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Abstract
Wolbachia is a group of intracellular bacteria that infect a wide range of arthropods 
including	the	Asian	citrus	psyllid	(ACP),	Diaphorina citri Kuwayama. This insect is the 
vector of Candidatus	Liberibacter	asiaticus	(CLas),	the	causal	pathogen	of	Huanglongbing	
or	citrus	greening	disease.	Here,	we	investigated	the	localization	pattern	and	infection	
dynamics of Wolbachia	 in	 different	 developmental	 stages	 of	ACP.	Results	 revealed	
that	all	developmental	stages	of	ACP	including	egg,	1st–5th	instar	nymphs,	and	adults	
of both gender were infected with Wolbachia.	FISH	visualization	of	an	ACP	egg	showed	
that Wolbachia moved from the egg stalk of newly laid eggs to a randomly distributed 
pattern throughout the egg prior to hatching. The infection rate varied between nym-
phal instars. The titers of Wolbachia in fourth and fifth instar nymphs were significantly 
higher than those in the first and second instar nymphs. Wolbachia were scattered in 
all	nymphal	stages,	but	with	highest	intensity	in	the	U-	shaped	bacteriome	located	in	
the abdomen of the nymph. Wolbachia	was	confined	to	two	symmetrical	organizations	
in the abdomen of newly emerged female and male adults. The potential mechanisms 
of Wolbachia infection dynamics are discussed.

K E Y W O R D S

Asian	citrus	psyllid,	endosymbiont,	infection	dynamic,	localization,	Wolbachia

1  | INTRODUCTION

Bacterial	 endosymbionts	 are	 widespread	 microorganisms	 that	 are	
found	in	many	invertebrates	 including	insects,	spiders,	mites,	 isopod	

crustaceans,	and	filarial	nematodes	 (O’Neill,	Giordano,	Colbert,	Karr,	
&	Robertson,	1992;	Pietri,	DeBruhl,	&	Sullivan,	2016;	Weeks,	Velten,	
&	 Stouthamer,	 2003;	Weinert,	 Araujo-	Jnr,	 Ahmed,	 &	Welch,	 2015;	
Zchori-	Fein	&	Perlman,	2004;	Zug	&	Hammerstein,	2012).	Obligate,	
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primary endosymbionts such as Buchnera	in	aphids,	Portiera in white-
flies and Uzinura diaspidicola in armored scales can provide nutrients 
to these insects that live on a nutritionally unbalanced diet of plant sap 
during	 their	 lifetime	 (Baumann,	 2005;	Gruwell,	 Flarhety,	 &	Dittmar,	
2012;	Nakabachi	et	al.,	2005).	These	symbionts	are	harbored	in	germ	
cells	 of	 their	 insect	 hosts	 and	 are	 vertically	 transmitted	 (Baumann,	
2005;	Weinert	et	al.,	2015).	Facultative,	secondary	endosymbionts	are	
usually	dispensable	 for	survival	of	 their	hosts,	but	 they	can	play	 im-
portant roles in manipulating host reproduction in ways that enhance 
vertical	transmission,	as	well	as	host	fitness,	and	host	defense	against	
thermal	 stress,	 natural	 enemies	 or	 pathogens	 (Brumin,	Kontsedalov,	
&	 Ghanim,	 2011;	 Hosokawa,	 Kikuchi,	 Shimada,	 &	 Fukatsu,	 2007;	
Montllor,	Maxmen,	&	Purcell,	2002;	Oliver,	Moran,	&	Hunter,	2005;	
Oliver,	Russell,	Moran,	&	Hunter,	2003;	Oliver,	Smith,	&	Russell,	2014).	
Primary	 symbionts	 are	 generally	 localized	 in	 the	 special	 cells	 called	
bacteriocytes	grouped	together	in	a	bacteriome,	while	secondary	sym-
bionts have been reported in diverse insect tissues including the brain 
(Min	&	Benzer,	1997),	salivary	glands	(Macaluso,	Pornwiroon,	Popov,	
&	Foil,	2008)	malpighian	tubules	(Bution,	Caetano,	&	Zara,	2008)	and	
hemolymph	 (Braquart-	Varnier	et	al.,	2008;	Fukatsu,	Tsuchida,	Nikoh,	
&	Koga,	2001).

