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Abstract

Introduction: Recent clinical trials are considering inclusion of more than just

apolipoprotein E (APOE) ε4 genotype as a way of reducing variability in analysis of out-
comes.

Methods: Case-control data were used to compare the capacity of age, sex, and 58

Alzheimer’s disease (AD)–associated single nucleotide polymorphisms (SNPs) to pre-

dict AD status using several statistical models. Model performance was assessed with

Brier scores and tenfold cross-validation. Genotype and sex × age estimates from the

best performingmodel were combinedwith age and intercept estimates from the gen-

eral population to develop a personalized genetic risk score, termed age, and sex-

adjusted GenoRisk.

Results: The elastic net model that included age, age x sex interaction, allelic APOE

terms, and 29 additional SNPs performed the best. This model explained an additional

19% of the heritable risk compared to APOE genotype alone and achieved an area

under the curve of 0.747.

Discussion: GenoRisk could improve the risk assessment of individuals identified for

prevention studies.
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1 INTRODUCTION

Alzheimer’s disease (AD) is notoriously difficult to treat, and the

field has been plagued by an exceptionally high rate of clinical trial

failures.1–3 Part of the reason for these failures is the high heterogene-

ity across the disease that presents with diverse clinical symptoms and

progression patterns.4,5 Attempts to categorize various subtypes of

AD have led to potentially more predictable outcomes.6 Despite this,

no disease-altering treatments exist.
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1. Systematic Review: The authors reviewed the literature for

Alzheimer’s disease (AD) genetic markers and polygenic risk scores

using traditional sources, meeting abstracts, and presentations.

Recent clinical trials are considering inclusion of more than just

apolipoprotein E ε4 genotype as a way of reducing variability in

analysis of outcomes. Several polygenic risk scores are already

available andwere all constructed similarly.

2. Interpretation: By basing this model on individual data and

incorporating genotype, age, and sex we were able to identify an
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optimal-performing model that improves upon prior scores. These

results were combined to develop a personalized genetic risk score,

termed “age and sex-adjusted GenoRisk” that can be used for

reducing variability in clinical outcome models as well as personal

risk assessment.

3. Future Directions: This first version of GenoRisk was restricted

to genetic variation that had been previously associated with AD.

Future studies will incorporate genome-wide screens for variation

as well as additional environmental factors.

A variety of risk factors can alter the likelihood of AD and disease

course including sleep,7 exercise,8–10 nutrition,8,9,11,12 sex, and age.13

Moreover, AD heritability estimates range from 50% to 80%,14–17 sug-

gesting a large genetic component. The main genetic determinants of

ADrisk are variants in the geneapolipoproteinE (APOE),which account

for one quarter of the heritability.14,17 Areas under the curve (AUCs)

associated with APOE alone range from 0.65 to 0.8 across different

populations. It is likely the range in APOE association is due to addi-

tional genetic variationor environmental factors that differ across pop-

ulations influencing AD onset and progression. Genome-wide associ-

ation studies (GWAS) have identified more than 50 additional single

nucleotide polymorphisms (SNPs) that contribute to the heritability of

AD.18,19,28,20–27 Identification of these genetic risk factors explains an

additional 25% to 55% heritability and also highlights possible biologi-

cal pathways of disease onset and progression.17,29 Genetic risk scores

that incorporate additional genetic variation topredictADstatus range

from an AUC of 0.57 (20 SNPs) to 0.8 (using> 200,000 SNPs including

APOE). Despite the increase in genetic associations derived from the

GWAS era, and thus increase in predictive ability afforded by genetic

and lifestyle factors, most studies only control for APOE ε4 genotype

(≈25% of heritability) in their predictive algorithms. Moreover, studies

derive their risk scores from individual populations that may not accu-

rately estimate risk.

Polygenic risk score (PRS) approaches that combine literature-

derived odds ratios benefit from the large sample sizes that are usu-

ally available for the estimation of the odds ratios for each individ-

ual SNP. However, many recent PRS are based on and also validated

against results from the International Genomics of Alzheimer’s Project

meta-analysis.29–35 These PRS models rely on correlational assump-

tions that are difficult to verify and that do not frequently allow adjust-

ment for patient-level factors such as sex and age. The phenotypic

risk score using raw data has the advantage of simultaneous calcula-

tion of risk for correlated SNPs but is often based on a smaller sam-

ple size. However, because the model is built on raw data instead of

meta-analysis data using odds ratios from each SNP considered for the

model, the age effect can be directly estimated. Although case-control

studies are limited because individuals may eventually develop AD, we

accounted for this limitation by adjusting for the age of the individu-

als and weighted our estimates by population-based age distributions.

