and maintain parsimony. Equations (2.8)–(2.12)
describe the dynamics of model B, and equations

(2.13)–(2.15) specify the feedback.

dS
dt
¼ SF1ðl1 � l3F3Þ � m4S ð2:8Þ

dA
dt
¼ SF1ðl2F2 þ 2l3F3Þ þ ðl5 � m6ÞA ð2:9Þ

dD
dt
¼ x1m6A� m8D ð2:10Þ

dL
dt
¼ LF1ðk1 � k3F3Þ � n4 L ð2:11Þ

and
dT
dt
¼ LF1ðk2F2 þ 2k3F3Þ � n8T: ð2:12Þ

Where

F1ðg1;S;LÞ ¼ e�g1ðSþLÞ ð2:13Þ

F2ðg2;A;D;TÞ ¼ e�g2ðAþDþTÞ ð2:14Þ

and F3ðg3;A;D;TÞ ¼ e�g3ðAþDþTÞ: ð2:15Þ

The parameter set required to fully specify the pheno-

types of these species is now (l1; l2;l3;m4; l5;m6;x1;m8;k1;

k2;k3; n4; n8; g1; g2;g3). These quantities are described in

Table 2. In our model analysis, the first 13 of these parameters

are varied; for simplicity we assume that g1, g2 and g3 that

control feedback are identical and held fixed at the values

g1 ¼ g2 ¼ g3 ¼ 0.01 (resulting in an arbitrary rescaling of

other parameters). The feedback terms, equations (2.13)–

(2.15), account for the effects of the occupants of each

sub-niche on all differentiating species (S, A and L). F1

describes the effect of S and L on themselves; F2 and F3

describe the effects of A, D and T on the differentiating species.

The models presented here rely on certain other key

assumptions which ought to be made explicit. The forms of

L and T are similar to their healthy counterpart species: S
for L and A or D for T. Model A assumes that only D or T
can leave the niche by migration. This is not the case for

model B, where all species can migrate or die. In model A,

T has the same form as D; in model B, T is expressed as a

combination of the structure of A and D. That is, T is

produced directly from L but cannot self-replicate.



Table 2. Parameter set which describes model B.

parameter definition

l1 rate of symmetric renewal of S (S! 2S)

l2 rate of asymmetric renewal of S (S! S þ A)

l3 rate of symmetric differentiation of S (S! 2A)

m4 rate of migration/apoptosis of S

l5 rate of amplification of A

m6 rate of disappearance of A

x1 rate of transition of A! D

m8 rate of migration/apoptosis of D

k1 rate of symmetric renewal of L (L! 2L)

k2 rate of asymmetric renewal of L (L! L þ T )

k3 rate of symmetric differentiation of L (L! 2T )

n4 rate of migration/apoptosis of L

n8 rate of migration/apoptosis of T

g1, g2, g3 terms controlling feedback strength
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3. Robustness analysis via approximate Bayesian
computation

The problem of classifying the steady state solutions of models

of complex systems is often substantial. However the rewards

of such efforts—a qualitative analysis of the results a model

may provide—are great. Analytical expressions for the

steady states can be obtained by solving the system of ordinary

differential equations (ODEs) after setting each equation to

0. Analysis of these provides information about what equili-

bria can be reached and how stable they are [42]. However,

here, we do not take an analytical approach but a numerical

one. First, because the analytical results only hold in the

limit t!1, whereas using our method we reach the steady

states in finite time. Second, because the idea of any biological

steady state in cancer other than extinction or metastasis is

dubious—such states should be referred to as pseudo-steady

states—taking an approximate approach to the analysis of

the steady states in the model seems best.

