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Abstract

Background: The older population is a risk group for hypovitaminosis D. The Ultraviolet Index (UVI) can be an
indicator of potential for cutaneous synthesis of vitamin D but physiological and other environmental factors also
influence vitamin D synthesis and status. Knowledge about vitamin D status in Portuguese older adults is limited.
This study aims to explore the association between Ultraviolet Index and serum 25-hidroxyvitamin D3 [25(OH)D]
levels accounting for other potential influential factors.

Methods: A cross-sectional study was conducted between December 2015 and June 2016, in 1497 Portuguese
older adults (≥ 65 years) within Nutrition UP 65 project. For each participant, serum 25(OH)D was determined and
the mean UVI (mUVI) in the respective residence district was calculated for the previous 30 days. Stepwise linear
regression analyses were conducted for the following periods of blood collection: between December and June,
December and March and April and June. Standardized regression coefficients (Sβ) and 95% confidence intervals
were calculated.

Results: The median 25(OH)D concentration was 35.9 nmol/L. The UVI was independently and positively associated
with 25(OH)D in the models for December–June (Sβ = 0.244, 95% CI: 0.198; 0.291, P < 0.001) and April–June (Sβ = 0.295,
95% CI: 0.299; 0.362, P < 0.001) and independently and negatively associated in December–March period (Sβ = −0.149,
95% CI: -0.211; −0.087, P < 0.001).

Conclusions: In this sample with high vitamin D deficiency frequency, the UVI was a predictor of 25(OH)D levels but the
direction of the association varied according to the blood collection period. Our results suggest that accounting for the
time of year in future research regarding vitamin status and related public health recommendations may be relevant.
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Background
Vitamin D deficiency may be considered a pandemic in
Europe and a global public health problem that also en-
tails an economic burden [1, 2]. Older adults, aged
65 years and older are a risk group for vitamin D
deficiency [3] and consequences include osteomalacia
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and increased risk of muscle weakness, falls and frac-
tures [4, 5]. Hypovitaminosis D has also been associated
with an increased risk of several morbidities including
neuropsychiatric, such as dementia [6], and cardiovascu-
lar diseases [7].
Sources of vitamin D include solar ultraviolet B (UVB)

radiation, diet and supplements. Sun exposure can be
considered the main source [4], but at some latitudes
and/or seasons, it is not enough to maintain an adequate
status and diet or supplements may have a more import-
ant role [3].
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The cutaneous synthesis of vitamin D is influenced by
environmental factors such as UVB radiation available,
which is a function of the solar zenith angle that varies
with latitude, season and time of day, as well as individ-
ual factors such as age, skin pigmentation and sun ex-
posure behaviours [8]. As latitude and age increase,
potential to synthesize vitamin D decreases.
Vitamin D synthesis usually increases from spring to

summer and decreases afterwards [4]. This results in a
seasonal variation of 25(OH)D serum concentrations,
which reaches its nadir in winter/early spring [1, 9].
Researchers have described a “vitamin D winter” refer-
ring to the months during which solar UV radiation is
not intense enough to allow synthesis [9, 10] and occurs
at latitudes above approximately 35°-40 °N [8, 11–13].
The UV index (UVI) is a parameter that describes

the level of UV radiation at the Earth’s surface that
can cause erythema [14]. Additionally, the UVI can
be an indicator of potential for cutaneous synthesis
of vitamin D: the higher the UVI the greater the
potential [15]. In most studies, sun exposure and
UVI are associated with 25(OH)D concentrations
[16–19], but investigation in vivo is still complex.
Several studies have also focused on the effect of
latitude and season on 25(OH)D. UVI provides
more information than latitude by itself, because it’s
dependent on solar zenith angle and accounts for
other variables that affect UV radiation available for
synthesis. This study will explore the association of
UVI and 25(OH)D concentrations accounting for
the effect of other variables such as sociodemo-
graphic, health and anthropometric data, which
were not included in previous studies that evaluated
sun exposure or just the association between UVI
and vitamin D status.
Current knowledge about the vitamin D status of eld-

erly in Portugal is limited [20].
In other countries in similar latitudes, such as Spain