Phenotypic predictionmodel approaches afford themost personalized

approach because they are based on raw data.

In this articlewe used data from four independent genetic studies of

AD to predict genetic risk. Moreover, we compared the efficacy of var-

ious phenotypic prediction models and used this information to create

and validate a model comprised of 29 SNPs that predicts an individ-

ual’s risk of developing AD, independent of age, sex, and genetic risk

factors, termed the GenoRisk score. The GenoRiskmodel was found to

be highly efficacious in its prediction of AD risk with an AUC of 0.747,

a score that is comparable to PRS’ reported in the literature with an

equivalent number of SNPs29 (AUC = 0.73, N = 28 SNPs) for early-

onset AD. The age and sex–adjustedGenoRiskmodel further personal-

izes an individual’s AD riskwhile detecting a broad range of riskswithin

each APOE isoform allowing refinement in risk assessment for ɛ4 carri-
ers and additional isoform combinations. Overall, the GenoRisk model

is an accurate predictive model able to measure genetic risk within a

population beyond the basic APOE genotypes.

2 METHODS

2.1 Study populations

Data consisting of 2579 cases and 2578 controls from the Alzheimer’s

DiseaseGenetics Consortium (ADGC) databasewere used to train and

compare the variousmodels tested forGenoRisk assessment. Datasets

NG00026, NG00028, NG00030, NG00034, and NG00047 were used.

Many study participants were White (84%), with 4% Black, and the

remainder classified as “Other.” Study population demographics are

described elsewhere.32

The final GenoRisk model was calibrated using data from the 1000

Genomes Project participants to match the prevalence of SNPs in the

general population; 1000 Genomes Project data were also used for

GenoRisk score transformation.

2.2 SNP selection and imputation

A total of 58 SNPs were selected through a literature search of all

articles investigating the genetics of AD.18,19,36,20,22–28 The SNPs con-

sidered are listed in Table S1 and Table S2 in supporting information.

Because the ADGC data were collected on several different platforms,

not all SNPs were available in all datasets, therefore the panel of SNPs

listed in Table S1 were imputed using data from the 1000 Genomes

Project. Imputation was performed within each population and subse-

quently combined as described in Ridge et al.37

2.3 Statistics

2.3.1 GenoRisk model fitting and selection

Genetic component: The combined imputed ADGC dataset consisting

of 2579 cases and 2578 controls was used for GenoRisk model fitting

and selection. An additive model was used for most SNPs tested

apart from rs5848, rs4293518, and rs7412. A recessive model was

used for rs5848.38 APOE has three isoforms—ɛ2, ɛ3, and ɛ4—that are
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characterized by varying combinations of two SNPs, rs4293518 and

rs7412. Therefore, two different geneticmodelswere tested forAPOE:

1. Classification of APOE allelic variants (ɛ2, ɛ3, and ɛ4) using
rs429358 and rs7412 genotypes and incorporating them into

an allelic model;

2. Coding rs429358 and rs7412 into ɛ2, ɛ3, and ɛ4 isoforms and

using a genotypic model for the six possible APOE genotypes.

Modeling: Creating a prediction score for a specific phenotype, such

as AD, usually uses one of two broad approaches:

1. PRS: A risk score is created by combining odds ratios from

the literature using an approach that assumes independence

between SNPs. SNPs are either pruned29 (only the SNP with

the highest odds ratio out of a set of correlated SNPs is

included in the analysis) or odds ratios from the literature are

combined using a method that accounts for the correlations

between SNPs such as those used by Stocker et al.29 and Pur-

cell et al.39

2. Phenotypic prediction model: A risk score is created using a

phenotypic predictionmodel (i.e., linear, logistic, lasso, or elas-

tic net regression) basedonanoriginal datasetwith individual-

level phenotypes and SNPs. Odds ratios for each SNP are cal-

culated within the model and simultaneously account for cor-

relations.Historically, this typeof approachhas been impracti-

cal due to the large data sets and high computational require-

ments, but these methods are now more practical with the

availability of more powerful computing resources.