By sampling parameter sets and simulating a model from

these, we can obtain unbiased dynamical trajectories as

examples of a model’s behaviour that we can classify, accord-

ing to some suitable criteria. Here, we classify trajectories

according to whether HSC lineages win, LSC lineages win,

or neither lineage wins (either due to coexistence, bistability

or because the result falls into neither category). Obtaining

enough samples for such outcome-clustering to be meaning-

ful, however, may be difficult in practice, whenever the

number of parameters affecting the system’s dynamics

exceeds five or six. We can use Latin hypercube (LH) or

Sobol sampling approaches in order to sample more evenly

over the entire parameter space, but even so coverage is

often too sparse [43]. For a model with 10 parameters, for

example, we require in excess of 1 000 000 samples to obtain

just four samples per dimension. Furthermore, even given

successful classification of a model’s solutions, dissecting or

further analysing such clustering within a high dimensional

space is challenging. This is particularly true when we are

investigating parameters that vary over orders of magnitude.
Rather than following such a global (but non-adaptive)

sampling strategy, we can target our investigation by system-

atically identifying regions in parameter space where a model

produces some desired behaviour. That is, rather than fitting

a model to experimental data, we specify (surrogate) data

that correspond to a system state that we are interested

in. The conditions under which this type of behaviour is rea-

lized are initially unknown, but can be identified with

approximate Bayesian computation (ABC). Originally devel-

oped for cases where computing the likelihood is not

feasible, which is often the case for large, complex systems,

ABC methods provide a convenient solution [44] to identify

those parameters that have a high probability of having gen-

erated the data. ABC methods forego evaluation of the

likelihood in favour of comparing real with simulated data

[45,46]. If simulated data x0 for some parameter value u0 is

found to be in good numerical agreement with the observed

data, x0, then u0 is accepted as a valid draw from the

(unknown) posterior distribution

PABCðujx0Þ � 1ðDðx0; x0Þ � eÞf ðx0juÞpðuÞ; ð3:1Þ

where p(u) summarizes our prior knowledge/expectations

on u and fðx0juÞ is the data-generating model, D(a,b) is a suit-

able distance function and e is our tolerance level, which

determines how closely real and simulated data have to

agree. ABC methods can also be used in the context of Baye-

sian model selection in order to choose the best model (given

the data and compared with the alternative models con-

sidered; [47]). Bayesian model selection approaches strike

an implicit balance between the predictive power of a

model, its complexity (by favouring more parsimonious

models over larger models unless these describe the data sig-

nificantly better) and robustness. However, the same

approach can also be used to scan models for the ability to

generate certain outcomes. Here, we are interested in situ-

ations where there is competition between HSCs and LSCs,

and in particular, we want to understand under what con-

ditions the ‘ecological’ interactions between the two cell

types (and, of course, their progeny) favours the HSCs and

ideally results in suppression of LSCs.

To this end, we use qualitative inference to seek to deter-

mine, PðujL ¼ 0Þ, i.e. the probability distributions over

parameters, u, that—reliably and efficiently—yield loss of

LSCs (and stable HSC pools). Our method is qualitative in

the sense that we do not fit our model to surrogate data,

instead we fit it to criteria that specify the behaviour we

require: stable, positive populations of healthy cell species

and vanishing populations of leukaemia species. The ABC

sequential Monte Carlo (SMC) sampler of Toni et al. [44]

allows us to do this and is already implemented in the ABC

Sys-Bio package [48]. ABC SMC proceeds by approximat-

ing the posterior distribution, PðujxÞ (where x is some data

or specified system behaviour), in an iterative (sequential)

fashion. Compared with other sampling methods of large-

dimensional parameter spaces, e.g. random, LH and Sobol

sampling [43], these Bayesian methods have the advantage

of homing in onto regions in parameter space that have a

high probability of resulting in the desired or observed out-

come, and do not waste much time on exploring the

generally vast regions of parameter space that do not lead

to the specified outcome (figure 2). The sequential nature of

the SMC framework also incorporates a natural adaptive/



q2

q1 q1 q1

(a) (b) (c)