The	Asian	citrus	psyllid	(ACP),	Diaphorina citri	(Hemiptera:	Liviidae),	
is	 a	 serious	 agricultural	 sap-	sucking	 pest	 in	 citrus-	growing	 regions	
of	 the	world.	ACP	 transmits	Candidatus	 Liberibacter	 asiaticus	 (CLas)	
bacteria,	the	causal	agent	of	Huanglongbing	(HLB)	also	known	as	cit-
rus	 greening	 disease	 (Grafton-	Cardwell,	 Stelinski,	 &	 Stansly,	 2013).	
In	 addition,	 feeding	 and	 honeydew	 production	 of	D. citri can result 
in	 reduced	 photosynthesis,	 growth	 of	 sooty	mold	 and	 the	 death	 of	
young	 foliage	at	high	population	densities	 (Gottwald,	2010;	Halbert	
&	Manjunath,	 2004).	CLas	 is	 a	phloem-	limited	 fastidious	bacterium,	
which	has	not	yet	been	cultured	in	vitro	(Duan	et	al.,	2009;	Halbert	&	
Manjunath,	2004).	Typical	symptoms	of	HLB	include	small	and	bitter	
fruits;	 chorotic	 shoots,	 blotchy	mottle	 or	variegated	 type	of	 chloro-
sis,	poor	root	growth,	twig	dieback	and	ultimately	plant	death	(Bove,	
2006;	Gottwald,	2010;	Yang	et	al.,	2006).

Two distinct intracellular symbionts are harbored in the yellow 
and bilobed bacteriome located in the psyllid abdomen. The primary 
endosymbiont,	Candidatus	 Carsonella	 ruddii,	 is	 located	 in	 uninucle-
ate	bacteriocytes	on	the	surface	of	the	bacteriome,	while	Candidatus 
Profftella	armatura	is	found	in	syncytial	cytoplasm	at	the	center	of	the	
bacteriome	(Nakabachi	et	al.,	2013).	Besides	these	primary	symbionts,	
citrus psyllids also harbor secondary symbionts including Wolbachia 
and Arsenophonus	 (Chu,	Gill,	Hoffmann,	&	Pelz-	Stelinski,	2016;	Saha	
et	al.,	2012).

Asian	citrus	psyllid	is	the	primary	vector	of	Candidatus	Liberibacter	
asiaticus	 in	 Asia	 and	 North	 America	 (Gottwald,	 2010;	 Halbert	 &	
Manjunath,	 2004;	Yang	 et	al.,	 2006).	There	 is	 no	method	of	 cure	 for	
HLB-	infected	plants	(Lopes,	Frare,	Yamamoto,	Ayres,	&	Barbosa,	2007).	
Thus,	there	is	an	urgent	need	for	effective	means	to	manage	the	insect	
vector in order to reduce the incidence of this disease. Symbionts have 
been considered as a potential approach for control of many insect pests 
(Benlarbi	&	Ready,	2003;	Mcmeniman	et	al.,	2009;	Moreira	et	al.,	2009;	
Zabalou	et	al.,	2004).	Among	the	secondary	endosymbionts,	Wolbachia 

is	the	most	abundant	in	arthropods	(Weinert	et	al.,	2015).	It	can	induce	
reproductive	disorders,	cytoplasmic	incompatibility	(CI),	parthenogene-
sis,	male	feminization	and	death;	all	of	which	warrant	their	manipulation	
as	potential	control	agents	(O’Neill	et	al.,	1997;	Werren,	1997;	Werren,	
Baldo,	&	Clark,	2008)	with	cytoplasmic	incompatibility	being	the	most	
promising. This favors a particular Wolbachia strain that induces early 
embryonic death to egg and sperm combinations that are not both 
infected with the same strain. The potential use of this mechanism to 
control	mosquitos	has	been	explored	in	several	studies	including	Xi	and	
Dobson	(2005),	Kambris,	Cook,	Phuc,	and	Sinkins	(2009),	Moreira	et	al.	
(2009),	Bian,	Xu,	Lu,	Xie,	and	Xi	(2010)	and	Walker	et	al.	(2011).	In	addi-
tion,	Wolbachia strains such as wMel,	wAlbB have been used to suppress 
transmission of human pathogens in Anopheles gambiae,	 A. stephensi 
and Aedes albopictus,	 respectively	 (Bian	 et	al.,	 2013;	 Blagrove,	Arias-	
Goeta,	Failloux,	&	Sinkins,	2012;	Hughes,	Koga,	Xue,	Fukatsu,	&	Rasgon,	
2011).	 It	 is	 therefore	 likely	 that	 endosymbionts,	 such	 as	Wolbachia 
could	be	used	to	manipulate	reproduction	of	ACP	through	cytoplasmic	
incompatibility	 and	 so	 suppress	 transmission	of	CLas	 to	 citrus	 plants	
(Hoffmann,	Coy,	Gibbard,	&	Pelz-	Stelinski,	2014).	However,	to	achieve	
this goal it is essential to understand the infection biology of Wolbachia 
in	ACP,	including	determining	the	identity	of	the	strains,	their	infection	
level	and	localization	patterns	(Chu	et	al.,	2016;	Kruse	et	al.,	2017).