To this end, four general statistical methods were tested: logistic,

probit, lasso, and elastic net regression. Lasso and elastic net were

based on logistic regression. The elastic net initially used λ = 0.5 but

was refined through cross-validation. All statistical models included a

genetic component along with age and sex. Models were tested with

andwithout the age× sex interaction term.

In addition to the standard genetic models described above, a

genetic model that incorporated the odds ratios estimated from previ-

ous studies was tested. In this class of models, all the estimates for the

odds ratios fromprevious studieswere combined into a single score for

each individual, and that score was included in the model as a covari-

ate with age, sex, and APOE status. The scores were either the sum of

the effects of the SNPs (additive) or the product (multiplicative) of the

effects of the SNPs.

Finally, linkage disequilibrium (LD), which is a correlation between

SNPs that tends to increase for SNPs that are physically closer to each

other on the chromosome, can lead to overfittingwhen combining esti-

mates that were calculated independently. To account for this, we used

LD pruning, which is a method of eliminating lower risk SNPs that are

correlatedwith higher risk SNPs, to create an LD-prunedmultiplicative

score and an LD-pruned additive score. LD pruning was performed by

calculating the LD between each pair of SNPs that shared a chromo-

some. When two SNPs had r2 > 0.2, the SNP with the lower effect as

estimated from the literature was dropped.

2.3.2 GenoRisk model validation

Models were compared using 40 repetitions of 10-fold cross-

validation. The Brier score was used to determine the accuracy of

the predictions (lower is more accurate). In each repetition, the

mean of the 10 repetitions was calculated, then summaries of the

40 repetitions were compared across the different models. Because

lasso regression is a special case of the elastic net (lasso is the elas-

tic net when λ = 0), the elastic net model was selected, then the

selection of λ was further optimized through cross-validation until

the mean Brier score was minimized. To further validate the geno-

typic estimates from the best performing (final GenoRisk) model,

the APOE estimates were compared to the estimates obtained in

Genin et al.40

2.3.3 GenoRisk score transformation

Because the GenoRisk output is a proportion that could be incorrectly

interpreted as percent risk, the GenoRisk output was transformed to

fit on a scale from 0 to 40 based on a themax andmin GenoRisk scores

observed in the 1000 Genomes Project. To calculate GenoRisk, call 𝛾

the genetic portion of the logit curve, so 𝛾 =
32∑
i = 1

𝛽ixi, where each xi

represents either one of the 29 SNPs or one of the three APOE iso-

forms, and each 𝛽i is the coefficient for that genetic risk factor esti-

mated from the GenoRisk model, and let Γ𝜇 be the set of logit scores

for 1000 Genomes Project subjects based on their genetic risk, 𝛾, and

an intercept 𝜇. Define 𝜇 such that 40
{[1+exp(−𝜇−𝛾)]−1−min(Γ𝜇 )}

(Γ𝜇 )
is 20 when

the probability of having AD at age 85 is 10%.

2.3.4 Absolute AD risk calculation

Unconditional: The Silverman dataset41 was used to derive age, sex,

and model intercept estimates that are more representative of a nor-

mal population. A preliminary logit curve was fit to the Silverman

results. The curvewasassumed to represent thequantilemedian (ɛ3/ɛ3
genotype) and to be balanced between males and females. The model

also assumes that the data are representative of median risk from the

other 29 SNPs in the GenoRisk model. These Silverman age and inter-

cept estimates were combined with the GenoRisk genotypic and sex

estimates above to make the final absolute AD algorithm, which out-

puts an estimated probability of developing AD.

Conditional: Assuming that a person’s unconditional risk is r0, then

his or her risk conditional on not-currently-having-AD is:

f (x|r0) =
f (x) − r0
1 − r0
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F IGURE 1 Violin plots comparing the Brier
scores derived from 10-fold cross-validation
for 21 of the 25models tested. Elastic net,
lasso, logistic, and probit are shown in purple,
green, red, and blue, respectively. The scores
for the other four models are not shown here
because their Brier scores were somuch higher
than the other models that it altered the scale
of the figure andmade comparison between
the remainingmodels more difficult

3 RESULTS

3.1 Derivation of GenoRisk model

The summaries of the Brier scores from the 40 repetitions of cross-

validation on the 25 models are presented in Table 1 and in Figure 1.