Figure 2. Three different ways to sample over the two-dimensional par-
ameter space of u1 and u2. (a) Random sampling draws from a
multivariate uniform distribution. This is the most general (undirected)
approach. (b) By subdividing the space using a LH, more even sampling
of the space is obtained. (c) In contrast to the global approaches of (a)
and (b), ABC sampling is targeted towards regions of acceptable model be-
haviour, as represented by the blue circles growing darker with each iteration.
the advantage of such an approach is that time is not wasted searching
through those areas of space that we are not interested in.
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learning component, which here allows us to assay potential

model behaviour efficiently and comprehensively [49].
4. Characteristics of desirable behaviour
We investigate the circumstances under which the two

models favour HSCs whilst suppressing LSCs, that is, S, A
and D . 0 and L ¼ T ¼ 0 on reaching steady state. Each

parameter was sampled from a uniform prior distribution

in the range [0,1], since the parameters in the model are

presented as rates. The posterior distribution that we obtain

shows the regions of parameter space that are most likely

to suppress leukaemia. Each parameter is described by a

histogram; pairs of parameters can be visualized on

two-dimensional density plots. This is illustrated in figure 3a.

Overall, we see that those parameters controlling LSC

dynamics are less well inferred (less peaked) than those con-

trolling HSC dynamics. This suggests that requiring a species

to die out is a less stringent condition than requiring a species

to reach some finite population size, as is the case for haema-

topoietic species S, A and D. A comparison between the

parameters controlling healthy and leukaemia dynamics is

shown in figure 3b. The full set of results for model A is

given in the electronic supplementary material, figure S2.

The posteriors that we obtained appear to be unimodal.

Therefore, principal component analysis (PCA) was per-

formed on the posterior distribution for the parameters in

order to evaluate the robustness of these systems to ( joint)

changes to parameters [50,51]. The principal components

are constructed by finding the eigenvalues and eigenvectors

of the covariance matrix of the parameters. The first principal

component (corresponding to the largest eigenvalue) corre-

sponds to the direction where the posterior is widest; the

last principal component (corresponding to the smallest

eigenvalue) points into the direction of least variance. This

provides us with an indication of those parameters that are

tightly constrained by the imposed/desired system behav-

iour; i.e. varying these parameters by even moderate or

small amounts can have appreciable effects and differences

in the system output (in the vernacular of Sethna and co-

workers [52] these are the ‘stiff’ parameters). Here, these

smallest principal components are of primary interest

unlike in most cases, where PCA is used to try to identify par-

ameters that control the largest variance in the data (i.e.
distinguish between outcomes). Such ‘sloppy’ parameter

(combinations) are less critical for determining system

dynamics and may sometimes even not be identifiable (i.e.

extend over the whole prior range).

For model A, the majority of the last principal component

(56%) was composed of contributions from the parameters a1,

b1 and e1. The second last principal component was mainly

composed (63%) of e1 and f. So, in order to suppress leukae-

mia by populating the niche with healthy blood cells, it is

most important to observe specific rates of the production

of progenitor blood cells, self-renewal of the stem cells that

are producing them, production of terminally differentiated

cells from progenitor blood cells and of the migration/

death of these differentiated cells.

For model B, the 13 free parameters were also sampled

from uniform priors on [0,1]. Parameters controlling healthy

cell dynamics are better inferred than parameters controlling

leukaemia. As in the case of model A, the constraint L;T ! 0

at equilibrium is more easily met than the constraint for HSC

species to reach a finite positive value above some threshold.

In figure 4, the posterior distribution for the stem cell

dynamics is shown. The full output for model B is shown

in the electronic supplementary material, figure S3.

We see in figure 4 that the posterior for HSC asym-

metric differentiation is uninformative. The result that more

information is given about self-renewal and symmetric differ-

entiation rates suggests that controlling the rate of HSC

asymmetric differentiation does not assist in achieving LSC sup-

pression. Controlling self-renewal and symmetric differentiation

of HSCs is sufficient in this case. In contrast to the parameters con-

trolling HSC fate, none of the parameters controlling LSC fate

need to be specified in order to achieve leukaemia suppression.