[21–23] and Italy [24, 25] as well as in Europe, America
and Australia more studies have been published in this
area [26, 27]. The investigation of the association be-
tween UVI and 25(OH)D was not done in older adults
specifically [17–19, 28].
Since population ageing is accelerating [29] and given

the pleiotropic effects of vitamin D and the possibility in
modifying disease risk [9], the study of the determinants
of vitamin D status, namely its association with the UVI,
could improve knowledge and provide useful informa-
tion for future research and guidelines that help to face
this problem.
The aim of this study was to explore the association be-

tween UVI and serum 25-hidroxyvitamin D3 [25(OH)D]
levels, considering the effect of other potential influential
factors, in Portuguese older adults.
Methods
Study design and setting
The present study is a cross-sectional study with a sub-
sample of 1497 older adults (≥ 65 years) from the Nutri-
tion UP 65, whose data collection took place between
December 2015 and June 2016. The “Nutrition UP 65
Study - Nutritional Strategies Facing an Ageing Demog-
raphy” is a cross sectional observational study conducted
in Portugal, in a sample of 1500 subjects (≥ 65 years
old). The main objectives were to reduce the nutrition
inequalities and provide knowledge about nutritional
status of this population [20]. The complete description
of Nutrition UP 65 can be read elsewhere [20].
Three individuals were excluded from the original

sample: one subject presented a serum 25(OH)D con-
centration above the toxicity level of 375.0 nmol/L [9]
and two subjects were excluded due to missing data.
All data of this study were obtained within the Nutri-

tion UP 65 except for the UVI and latitude data.

Sampling and recruiting
A quota sampling approach regarding sex, age, educa-
tional level and regional area was implemented to obtain
a representative sample of Portuguese older adults. Eli-
gible individuals were Portuguese, with 65 years of age
or more. The sample was constituted by community-
dwelling and 5% of institutionalized individuals, accord-
ing to the previously described proportion [29].
The regional areas used were the ones defined in the

Nomenclature of Territorial Units for Statistics (NUTS
II): Alentejo, Algarve, Azores, Lisbon Metropolitan Area,
Center, Madeira, and North. A random and stratified
cluster sampling was applied. In each regional area,
three or more town councils with more than 250 inhabi-
tants were randomly selected.
Potential participants were informed about the Nutri-

tion UP 65 and were invited to participate.

Study locations
In total, 15 districts were selected: 13 districts of
mainland Portugal which were Aveiro (40.9 °N), Braga
(41.5 °N), Coimbra (40.2 °N), Évora (38.7 °N), Faro
(37.1 °N), Leiria (39. °N), Lisboa (38.9 °N), Portalegre
(39.5 °N), Porto (41.2 °N), Santarém (39.4 °N), Setúbal
(38.6 °N), Viana do Castelo (41.7 °N) and Viseu (40.8 °N),
in addition to Ponta Delgada from the Azores Archipelago
(38.3°N) and Funchal (32.7 °N) from the Madeira
Archipelago.

Ultraviolet index
The UVI forecast was provided by the Portuguese Insti-
tute of Sea and Atmosphere (IPMA), for the studied dis-
tricts and for the period between November 2015 and
July 2016. The forecast corresponded to the daily
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maximum UVI around the solar noon and was obtained
by the German Meteorological Service (DWD), whose
forecasting has a module structure. The UVI is calcu-
lated based on defined values of aerosol optical depth
and type and of surface UV albedo. It depends on the
solar zenith angle and forecasted ozone columns; it is
also adjusted for other variables, such as altitude and
cloudiness [30].
Data collected in Nutrition UP 65 Study
The following information were collected through a
structured questionnaire (please see Additional files 1
and 2): cognitive performance; sociodemographic data
(sex, age, educational level, professional activity, mari-
tal status, residence and household income); lifestyle
(current smoking habits, consumption of alcoholic
beverages, physical activity and adherence to Mediter-
ranean Diet); skin phenotype; health status and clinical
history. Nutritional and vitamin D status were also
evaluated. The interviews were carried by previously
trained registered nutritionists.
Skin phenotype was self-reported by the participants

and classified according to Fitzpatrick (1975) scale that
comprises six categories (I-VI) in ascending order of
pigmentation [31].
Cognitive performance was assessed by the Portuguese

version of the Mini Mental State Examination (MMSE),
and categorized as impairment or maintenance, using
previously specified cutoff points adjusted for education
level [32].
To estimate physical activity level, the short form

of the International Physical Activity Questionnaire
(IPAQ) was applied [33]. Normal level of physical
activity was defined for men and women as ≥ 383
and ≥ 270 kcal/week, respectively, and low level as
< 383 and < 270 kcal/week, for men and women re-
spectively [34].
Adherence to the Mediterranean diet (MeDi) was

assessed by the Portuguese version of the Prevention
with Mediterranean Diet tool (PREDIMED) [35].
Additionally, consumption of fish or shellfish ≥ 3
servings per week was assessed through a specific ques-
tion included in PREDIMED: “How many servings of
fish or shellfish do you consume per week? (1 serving:
100-150 g of fish or 4-5 units or 200 g of shellfish)” [36].
Health status was assessed by self-perceived health,