In	this	study,	we	used	PCR,	qPCR,	and	whole-	mount	fluorescence	
in	situ	hybridization	(wFISH)	to	firstly	detect	the	infection	prevalence	
of Wolbachia,	and	secondly,	determine	the	localization	pattern	of	this	
endosymbiont	in	all	life	stages	of	ACP.

2  | MATERIAL AND METHODS

2.1 | Insects

The	Asian	citrus	psyllid	population	used	in	this	study	was	collected	in	
September	2013,	from	healthy	Murraya exotica	L.	(Rutaceae)	plants	on	
the	campus	of	South	China	Agricultural	University	 (SCAU,	23°09′N,	
113°20′E),	Guangzhou	city,	China.	The	psyllids	were	then	reared	for	
several generations on young M. exotica plants in a greenhouse in 
SCAU	 under	 ambient	 temperature	 and	 photoperiod	 before	 experi-
ments were initiated.

2.2 | DNA extraction from ACP

To	extract	the	DNA,	eggs,	nymphs,	and	adults	of	both	genders	were	
collected from M. exotica	plants,	washed	with	70%	ethanol	and	then	
dried	at	room	temperature.	Nymphs	were	separated	by	instar	based	
on	their	morphological	characteristics	(Tsai	&	Liu,	2000).

DNA	 extractions	 were	 conducted	 by	 two	 methods.	 In	 the	 first	
method,	 individual	 psyllids	 were	 first	 washed	 with	 double	 distilled	
water to remove all alcohol. The sample containing either one indi-
vidual	of	each	nymphal	instar,	a	male	or	female	adult,	or	10	eggs	to-
gether	as	one	unit	due	to	their	small	size	was	homogenized	in	2μl	STE	
(10	mmol/L	Tris-	HCl,	pH	8.0,	25	mmol/L	NaCl,	25	mmol/L	EDTA,	1%	
SDS,	proteinase	K	200	mg/ml)	 in	a	0.5	ml	microcentrifuge	tube.	The	
mixture for each sample was finally complemented with 15 μl	STE	in	



     |  3 of 11REN Et al.

the 0.5 ml microcentrifuge tube. The homogenate was incubated at 
56°C	for	2–3	hr	and	then	placed	in	95°C	water	for	10	min	to	inactivate	
the	proteinase	K.	After	incubation,	the	samples	were	centrifuged	for	a	
short	time	and	then	used	for	PCR	detection	of	Wolbachia.

In	 the	second	method,	 total	DNA	was	extracted	 from	groups	of	
40–50	 ACP	 eggs,	 1–2	 instar	 nymphs	 or	 10–20	 individuals	 of	 3–5	
instar	nymphs,	male/female	adults	for	qPCR	using	the	TIANamp	ge-
nomic	DNA	kit	 (TIANGEN	Biotech,	Beijing,	China)	with	minor	modi-
fications	for	preparation	of	DNA	from	animal	tissues.	To	assess	DNA	
integrity,	each	sample	was	separated	by	electrophoresis	on	a	1%	aga-
rose	gel	(1%,	0.05μl/ml	GoldView,	TRIS-	EDTA-	Buffer)	at	5	V/cm,	and	
visualized	 on	 a	 UV	 transilluminator	 and	 then	 photographed	 via	 the	
gel	 imager.	Additionally,	quality	and	quantity	of	total	DNA	was	mea-
sured	on	a	NanoDrop	2,000	spectrophotometer	to	ensure	uniformity	
among	all	samples	for	qPCR	(Dossi,	Da	Silva,	&	Consoli,	2014;	Tiwari,	
Gondhalekar,	Mann,	Scharf,	&	Stelinski,	2011).

2.3 | PCR detection of Wolbachia in ACP

PCR	detection	of	Wolbachia was conducted in a 25 μl reaction vol-
ume containing: 16 μl	 of	 double	 distilled	 water,	 6	μl	 of	 2xHiFiTaq	
PCR	 starMix	 Genstar,	 Beijing,	 China,	 1	μl of each primer solution 
(20 μmol/L	 each),	 and	 1	μl	 of	 DNA	 template	 of	 each	 ACP	 sam-
ple	 (egg,	1st–5th	 instar	nymph,	male	or	 female	 adult).	 The	primers	
were	 wsp,	 81F:	 5′-	TGGTCCAATAAGTGATGA	 AGAAAC-	3′,	 691R:	
5′-	AAAAATT	 AAACGCTACTCCA-	3′,	 which	 are	 specific	 to	 the	
Wolbachia	endosymbiont	(Braig,	Zhou,	Dobson,	&	O’Neill,	1998).	The	
PCR	procedure	was:	pre-	denatured	at	94°C	for	3	min,	followed	by	35	
cycles	at	94°C	for	35	s,	55°C	for	30	s,	72°C	for	30	s,	and	a	final	ex-
tension	at	72°C	for	10	min.	PCR	amplified	products	were	visualized	
on	a	1%	agarose	gel	containing	GoldView	colorant.	When	bands	with	
the	expected	size	were	visible	in	the	gels,	20	μl	PCR	products	were	
sent	for	sequencing.