The eight highest performing models were the regularization methods

(lasso and elastic net) while the top four models were regularization

methods with an allelic model for APOE. The top two models used the

elastic net, and the best model based on the mean Brier score was the

allelic APOE elastic net model that included the age × sex interaction

(mean Brier score = 0.20709; AUC = 0.747) and is used to calculate

an individual’s GenoRisk score. Because elastic net allows variables to

drop out of themodel, the final model included the intercept, the three

APOE isoforms, 29 other SNPs, age, and age × sex interaction. The dis-

tribution of GenoRisk scores stratified by isoform status are shown in

Figure 2.

To further validate GenoRisk model performance, the estimated

odds ratios for APOE isoforms from the GenoRisk score were com-

pared to APOE isoform odds ratios reported in Genin et al.,40 which

were derived from 7531 cases and 10,132 controls. The estimated

odds ratios from this final GenoRisk model fell within the confidence

intervals for the odds ratios estimated by Genin et al.40 for all four iso-

forms (Figure 3), indicating that the additional SNPs did not altermodel

estimation of risk due to APOE and likely overall model estimates.

3.2 Derivation of absolute AD risk estimates

The GenoRisk model is independent of age and sex; however, age and

sex effects are known to alter absolute risk for various diseases includ-

ing AD.While the ADGC data are useful for estimating coefficients for

the genetic risk factors and are appropriate to make estimates for dif-

ferences between sexes, only an appropriately designed prospective

study can accurately estimate the age-related incidence ofAD. To final-

ize the model and be able to provide accurate estimates of the age-

related risk of developing AD based on the GenoRisk score, we used

estimates of cumulative risk of developing AD from Silverman et al.41

A logit curvewas fit to the dataset that excluded parents and siblings of

individualswith early onsetADandvery late onsetAD. This is expected

to give a more accurate representation of the risk of developing AD in

the general population as it excludes individuals known to be biased
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F IGURE 2 The distribution of GenoRisk scores among the 2504 individuals in the 1000Genomes Project. The scores are defined so that a
score of 20 indicates a 10% risk of having Alzheimer’s disease at the age of 85. The 40-point scale helps reduce the risk of misinterpreting the score
as a probability. The vertical dashed lines divide the overall distribution into quintiles

heavily by genotypic effects. The final adjusted model plotted over the

Silverman et al. data is shown in Figure S1 in supporting information.

The logit curve was fit using the data from individuals ≤ 85 years of

age. Incorporation of individuals over 85 years resulted in a less reli-

ablemodel as this subpopulation appears to have a reduced rate of risk

accrual over time; this is likely due to competing risk within this age

group.42 Estimands (age and intercept) from the logit fit were incorpo-

rated with GenoRisk genotypic and sex estimands to generate age and

sex adjusted GenoRisk estimates appropriate for the general popula-

tion.

Age- and sex-specific risk given a subject who does not currently

have AD (unconditional risk) may also be calculated. An example is pre-

sented in Figure 4.

4 DISCUSSION

We developed a genetic prediction model of AD, termed GenoRisk

Score. While others have derived PRSs, our assessment of several

different methods compared through cross-validation coupled with

genetic estimates derived across multiple populations with varying

ethnic backgrounds and use of a more appropriate population to esti-

mate age-specific risk of having AD make this work unique. This work

also benefits from the ability of the elastic net methodology to iden-

tifymodels in the presence of correlated endpoints. Compared to PRSs

in the literature which require a priori omission of correlated SNPs or

other post hoc adjustments to account for correlation, the GenoRisk

score reduces the risk of overfitting by incorporating patient-level data
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F IGURE 3 The estimated odds ratios of the apolipoprotein E genotypes from the final GenoRiskmodel compared to the estimates fromGenin
et al.40 To combine ɛ2/ɛ2with ɛ2/ɛ3 in GenoRisk tomatch the format of Genin et al. the effect shown is the weightedmean of the effect of the two
genotypes. The ɛ3/ɛ3 genotype was the reference genotype in the Genin et al. comparison and ɛ3was the reference allele in the GenoRiskmodel,
so the odds ratios for both are 1, by definition. The dashed line indicates the line at which the two estimates are equal

using external cross validation. Furthermore, consistency in odds ratios

for APOE isoform estimation calculated from our model and the litera-

ture, provides outside validation of our results and confirms that our

model appropriately estimates APOE effects even in the presence of

several other genes.