which was categorized as follows: very good, good,
moderate, bad and very bad [37].
Supplement intake concerning vitamin D and/or mul-

tivitamins containing vitamin D was self-reported by the
participants. This includes participants that reported tak-
ing drugs containing vitamin D for osteoporosis
treatment.
The Mini Nutritional Assessment® – short form
tool (MNA®-SF) was applied to assess undernutrition
status [38, 39].
Detailed anthropometric measurements were performed

by the registered nutritionists. Body weight was measured
with a calibrated scale (Seca 803, Germany), with a 0.1 kg
resolution, and standing height with a stadiometer (Seca
213, Germany), with a 0.1 cm resolution, following stand-
ard procedures [40]. When necessary, weight was esti-
mated from mid-upper arm and calf circumferences and
height was estimated from nondominant hand length, as
described elsewhere [20]. Circumferences were obtained
with a metal tape (Lufkin, U.S.A., with 0.1 cm resolution)
and hand length with a paquimeter (Fervi Equipment,
Italy, with 0.1 cm resolution). Body mass index (BMI) was
calculated using the standard formula [weight (kg)/height2

(m)]. According to BMI categories, participants were clas-
sified as underweight (< 18.5 kg/m2), normal range (18.5–
24.9 kg/m2), overweight (25–29.9 kg/m2) and obese (≥
30 kg/m2) [41].
Vitamin D status was assessed by dosing the serum

25(OH)D (nmol/L) concentrations. Blood collection oc-
curred between December 2015 and June 2016, although
the time period was not the same for all the districts.
Therefore, blood collection occurred only for five or less
months in some districts. All samples were analyzed in
the same equipment (Cobas Roche) in one central la-
boratory (General Lab) in Portugal, by electrochemilu-
minescence assay using Roche Diagnostic Vitamin D
Total assay (Roche Diagnostics GmbH, Mannheim,
Germany) [42]. The detection limit of this test is
1.2 nmol/L [42].
Exclusion criteria
Potential participants presenting any condition that dis-
allowed the collection of venous blood or urine were
excluded.
Subjects who had missing data regarding their location

were excluded from the original sample.
Statistical analysis
The mean of daily maximum UVI for the 30 days prior to
the respective blood collection date (mUVI) was calculated
for each participant. This time period was chosen for several
reasons. In the literature, half-life of serum 25(OH)D has
been reported to range from 2 to 3 weeks [43] to 2 months
[44]. Also, the lag-time between a change in monthly UV
dose and the corresponding change in 25(OH)D levels has
been reported to range from 4 to 8 weeks [17, 45, 46].
The variable serum 25(OH)D concentrations (nmol/L)

was treated as a continuous variable. Mean latitudes of
the studied districts were calculated based on the partic-
ipants’ postal code.
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Data in descriptive statistics are presented as median
and first and third quartile (Q1 and Q3) of 25(OH)D
concentrations (due to a non-normal distribution) for
each potential influential variable of serum 25(OH)D.
For presentation of the results, variables were catego-
rized as follows: age (65–69, 70–74, 75–79 and ≥ 80 years
old), educational level (0, 1–4, 5–12 and ≥ 13 years of
school completed), marital status (not married or
married), household income (<500, 500–999, ≥ 1000
€/month and does not know or does not declare), skin
phenotype (I-II, III-IV and V-VI), smoking habits (yes if
at least 1 cigarette/month and no if < 1 cigarette/month)
alcoholic beverages consumption (none, moderate if 1
drink/day for women and 1–2 drinks/day for men [47],
and heavy if ≥ 2 drinks/day for women and ≥ 3 drinks/
day for men), undernutrition status by MNA®-SF
(without undernutrition and undernourished/at risk of
undernutrition) and period of blood collection (December–
March which comprises late autumn, winter and early
spring, and April–June which comprises spring and early
summer). This last categorization was also adopted by
other authors [1, 48, 49].
In descriptive statistics UVI was treated as a categor-

ical variable and it was categorized as low (1–2), moder-
ate (3–5), high (6–7) and very high (8–10) [50].
According to 25(OH)D concentrations, participants

were compared for several sociodemographic, lifestyle,
health, nutritional and environmental characteristics. For
the dichotomous variables, statistical significance of dif-
ferences in serum 25(OH)D concentrations was assessed
with the Mann-Whitney test. For variables with more
than two categories, differences were tested using
Kruskal-Wallis test and Mann-Whitney test with
Bonferroni correction.
To illustrate the variation of serum 25(OH)D concen-