As	mentioned	above,	 ten	eggs	 together	as	a	unit,	one	 individual	
of	1st–5th	instar	nymph,	or	one	adult	of	each	gender	were	treated	as	
one replicate. In total 30 replicates were tested (10 replicates in one 
repeat	×3)	in	each	experiment.	Each	PCR	reaction	included	a	positive	
(primary	 endosymbiont,	Carsonella)	 and	negative	 (ddH2O)	 control	 to	
verify	DNA	quality.

2.4 | Quantification of Wolbachia titer in different 
life stages of ACP

Wolbachia	 was	 quantified	 by	 the	 SYBR	 Premix	 Ex	 Taq	 in	 the	 CFX-	
96	 Real-	Time	 PCR	 system	 (Bio-	Rad).	 The	 primers	 for	 qPCR	 were	
the wsp gene specific for Wolbachia:	 wsp-	F:	 5′-	TGGTCCAATA	
AGTGATGAAGAAAC-	3′,	 wsp-	R:	 5′-	AAAAATTAAACGCTACTCCA-	3′	
(Ghanim	 &	 Kontsedalov,	 2009).	 One	 β-	actin	 gene	 from	 ACP	 itself	
was	 used	 as	 an	 internal	 standard	 for	 data	 normalization.	 The	 prim-
ers of β-	actin	were	F:	5′-	CCCTGGACTTTGA	ACAGGAA-	3′,	β-	actin	R:	
5′-	CTCGTGGATACCGC	AAGATT-	3′	(Tiwari	et	al.,	2011).	The	qPCR	re-
action was a 25 μl volume containing: 12.5 μl	of	SYBR	Premix	Ex	Taq	
(TIANGEN	Biotech,	Beijing,	China),	9.5	μl	of	RNase-	free	water,	0.5	μl of 
each primer solution (10 μmol/L	each),	 and	2	μl	 of	DNA	 template	 for	
each	ACP	sample.	The	qPCR	procedure	was	initiated	with	5-	min	activa-
tion	at	95°C	followed	by	40	cycles	of	10	s	at	95°C,	30	s	at	60°C,	and	
60	s	at	72°C.	Again,	ten	eggs	as	a	unit,	one	individual	of	1st–5th	instar	
nymph,	or	one	male/female	adult	were	detected	as	one	replicate.	In	total	
four	replicates	for	each	developmental	stage	were	repeated	in	this	qPCR	
analysis.

2.5 | Distribution of Wolbachia in different life 
stages of ACP

Eggs,	and	nymphs	of	each	instar	stage	along	with	newly	eclosed	adults	
of	ACP	were	collected	from	healthy	M. exotica	shoots	with	a	camel-	
hair	brush.	Fluorescence	in	situ	hybridization	(FISH)	analysis	of	differ-
ent	psyllids	stages	and	gender	was	performed	as	described	by	Gottlieb	
et	al.	(2006)	with	the	probe	W2-	Cy3	(5′-	Cy3-	CTTCTGTGAGTACCGT

F IGURE  1 Wolbachia detection in different developmental stages 
of	Asian	citrus	psyllid	using	PCR.	Lane	M:	DL2,000	marker;	Lane	
(1–10):	positive	control	Carsonella,	ddH2O	negative	control,	male	
adult,	female	adult,	fifth	instar	nymph,	fourth	instar	nymph,	third	
instar	nymph,	second	instar	nymph,	first	instar	nymph,	egg

TABLE  1 The infection rates of Wolbachia in different 
developmental	stages	and	genders	of	Asian	citrus	psyllid

Stages
Total 
individuals

Positive 
individuals

Wolbachia 
infection rate (%)

Egga 30 27 90.00 ± 5.77ab

1st instar 30 27 90.00 ± 5.77a

2nd instar 30 30 100.00 ± 0a

3rd instar 30 29 96.67 ± 3.33a

4th	instar 30 29 96.67 ± 3.33a

5th instar 30 28 93.33 ± 3.33a

Male adult 30 30 100.00 ± 0a

Female adult 30 29 96.67 ± 3.33a

aEach	individual	sample	contained	10	eggs.
bthe same letter in one volume means no significant differences between 
each other at p	<	0.05	(Duncan	test).
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CATTATC-	3′)	in	order	to	detect	Wolbachia. The samples were whole 
mounted,	 stained,	 and	 observed	 using	 an	 inverted	 fluorescence	mi-
croscope	(Nikon	Eclipse	Ti-	U).	For	each	sample,	at	least	50	specimens	
were examined to confirm the results. Wolbachia	infected	ACPs	(from	
the Wolbachia	positive	population)	with	no	FISH	probe	were	used	as	a	
control to confirm the specificity of Wolbachia detection.