PCA was also performed on the results for model B. The

last principal component is dominated (66%) by l1, l3 and

m4, which collectively control the fate of HSCs. This suggests

that leukaemia can be beaten if a healthy population of HSCs

is present. The second last principal component is mainly

composed (64%) of l5 and m6. These parameters control

healthy progenitor cell (A) dynamics and are analogous to

e1 and f in model A. There is also a significant contribution

(8%) from n4 to this principal component, suggesting that

of all the parameters controlling leukaemia, the death rate

of LSCs could influence model dynamics the most.
5. Discussion
Here, we tried to determine under what circumstances leu-

kaemia stem cells and their progeny succumb to normal

HSCs and their progeny. We have taken a population-level

perspective that models a highly simplified representation

of the ‘ecology’ in the haematopoietic niche. In order to inter-

pret these results, we have to address two questions: first,

according to our simplified model, which parameters control

the ecological balance, and which interventions would allow

us to shift this balance in favour of normal non-leukaemic

HSCs maintaining themselves and their progeny in the

niche? And second, how can we relate these highly idealized

model results to the processes occurring in the real world?

The answer to the second question must depend on the

answer to the first question and we address them in turn.

The results from both models suggest, perhaps somewhat

counter-intuitively, that it is more important to maintain the
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dynamics of the HSC lineage within certain bounds than con-

trolling parameters related to the LSC lineage. One reason for

this is that there are many scenarios where suppression of

the LSC lineage is relatively straightforward, but where

nevertheless the HSC lineage cannot be maintained, recovers

very slowly, or where both lineages coexist. This is perhaps

the most important lesson emerging from both models.

The models presented here were developed based on the

biological feature set we aim to describe: the crucial com-

ponents of which are stem cell differentiation, competition

for an ecological resource and feedback mediated by the

niche. By characterizing solutions according to the lineage

outcomes, we show that we can compare the likelihood of

niche dominance by one lineage or another, given a certain

model. There are certain regions of parameter space that pro-

duce results that are not permissible biologically, such as

infinite population sizes. This is the case for model B in the

region l5 . m6, where results are unbounded. This can be
deduced both from ABC parameter inference, which excludes

this region even for large tolerances, and from simulation. So

if species A is self-replicating more quickly than it is

disappearing, the system is unstable.

The niche (of size K) can be divided into sub-niches, K ¼
K1 þ K2 as there is some evidence that HSCs and by exten-

sion LSCs reside in specific sub-compartments of the

(ecological) niche. We must consider whether this coarse-

grained description is realistic, or whether in reality we

have a situation whereby some species move between sub-

niches. Our central findings, however, appear to be robust

features of niche-mediated feedback: in particular, we believe

that maintenance of the HSC lineage is important to drive

down LSCs and their progeny. In turn, an assault on LSCs

and their progeny on its own will likely not suffice to restore

the haematopoietic system.

There are many different ways to study the behaviour of

a biological system. In this work, we look at a model
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globally, by performing targeted investigation of its whole

behaviour space. This is facilitated by ABC. Thus, we can

understand the stability and robustness properties of our

system. In other studies [53], robustness is defined as the

ability of a system to maintain its functions under

perturbations, and contrasted with stability which has the

narrower definition of maintaining certain system states.

Using ABC, we can characterize not only a system’s stability

but also its robustness by looking at the maintenance

of system functions, in this case the survival of the

haematopoietic lineage.

Throughout the analysis of the models presented here, we

have been considering the case where the presence of LSCs is

already established. This should, we feel, include pre-clinical

dynamics as well. Small leukaemia populations could

occur often in the ecological niche and be outcompeted by

healthy species thus restoring normal haematopoiesis.

These instances are interesting because they provide more

clues about the conditions favourable for suppressing an

invasion of the niche by leukaemia cells.
Models must strike a balance between simplicity and rea-

lity. In the endeavour to retain or, more correctly, establish

simplicity, many known aspects of the biology of haemato-

poiesis have been left out of the current analysis. For

example, more complicated hierarchies and feedback from

the periphery into the niche could be included. However,

here too, details of the processes involved are largely

unknown, and the explorative use of techniques such as

ABC, which combine the ability to condition on desired or

expected (quantitative and qualitative) behaviour with an

assessment of the robustness of this behaviour are useful. In

the future, such methods will aid experimental design and

enable the study of how external (therapeutic) targets can

be designed to control patterns of HSC differentiation.
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