trations and mUVI, during the blood collection period, a
chart was plotted. For each month, the median, Q1 and
Q3 of 25(OH)D concentrations, as well as the mean and
standard deviation (SD) of mUVI of the participants
were calculated.
Mann-Whitney test with Bonferroni correction was

performed to test statistical significance of differences in
serum 25(OH)D concentrations between consecutive
months.
The association between serum 25(OH)D concentra-

tions and mUVI was explored by multiple linear
regression analysis using the stepwise method. Due to a
non-normal distribution of the dependent variable,
25(OH)D, a logarithm (log base 10) transformation was
conducted [log1025(OH)D]. The following independent
variables were included: mUVI (continuous), sex
(dichotomous), age (continuous), education (categor-
ical), professional activity (dichotomous), marital status
(dichotomous), residence (dichotomous), household
income (categorical), skin phenotype (categorical),
cognitive performance (continuous), smoking habits (di-
chotomous), alcoholic beverages consumption (categorical),
adherence to MeDi (continuous), fish or shellfish consump-
tion ≥ 3 times/week (dichotomous), self-perceived health
(categorical), supplement intake (dichotomous), undernu-
trition status by MNA®-SF (continuous) and BMI (continu-
ous). Cognitive performance, measured by MMSE score,
and undernutrition status, assessed by MNA®-SF score,
were exponentially transformed before computing the
model to achieve a normal distribution. Independent vari-
ables were chosen based on previous studies. Three
multiple linear regression analyses were conducted using
the same method. A regression analysis was conducted for
the entire blood collection period, between December and
June (Dec-Jun). Additionally, two regression analyses strati-
fied by period of blood collection were conducted: between
December and March (Dec-Mar) and between April and
June (Apr-Jun).
For the results of stepwise linear regression analyses,

standardized regression coefficients (sβ) and the respect-
ive 95% Confidence Interval (95% CI) are presented.
Standardized regression coefficients were used to allow
comparisons between explanatory variables [51].
Results
Descriptive statistics
Median 25(OH)D concentrations and other descriptive
data, by potential influential factors of 25(OH)D, are
shown in Table 1.
In this population of older adults, the median (Q1;

Q3) of 25(OH)D concentration was 35.9 nmol/L (21.90;
57.35).
Analyzing median 25(OH)D concentrations for

each variable (Table 1), these were significantly
lower in women than in men, as well as in partici-
pants with ≥ 80 years old, no education, institution-
alized, not professionally active, not married, with a
household income of < 500 €/month, cognitively
impaired, with no alcoholic beverages consumption,
with low physical activity level, with low adherence
to MeDi, that rated their health status as bad or
very bad, without supplement intake, undernourished
or at risk of undernutrition and whose blood was
collected in December–March. Obese individuals
had lower 25(OH) concentrations than subjects in
the normal range or overweight (Mann-Whitney test
P < 0.001).
Concentrations of serum 25(OH)D increased signifi-

cantly across ascending mUVI categories (Mann-Whitney
test after Bonferroni correction P < 0.001), except for the
low and moderate categories (Mann-Whitney test after
Bonferroni correction P > 0.008).



Table 1 Median 25(OH)D concentrations (nmol/L) of the
sample, by potential influential factors
Variable n Median (Q1; Q3) P-value

Sex < 0.001

Female 872 32.95 (19.45; 52.88)

Male 625 45.58 (26.10; 61.80)

Age (years) < 0.001

65–69 412 44.35 (29.95; 63.98)

70–74 372 38.35 (25.60; 58.68)

75–79 319 34.20 (20.20; 58.30)

≥ 80 394 24.85 (14.50; 44.83)

NUTS II < 0.001

North 468 35.50 (20.35; 58.40)

Center 391 31.50 (17.20; 50.80)

Lisbon Metropolitan Area 383 42.20 (28.80; 62.30)

Alentejo 136 30.60 (22.15; 51.48)

Algarve 65 36.30 (20.75; 55.20)

Madeira 30 54.45 (39.23; 74.85)

Azores 24 42.75 (21.10; 59.88)

Education (years) < 0.001

0 212 23.80 (13.53; 35.20)

1–4 1029 36.90 (21.95; 57.10)

5–12 188 44.95 (29.18; 65.63)

≥ 13 68 46.30 (31.18; 74.88)

Professionally active 0.038

No 1462 35.75 (21.58; 57.15)

Yes 30 46.55 (29.33; 65.60)

Marital status < 0.001

Single, divorced or widowed 796 29.85 (17.30; 48.20)

Married or common-law marriage 700 43.40 (28.63; 64.10)

Residence < 0.001

Home 1425 36.80 (22.35; 58.00)