2.6 | Statistical analysis

Differences among nymphal stages and between male and female 
adult	 ACP	 in	 incidence	 and	 titer	 of	Wolbachia	were	 analyzed	 using	
one-	way	ANOVA	(SPSS	17.0	software,	SPSS	Inc.,	Chicago,	 IL,	USA).	
Fisher’s	protected	Duncan	test	was	used	for	mean	separation	contin-
gent on a significant treatment F value.

3  | RESULTS

3.1 | PCR detection of Wolbachia in ACP

Wolbachia	wsp	specific	DNA	was	detected	by	PCR	in	all	life	stages	of	
ACP	 including	egg,	nymphs,	 and	adults	 (Figure	1).	However,	 the	 in-
fection rates of Wolbachia varied somewhat among different stages: 

90.0	±	5.8%	 in	 eggs,	 90%–100%	 among	 1st–5th	 instar	 nymphs,	
96.7%	±	3.3%	 in	 adult	 females	 and	 100%	 in	 adult	 males	 (N	=	30).	
However,	these	differences	were	not	significantly	different	(Table	1).

3.2 | Quantification of Wolbachia titer in different 
stages of ACP

Taking	 the	psyllid	actin	gene	as	 the	baseline,	 the	 titer	of	Wolbachia 
increased	 with	 successive	 nymphal	 instars	 (Figure	2),	 for	 example,	
Wolbachia	 titers	 in	 the	 4th–5th	 instar	 nymphs	 were	 significantly	
higher	than	those	in	the	1st–3rd	instar	nymphs	(F	=	45.37,	p	<	.0001).	
The Wolbachia	 titer	of	5th	 instar	ACP	nymph	was	even	higher	than	
that	of	the	ACP	male	and	female	adults,	but	no	significant	differences	
were found between the nymph and adults. One interesting finding 
was	that,	the	titer	of	Wolbachia	in	ACP	eggs	was	higher	than	that	of	
the first instar nymph. The titer of Wolbachia did not differ signifi-
cantly between adult genders but was relatively higher in males than 
in females (F	=	0.51,	p	=	.5007,	Figure	3).

3.3 | Distribution of Wolbachia in different life 
stages of ACP using Fluorescence in situ hybridization

Distribution of Wolbachia varied over the course of egg development. 
Wolbachia was most concentrated in the bacteriome at the basal 
pedicel	 end	of	newly	 laid	 eggs,	 although	a	more	diffuse	 concentra-
tion	could	also	be	seen	around	the	apex	(Figure	4a	and	b).	Later	on,	
Wolbachia gradually spread out from the two poles to give a more uni-
form	distribution	(Figure	4c	and	f).	In	older	eggs,	Wolbachia were more 
random	in	distribution	(Figure	4g	and	h).	Incidence	of	Wolbachia over 
all	egg	specimens	was	90.9%	(40/44)	as	determined	by	FISH	visualiza-
tion detection.

Wolbachia	localized	primarily	in	the	abdomen	of	ACP	nymphs.	The	
FISH	 signal	 could	 be	 detected	 throughout	 the	 nymph,	 but	 at	 high-
est	 intensity	 in	 the	 U-	shaped	 bacteriome	 in	 the	 nymphal	 abdomen	
(Figures	5	and	6).	Incidence	of	Wolbachia infection over all nymphs ex-
amined	by	FISH	was	78.6%	(55/70).	Incidence	in	adults	was	similar	to	
nymphs	at	76.2%	(16/21).	The	symbionts	occupied	two	symmetrical	
organizations	in	the	adult	abdomen	thought	to	be	the	group	of	bacte-
riomes	(Figure	7).