Moreover, AUC from PRS ranges are reported from 0.57 to 0.84;

this range includes studies of early onset ADwhich has a larger genetic

component (AUC 0.73 with 28 SNPs), as well as PRS’ generated using

thousands of SNPs (AUC 0.75–0.84; > 4000 SNPs). PRS’ generated

with larger numbers of SNPs, although improving in processing time

and cost, are not broadly feasible for clinical assessment. TheGenoRisk

platform incorporates a smaller number of SNPs to estimate AD risk.

Although the GenoRisk AUC is marginally less predictive than mod-

els incorporating thousands of SNPs (AUC 0.747), this model performs

better than previously published PRS’ of equivalent size with a similar

AD population (0.63 and 0.70).29

Although APOE ɛ4 is the single greatest genetic determinant of

AD risk (apart from rare mutations in PS1, PS2, and APP responsible

for autosomal-dominant familial AD), there is a relatively wide range

of risk within a given APOE genotype, as shown in this and other

studies.29 In some cases, individuals with a low-risk APOE genotype

(e.g., ɛ3/ɛ3) may be revealed to have a higher overall genetic risk than

some patients with a high-risk APOE genotype (e.g., ɛ3/ɛ4) when other
genetic variants are accounted for, and vice versa. Currently, many tri-

als use APOE ɛ4 status alone to segregate participants into high-risk

and low-risk categories, which may reduce study power. The utility of

GenoRisk for assessing personalized risk can be demonstrated using an

example of a 72-year-old male who wants to know his risk of develop-

ing AD. Initial assessment by sex only indicates that his risk will follow

the population average for males (Figure 5; dashed blue line). Incorpo-

rationof individualAPOE genotype (ɛ3/ɛ4;most commongenetic factor

incorporated in clinical trials), increases absolute AD risk well above

the population average for males (dashed black line). Calculation of

the absolute AD risk via incorporation of multiple genetic drivers of

AD through the GenoRisk model (dashed green line) reduces AD risk

compared to APOE status alone. Finally, risk adjustment for individ-

ual current AD status (conditional assessment; solid green line) further

reduces predicted AD risk for this individual, that is, given that he does

not currently have AD at his present age reduces his overall likelihood

of developing it in the future. Personalized genetic risk classification,
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F IGURE 4 Lineplots of 1000Genomes Project age and sex-adjusted GenoRisk probabilities stratified by age and apolipoprotein E isoform
status. The solid line represents themean value of individuals within each isoform group (+ 95% confidence intervals) across the age ranges
present

F IGURE 5 Probability by age of having Alzheimer’s disease (AD; unconditional risk), or developing AD given that it is not present (solid curves
line), in a hypothetical 72-year-old male. Comparison of curves for three conditions: given no additional information (blue), given that the
individual has the ɛ3/ɛ4 genotype (black), and given the additional information provided by the GenoRisk score (green). Specific risk curves can
help provide better metrics with which to compare treatment outcomes in future clinical trials
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afforded by GenoRisk, may improve prediction of decline rate in clini-

cal trials, improving power for detecting treatment differences as well

as aid in identification of personalized treatments or preventativemea-

sures.

Limitations of our GenoRisk score are primarily a result of having

a relatively small sample size for building the model. This small sample

size requiredus to assume the absenceof ageby genotype interactions,

which is likely to be an inaccurate assumption. The risk model relies

on the diagnosis, which is purely clinical, and not biomarker based, and

themisclassificationmay be as high as 10%with experienced clinicians,

but potentially closer to 30% with less experienced clinicians. Valida-

tion of the estimation of age-related risk and corresponding timing of

diagnosis would require a prospective, longitudinal study. In addition,

our population has primarily European ancestry, limiting the general-

izability to other populations. The analysis relies on imputation due to

missing genotypes, reducing the accuracy of themodel.

Future studieswill be aimed at assessingwhether subcategorization

of individuals based on specific genetic variants or sets of genetic vari-

ants are associated with specific neuropathologic subtypes or clinical

presentation patterns. These subcategories of patients may respond

differently to treatments, may progress at different rates, ormay differ

in biomarker patterns associated with disease progression. In general,

GenoRisk provides a better understanding of personalizedAD risk that

could facilitate the development of new treatments or preventivemea-

sures.
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