Institution 72 17.90 (10.23; 38.28)

Household income (€) < 0.001

< 500 248 29.95 (17.48; 44.93)

500–999 305 36.40 (24.15; 58.70)

≥ 1000 174 48.55 (33.65; 69.88)

Doesn’t declare/Doesn’t know 770 35.30 (19.90; 56.95)

Skin phenotype 0.064

I + II 305 37.30 (24.85; 51.90)

III + IV 1109 36.30 (21.30; 59.15)

V + VI 80 30.00 (18.95; 46.33)

Cognitive performance (MMSE) < 0.001

Maintenance 1398 36.50 (22.10; 58.43)

Impairement 99 28.10 (13.60; 45.90)

Table 1 Median 25(OH)D concentrations (nmol/L) of the
sample, by potential influential factors (Continued)
Variable n Median (Q1; Q3) P-value

Smoking habits 0.850

No 1429 35.90 (21.75; 57.40)

Yes 68 36.15 (22.65; 51.83)

Alcoholic beverages consumption < 0.001

Does not drink 952 32.95 (20.33; 51.78)

Moderate 388 43.85 (24.33; 64.63)

Heavy 155 41.80 (27.80; 61.10)

Physical activity (IPAC) < 0.001

Normal 1234 38.30 (23.60; 59.00)

Low 261 25.60 (14.85; 47.75)

Adherence to Mediterranean
diet (PREDIMED)

0.001

Low 849 34.20 (20.40; 54.70)

High 648 39.05 (23.63; 60.30)

Fish/shellfish consumption
≥ 3 servings/week

0.150

No 372 37.00 (23.70; 60.45)

Yes 1125 35.50 (21.00; 56.30)

Self-perceived health < 0.001

Very good 69 44.30 (32.50; 64.20)

Good 409 42.20 (24.40; 62.60)

Moderate 730 35.30 (22.30; 57.10)

Bad 232 28.30 (15.50; 44.23)

Very bad 53 25.50 (17.25; 47.55)

Supplement intake <0.001

No 1369 34.90 (20.95; 54.85)

Yes 128 54.55 (35.53; 82.78)

Undernutrition status (MNA-SF) <0.001

Without undernutrition 1256 37.50 (22.50; 58.88)

Undernourished/at risk
of undernutrition

241 29.00 (16.90; 47.65)

Body mass index <0.001

Underweight 3 38.20 (21.90; a)

Normal range 248 42.75 (23.25; 65.38)

Overweight 660 38.55 (23.53; 60.60)

Obese 582 31.20 (19.10; 50.10)

mUVI categories < 0.001

Low 570 30.05 (17.10; 48.50)

Moderate 518 32.30 (19.88; 50.88)

High 222 45.55 (29.88; 65.00)

Very high 187 52.00 (39.00; 69.80)

Period of blood collection < 0.001

December – March 807 28.10 (16.70; 46.40)

April – June 690 45.45 (30.40; 66.30)

n number of subjects (does not always ad up to 1497 because of missing
data). Q1: first quartile; Q3: third quartile
P-value for Mann-Whitney dichotomous variables or Kruskal-Wallis test for
variables with > 2 categories
aQ3 was not possible to calculate
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Variation of mUVI and 25(OH)D by month of blood
collection
The variation of mUVI and 25(OH)D concentrations
during the blood collection period is shown in Fig. 1,
where the mean of mUVI for all districts analysed in
each month and the correspondent median 25(OH)D
concentrations are presented. The mean of mUVI had
Fig. 1 Variation of mUVI and 25(OH)D concentrations by month of blood c
concentrations (nmol/L) (median values, Q1 and Q3 in error bars)
its minimum in January (1.2) and increased until June,
when it reached its peak (7.9). The mUVI was > 3
between April and June. Although 25(OH)D concen-
trations increased from December to January and me-
dian concentration reached its nadir in March
(23.85 nmol/L), differences were not statistically
significant between consecutive months within this
ollection. mUVI (mean values and SD in error bars) 25(OH)D



Table 2 Factors associated with 25(OH)D (nmol/L) by multiple
linear regression for the period between December–June
(n = 1486)