F IGURE  2 Relative	quantity	
(mean	±	SE)	of	Wolbachia in egg and 
nymphal	instars	of	Asian	citrus	psyllid	
calculated using the method of 2−ΔΔct. 
Columns with the same letter represent 
means with no significant difference at 
p < .05

F IGURE  3 Relative	quantity	(mean	±	SE)	of	Wolbachia in male and 
female	adults	of	Asian	citrus	psyllid	calculated	using	the	method	of	
2−ΔΔct.	No	significant	difference	between	gender
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F IGURE  4 FISH	visualization	of	
Wolbachia	during	egg	stage	of	Asian	citrus	
psyllid.	(a	and	b)	0–1	day	old	eggs;	(c	and	
d)	1–2	day	old	eggs;	(e	and	f)	2–3	day	
old	eggs;	(g	and	h)	3–4	day	old	eggs.	Left	
panels: fluorescence in dark field; right 
panels: fluorescence in bright field

(a) (b)

(c) (d)

(e) (f)

(g) (h)
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4  | DISCUSSION

Numerous	 studies	have	 revealed	 the	biological	 roles	of	endosymbi-
onts	 in	 the	 development,	 reproduction	 and	 defense	 of	 their	 insect	
hosts	 (Dale	&	Moran,	2006;	Oliver,	Degnan,	Burke,	&	Moran,	2010;	
Siozios,	Sapountzis,	Ioannidis,	&	Bourtzis,	2008;	Zug	&	Hammerstein,	
2015a).	Among	these,	Wolbachia are intracellular bacteria that infect a 
vast	range	of	arthropod	species,	making	them	one	of	the	most	abun-
dant endosymbionts in nature. The stunning evolutionary success 
of Wolbachia is mostly due to their reproductive parasitism but also 
mutualistic effects such as increased host fecundity and protection 
against	pathogens	(Zug	&	Hammerstein,	2015b).	In	the	current	study,	
detection	 frequencies	 of	Wolbachia	 in	 ACP	 varied	 among	 different	
life	 stages	 and	 between	 gender	 from	100%	 in	 both	 the	 second	 in-
star	nymphs	and	adult	males	to	90.0%	in	eggs	and	first	instar	nymphs.	
Guidolin	and	Consoli	 (2013)	 reported	100%	 incidence	of	Wolbachia 
in	 ACP	 specimens	 tested	 in	 Brazil.	 Subandiyah,	 Nikoh,	 Tsuyumu,	
Somowiyarjo,	and	Fukatsu	(2000)	found	Wolbachia	in	76.2%	of	D. citri 
adults sampled in Japan. Some differences in Wolbachia infection rates 
may	result	from	geographic	variation,	number	of	ACP	sampled	and	the	

methods	used	for	detection.	Furthermore,	the	infection	of	Wolbachia 
in	ACPs	was	detected	by	three	methods,	normal	PCR,	FISH	and	qPCR	
in	this	study;	the	revealed	infection	rates	were	around	90%–100%	by	
normal	PCR,	77%–79%	by	FISH	and	100%	by	qPCR,	which	indicated	
that there were certain differences among the three methods with 
qPCR	being	the	most	sensitive	and	accurate.

We found that the infection titer of Wolbachia tended to in-
crease with successive nymphal instars in concert with develop-
mental time. This result agreed with a recent study of Dossi et al. 
(2014),	 which	 reported	 an	 increase	 in	 Wolbachia densities with 
development	of	ACP	populations	in	Brazil.	Both	studies	found	that	
Wolbachia	titer	was	greater	in	the	late	embryonic	egg	stage	of	ACP	
compared with the first instar nymph. We deduce that this may due 
to	 two	 reasons:	 firstly,	Wolbachia is mostly maternally transmit-
ted	 from	 female	 to	 offspring,	 therefore,	 ovaries	 and	mature	 eggs	
usually harbor more Wolbachia	 than	 other	 tissues,	 however,	 after	
egg hatching Wolbachia	 probably	 get	 scattered,	 reducing	 in	 num-
bers	 due	 to	 spreading	 into	 newly	 developing	 tissues;	 secondly,	 it	
might not be able to adapt to the new immune system which starts 
after the stage change from egg to nymph in order to regulate the 

F IGURE  5 FISH	visualization	of	
Wolbachia	in	young-	instar	nymphs	of	
Asian	citrus	psyllid.	(a	and	b)	first	instar	
nymphs;	(c	and	d)	second	instar	nymphs;	
(e	and	f)	third	instar	nymphs.	Left	panels:	
fluorescence in dark field; right panels: 
fluorescence in bright field

(a) (b)

(c) (d)

(e) (f)
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F IGURE  6 FISH	visualization	of	
Wolbachia	in	mature-	instar	nymphs	of	
Asian	citrus	psyllid.	(a	and	b)	fourth	instar	
nymphs;	(c	and	d)	fifth	instar	nymphs;	(e-	f)	
the	end	of	fifth	instar	nymphs.	Left	panels:	
fluorescence in dark field; right panels: 
fluorescence in bright field

(a) (b)

(c) (d)

(e) (f)