Independent variables Sβ (95%CI) P value

mUVI 0.244 (0.198; 0.291) < 0.001

Age (years) −0.135 (−0.184; −0.086) < 0.001

Residence
(home - 0; institution - 1)a

−0.064 (−0.110; −0.019) 0.005

Education (years)b

0 −0.060 (−0.106; −0.014) 0.010

5–12 0.052 (0.007; 0.096) 0.022

Marital status
(not married - 0; married - 1)a

0.089 (0.042; 0.137) < 0.001

Household income (€ / month)c

500–999 0.056 (0.011; 0.101) 0.015

≥ 1000 0.099 (0.052; 0.145) < 0.001

Physical activity (normal - 0; low - 1)a −0.078 (−0.124; −0.033) 0.001

Alcoholic beverages
consumption - moderate d

0.054 (0.011; 0.098) 0.015

Self-perceived health - bad e −0.051 (−0.096; −0.007) 0.024

Supplement intake (no - 0; yes - 1)a 0.202 (0.158; 0.245) < 0.001

Undernutrition status (MNA®-SF score) 0.070 (0.025; 0.115) 0.002

BMI (kg/m2) −0.123 (−0.168; −0.079) < 0.001

CI confidence interval, MNA®-SF Mini Nutritional Assessment® – Short Form, Sβ
Standardized regression coefficient
The model included only 1486 subjects because of missing data
aFor the dichotomous variables, reference categories were coded as “0”
bReference: “1–4 years”
cReference: “Does not know or does not declare”
dReference: “None”
eReference: “Moderate”
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period. After March 25(OH)D concentrations in-
creased significantly between consecutive months until
May (all P < 0.001), when the median concentration
was not significantly different from June (49.2 nmol/L).

Multiple linear regression analysis for the entire blood
collection period
The model for Dec-June explained 28% of the variance
in 25(OH)D concentrations (adjusted R2 = 0.28). Of all
the continuous variables, mUVI had the highest effect
on 25(OH)D concentrations (Sβ = 0.244).
In the model for Dec-Mar, mUVI was negatively

associated with 25(OH)D concentrations (Sβ = −0.149),
contrarily to the models for Apr-Jun (Sβ = 0.295) and
Dec-June (Sβ = 0.244). Comparing models for Dec-Mar
and Apr-Jun, some of the independent variables associ-
ated with 25(OH)D in the models were different. The
following variables were associated in all three
models: mUVI, age, supplement intake, undernutrition
status and BMI. Both stratified models explained approxi-
mately 23% of the variance in 25(OH)D concentrations
(Dec-Mar: adjusted R2 = 0.229; Apr-Jun: adjusted:
R2 = 0.232).
In the multivariable model for Dec-Jun, an increase of

1 unit in mUVI was associated with an increase in
25(OH)D of 1.1 nmol/L (regression coefficient = 0.030).
In multivariable the model for Apr-Jun an increase of 1
unit in mUVI was associated with an increase in
25(OH)D of 1.1 nmol/L (regression coefficient = 0.049).

Discussion
In our cross-sectional study of Portuguese older adults,
the median 25(OH)D concentration was 35.90 nmol/L.
In the Survey in Europe on Nutrition and the Elderly:

A Concerted Action (EURONUT-SENECA study) the
mean 25(OH)D levels ranged from 20 to 30 nmol/L in
Southern European centers [52]. Comparisons should be
taken cautiously due to discrepancies in latitude of the
sample, ethnicity and season of blood collection [53].
In agreement with previous reports, the observed dif-

ferences in 25(OH)D levels in our sample (Table 1), were
as expected for the following variables: sex [53], age
[53], physical activity [54, 55], BMI [48, 49], residence
[56, 57] and supplement intake [23, 48].
The serum 25(OH)D concentrations increased signifi-

cantly across ascending mUVI categories above moderate,
which is in line with previous works [49, 54]. As expected,
25(OH)D concentrations were lower in Dec-Mar (late
autumn-early spring) than in Apr-Jun (spring-early sum-
mer) which reflects the seasonal variation reported for
25(OH)D levels [48, 58] (Table 1).
Figure 1 showed a fluctuation of 25(OH)D concentra-

tions and mUVI along the blood collection period. The
variation of 25(OH)D from December to June was similar
to previous studies, which have also found a minimum in
March (or late winter/early spring) [59, 60] and an in-
crease in spring and summer [1, 48, 61]. Similarly to an-
other Portuguese work, frequency of sufficiency of
vitamin D (≥ 75 nmol/L) was below 50% in every month
[62]. It was noticeable that although mUVI started to in-
crease in February, the rise of 25(OH)D concentrations
only began in April, when mUVI was >3. This is in line
with statements that UVI <3 does not trigger adequate
synthesis of vitamin D [63, 64]. At latitudes >37°N, from
November through February, the amount of UV radiation
is usually not enough to initiate cutaneous synthesis [58].
O’Neill et al. (2016) also found that the UV threshold for
adequate synthesis was only reached in mid-March, in
European countries [59]. There might also have been a
lag-time between a change on monthly UVI and the
corresponding change in 25(OH)D levels, which has
been reported to range from 4 to 8 weeks [17, 45, 46].
This lag-time may be linked to synthesis and half-life of
vitamin D [65]. The decrease in 25(OH)D between
January and March might have been influenced by the fact
that UVI was not intense enough to trigger vitamin D



Table 3 Factors associated with 25(OH)D by multiple linear
regression for the period between December–March (n = 802)

December – March

Independent variables Sβ (95%CI) P-value

mUVI −0.149 (−0.211; −0.087) < 0.001

Age (years) −0.210 (−0.276; −0.146) < 0.001

Residence −0.104 (−0.169; −0.041) 0.001

Household income (€/month) - ≥1000 0.147 (0.082; 0.211) < 0.001

Household income (€/month) - 500-999 0.069 (0.006; 0.132) 0.032

Alcoholic beverages consumption -
Moderate

0.070 (0.009; 0.132) 0.025

Self-perceived health - Bad −0.082 (−0.144; −0.020) 0.010

Supplement intake 0.196 (0.133; 0.256) < 0.001

Undernutrition status (MNA-SF score) 0.097 (0.034; 0.159) 0.003

BMI (kg/m2) −0.164 (−0.226; −0.102) <0.001

CI confidence interval, MNA®-SF Mini Nutritional Assessment® –
Short Form, Sβ Standardized regression coefficient

Table 4 Factors associated with 25(OH)D by multiple linear
regression for the period between April–June (n = 683)

April–June (n = 683)
Independent variables Sβ (95%CI) P-value

mUVI 0.295 (0.229; 0.362) < 0.001

Age (years) −0.092 (−0.163; −0.022) 0.010

Education (years) - zero −0.078 (−0.148; −0.010) 0.025

Marital Status 0.140 (0.072; 0.209) < 0.001

Skin phenotype - V + VI −0.079 (−0.145; −0.013) 0.019

Cognitive performance (MMSE score) 0.086 (0.016; 0.156) 0.016

Physical Activity - Low −0.102 (−0.172; −0.034) 0.004

Supplement intake 0.246 (0.181; 0.315) < 0.001

Undernutrition status (MNA-SF score) 0.076 (0.008; 0.145) 0.030

BMI (kg/m2) −0.117 (−0.185; −0.050) 0.001

CI confidence interval, MNA®-SF Mini Nutritional Assessment® –
Short Form, Sβ Standardized regression coefficient
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synthesis [63, 64], and/or exposure was not likely to occur
due to low temperatures, limited hours of sunshine and/
or individual factors such as clothing [66–68].
The model for Dec-Jun (Table 2) explained 28% of the

variance in 25(OH)D concentrations. [48, 54]. Associa-
tions between the independent variables and 25(OH)D
were expected, according to previous research in middle
aged and older populations, for: age [49, 54], household
income [69], education [49], residence [70, 71], alcoholic
beverages consumption [53, 72] physical activity [55, 73]
self-perceived health [54], supplement intake [55, 74]
and BMI [53, 54].
Most studies that measured sun exposure or UV radi-

ation availability found these were predictors of
25(OH)D concentrations [23, 49, 54]. The present study
did not measure sun exposure, but used UVI as an indi-
cator of potential for synthesis of vitamin D. The fact
that mUVI was a predictor of 25(OH)D levels and that
there was a positive association between the two is in
line with other works that investigated the association
between UVI and 25(OH)D levels [17–19]. However,
Greer et al. (2013) found no correlation between the two
variables, presumably to low sun exposure of the sample
[28]. The four previous studies which have used mUVI
and 25(OH)D concentrations did not perform an ana-
lysis separated in two seasons as was ran in this study
[17–19, 28].
Undernutrition status, as measured by MNA®-SF score,

was positively associated with 25(OH)D. A lower MNA®-
SF score can be related to a decline in food intake and
impaired mobility [39], which could discourage sun ex-
posure and has been associated with vitamin D defi-
ciency [56, 75].
Skin phenotype was not associated with 25(OH)D in the

model, which occurred in some [76] but not all of the pre-
vious studies [49, 70]. This could have been influenced by
the relative narrow range of skin types in our sample.
The majority of the previous studies concluded that

dietary vitamin D intake [48, 49, 72] and fatty fish con-
sumption [77] were predictors of 25(OH)D concentra-
tions, which were not possible to estimate in our study.
However, fish and shellfish consumption ≥ 3 servings/
week and adherence to MeDi were not associated in the
final model. The lack of discrimination between lean
and fatty fish, inadequacy of their servings and the ab-
sence of questions linked to food with a high vitamin D
content might have contributed to the absence of associ-
ation found for these variables.
Stratification by period of blood collection resulted in