F IGURE  7 FISH	visualization	of	
Wolbachia in male and female adults 
of	Asian	citrus	psyllid.	(a	and	b)	female	
adults;	(c	and	d)	male	adults.	Left	panels:	
fluorescence in dark field; right panels: 
fluorescence in bright field

(a) (b)

(c) (d)
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related	host	immunity	(Douglas,	Bouvaine,	&	Russell,	2011;	Gorman,	
Kankanala,	&	Kanost,	 2004;	Nishikori,	Morioka,	Kubo,	&	Morioka,	
2009).	 However,	 regardless	 of	 both	 possibilities,	 the	 causation	 of	
the mechanism of infection warrants further study. Other studies 
have	shown	that	environmental	changes,	such	as	insecticide	expo-
sure,	temperature,	host	genotype	diversity	and	Wolbachia strain can 
also	influence	their	titer	(Hurst,	Jiggins,	&	Robinson,	2001;	Weeks,	
Reynolds,	Hoffmann,	&	Mann,	2002).

Our finding that more Wolbachia is present in males than females is 
consistent	with	previous	related	work	with	ACP	(Hoffmann	et	al.,	2014)	
as well as the pattern of wAlbB infection in Aedes albopictus (Tortosa 
et	al.,	 2010).	 In	many	 other	 insect	 species,	 the	 titer	 of	Wolbachia is 
usually	higher	in	adult	females	than	in	males	(Correa	&	Ballard,	2012;	
Mouton	et	al.,	2004;	Tortosa	et	al.,	2010).	However,	 the	 reasons	 for	
the higher titers of Wolbachia	in	male	compared	to	female	ACP	are	still	
not	clear.	Rio,	Wu,	Filardo,	and	Aksoy	(2006)	found	that	the	Wolbachia 
density	in	male	tsetse	fly	was	much	higher	than	that	of	female,	with	
males also showing a broader tissue distribution of Wolbachia com-
pared to females. They deduced that there might be a sex specific op-
portunist role for Wolbachia	replication	in	males,	or	that	there	exists	
a density regulation that is mediated by the insect host or a symbiont 
in	the	female,	whereas	this	regulation	efficacy	is	lost	in	males.	Dossi	
et	al.	 (2014)	 supposed	 that	 the	 lower	 density	 of	Wolbachia in older 
females	could	be	a	consequence	of	the	reduced	growth	rate	of	third	
instar	due	to	the	process	of	transovarian	transmission.	Moreover,	the	
difference of Wolbachia	titers	between	ACP	male	and	females	maybe	
also	related	to	their	Las	infection	status.	Fagen	et	al.	(2012)	observed	
a strong positive correlation between Wolbachia	and	CLas	titers	within	
ACP,	Kolora,	Powell,	Hunter,	Bextine,	and	Lauzon	 (2015)	also	 found	
that the amount of Wolbachia	 in	ACP	was	greater	in	insects	infected	
with	CLas,	whereas	Chu	 et	al.	 (2016)	 revealed	 that	 both	 the	 densi-
ties of primary Carsonella and facultative Wolbachia were significantly 
higher	in	CLas	negative	ACP	compared	to	CLas-	positive	ACP	Florida	
populations.	Therefore,	to	reveal	which	gender	has	a	higher	capability	
to	harbor	and	transmit	CLas	may	assist	 in	further	understanding	the	
complicated	association	among	CLas,	Wolbachia,	different	gender	of	
ACP	as	well	as	different	populations	or	genotypes	of	ACP.

In	this	study,	we	were	able	to	pinpoint	the	dynamics	of	localization	
patterns of Wolbachia	in	ACP	using	the	whole-	mount	fluorescence	in	
situ	hybridization	method.	Our	FISH	results	revealed	an	uneven	dis-
tribution pattern of Wolbachia	in	most	of	the	ACP	eggs	and	nymphal	
stages. Migration of Wolbachia from the egg stalk toward the central 
egg region is reminiscent of displacement of Rickettsia in Bemisia tabaci 
eggs	(Gottlieb	et	al.,	2006).	Localization	of	Wolbachia in different parts 
of the egg appears to be related to diversion of the cytoskeleton which 
is known to play an essential role in repartition of organelles in cells 
(Sicard,	Dittmer,	Greve,	Bouchon,	&	Braquart-	Varnier,	2014).

In	 nymphs,	we	 found	 the	 highest	 concentration	 of	Wolbachia in 
the	U-	shaped	bacteriome	located	in	the	abdomen,	with	lower	concen-
trations	in	the	thorax,	and	occasional	presence	in	the	head.	The	ACP	
bacteriome is known to harbor three symbionts: Carsonella,	Profftella 
(Nakabachi	 et	al.,	 2013),	 and	 now	Wolbachia. This result suggests a 
specific immune profile for Wolbachia allowing the host to maintain 

and	 control	 the	 symbiosis	 (Anselme,	Vallier,	 Balmand,	 Fauvarque,	 &	
Heddi,	2006;	Heddi	et	al.,	2005).	The	distribution	of	Wolbachia in late 
fifth	instar	nymphs	is	quite	similar	to	that	in	ACP	adults;	reflecting	the	
transition	from	nymph	to	adult.	Using	FISH	methodology,	Kruse	et	al.	
(2017)	found	that	Wolbachia has a widespread distribution throughout 
the	ACP	gut	tissue,	including	the	midgut,	filter	chamber	and	Malpighian	
tubules. They also determined that Wolbachia	and	CLas	are	capable	of	
residing	in	the	same	ACP	gut	cells,	but	that	they	do	not	have	a	high	
degree	of	co-	localization	within	cells.

The	localization	of	Wolbachia has also been studied in other insects. 
In the bedbug Cimex lectularius,	Wolbachia symbiont was specifically 
localized	in	the	bacteriomes	and	vertically	transmitted	via	the	somatic	
stem	cell	niche	of	germalia	to	oocytes.	Here,	 it	 infected	the	incipient	
symbiotic organ at an early stage of the embryogenesis in adults. In the 
males,	Wolbachia	was	restricted	to	the	testis-	associated	bacteriomes,	
whereas	in	the	females,	it	was	found	in	the	bacteriomes	and	the	ovaries	
(Dobson	et	al.,	1999).	In	Drosophila melanogaster,	Clark,	Veneti,	Bourtzis,	
and	Karr	 (2002,	2003)	determined	that	Wolbachia were found inside 
spermatocytes and spermatids or within the somatic cyst cells sur-
rounding	the	germ	cells,	and	throughout	development	there	appeared	
little movement of Wolbachia between spermatids via the connecting 
cytoplasmic	bridges.	In	the	endosymbiont-	scale	insect	system,	Gruwell	
et	al.	(2012)	found	that	the	endosymbiont	Uzinura diaspidicola	localized	
in	all	the	developmental	stages	of	armored	scale	insects,	including	em-
bryos,	eggs	and	adults,	which	is	similar	to	the	findings	in	this	study.	All	
of these studies indicate a close association between Wolbachia endo-
symbiont	and	its	 insect	host	development,	 indicating	the	potential	to	
develop	novel	approaches	for	managing	citrus	HLB,	such	as	prevention	
of	CLas	transmission	from	the	endosymbiont	viewpoint.

The potential of Wolbachia	 to	control	disease	vectors,	and	 inter-
fere	with	 the	ability	of	mosquitos	 to	vector	malaria	and	dengue	has	
been	demonstrated	(Bian	et	al.,	2013;	Bourtzis	et	al.,	2014;	Guidolin	
&	Consoli,	2013).	As	mentioned	above,	Fagen	et	al.	(2012)	and	Kolora	
et	al.	 (2015)	reported	that	Wolbachia has a positive association with 
the	CLas,	while	Chu	et	al.	 (2016)	revealed	that	both	the	densities	of	
primary Carsonella and facultative Wolbachia were significantly higher 
in	CLas-	negative	ACP	compared	to	CLas-	positive	ACP.	Whichever	re-
flect	the	true	infection	status	in	the	field,	the	interactions	of	Wolbachia-	
CLas	can	be	further	explored	as	a	novel	strategy	to	potentially	control	
HLB	through	artificial	manipulation	of	insect	symbionts.	Moreover,	our	
molecular phylogenetic study has indicated that the Wolbachia	of	ACP	
from South China belongs to the Con strain in the Wolbachia	B	super-
group. The potential strategy of using Wolbachia	to	reduce	ACP	popu-
lations	in	the	field	may	be	practical	by	releasing	a	male	ACP	population	
with another strain of Wolbachia	(single	strain	strategy,	to	realize	this	
work we can first eliminate the original strain of Wolbachia and infect 
the	ACP	with	a	new	strain	by	artificial	micro-	infection),	or	overlay	with	
another strain with this Con	strain	(double	strain	strategy).	Therefore,	
cytoplasmic incompatibility may occur when these two types of male 
adults	mate	with	wild	female	ACP	adults.

In	 summary,	 considering	 the	potential	use	of	Wolbachia for vec-
tor	 and	disease	management,	 studies	 on	 the	 ecological	 factors	 that	
affect the interactions between Wolbachia	and	 its	ACP	host	may	be	
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beneficial	 in	 developing	novel	 strategies	 for	ACP	and	HLB	manage-
ment. The current study moves toward this final goal.
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