models with different predictors of 25(OH)D and opposite
associations between UVI and 25(OH)D (Tables 3 and 4).
In the model for Dec-Mar, mUVI was inversely as-

sociated with 25(OH)D. This association was expected
because, as shown in Fig. 1, between Dec-Mar
25(OH)D declined despite mUVI was rising. Factors
that have been previously discussed for Fig. 1 and
were observed in other studies could have contributed
to this negative association [66, 67, 78]. The model
for Dec-Jun showed a smaller effect of mUVI upon
25(OH)D concentrations than the model for Apr-Jun.
This difference could be explained by the lack of ef-
fect of mUVI during the Dec-Mar period, in which
the average mUVI values are below the threshold for
vitamin D synthesis. Nevertheless, we considered this
model for comparison with other published studies.
The present study shows that given the Portuguese

latitudes, UV may not be high enough to trigger vita-
min D synthesis between late autumn and early spring
[8, 11–13]. During this period individuals may have to
rely on their vitamin D reserves, which may not last all
“vitamin D winter”, on diet and on supplements [79].
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Since vitamin D ingestion may not be adequate, supple-
mentation may be advisable in older adults [63, 68].
In the model for Apr-Jun, mUVI was positively associ-

ated with 25(OH)D, which is in line with previous
studies [17–19]. In these months sun exposure is more
likely to occur [23] and it was expected that the higher
UVI (mUVI > 3) would promote synthesis and contrib-
ute to the higher 25(OH)D concentrations, compara-
tively to Dec-Mar [63, 80]. The observation of low
25(OH)D concentrations despite UVI > 3 is in line with
reports of high levels of deficiency even in regions with
high UVI, particularly in risk groups as the elderly
[67, 81]. Additionally, older people synthesize vitamin D
less efficiently [63] and tend to avoid sun exposure even
when temperatures are high [21]. The widespread public
health advice on skin protection can also contribute to
limited sun exposure [3].
The fact that different predictors have been selected in

both stratified models and UVI associations were oppos-
ite may also be related with the characteristics of the dif-
ferent groups of participants.
Nevertheless, UV exposure can increase 25(OH)D in

older adults, depending on the season [82, 83]. More-
over, sun exposure during summer is a major determin-
ant for vitamin D stores [84]. Therefore, even though
deficiency was frequent in this and other works, opti-
mizing vitamin D stores is still important to maintain or
at least to minimize the decline of vitamin D status dur-
ing winter for as long as possible [15, 53].
As far as we are concerned, this is the first study to ex-

plore the relationship between UVI and 25(OH)D in
older people in Portugal. Also, only four studies could
be found to explore this relationship in other countries
[17–19, 28]. The main strengths of this study include
the large sample size, the nationwide coverage and the
fact that the assay, equipment and laboratory of
25(OH)D quantification were the same, which decreased
the variability existent in several works [1]. Moreover,
the model for Dec-Jun explained 28% of the variance in
25(OH)D concentrations, which was in line with the re-
sults from previous studies that included sun exposure,
diet and genetic factors as potential predictors of
25(OH)D concentrations. The use of UVI as an indicator
of potential for vitamin D synthesis, instead of latitude
and season, constitutes another strength of this study,
since UVI accounts for latitude, season and intensity of
UV that reaches the Earth adjusted for nebulosity and
ozone absorption [79].
Limitations
The UVI is based on the UV spectrum for erythema,
which some authors argue that diverges from the
vitamin D action spectrum [85].
It was not possible to estimate sun exposure from the
collected data and UVI may indicate only the potential
to synthesize vitamin D. Various factors that were not
possible to assess may have interfered in this potential,
including sun exposure behaviors (such as sunscreen
use, clothing, duration and location of exposure) and
ambient factors such as pollution [86]. Genetic factors,
interindividual variability, diet, certain medications,
chronic kidney conditions, including renal failure, and
other diseases may also have affected 25(OH)D synthesis
and/or concentrations of our sample but is effect was
not accounted for.
The measured 25(OH)D concentrations may not re-

flect the long-term levels of the population [81]. The fact
that this is a cross-sectional observational study does
not allow the establishment of causal relationships. The
sample of our study was not randomly selected and a
participation bias might have existed, which impair the
generalization of our results to the population.

Conclusions
This study shows that the association between UVI and
vitamin D may be different depending on the time of the
year and thus, future research and recommendations
about sensible sun exposure and vitamin D status should
take this into account. Diet and supplements may be more
important D during months when UVI and sun exposure
are low/insufficient and should be reinforced accordingly.
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