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Increasing evidence indicated that aberrant expression of long noncoding RNAs (lncRNAs) are involved in tumorigenesis of
nasopharyngeal carcinoma (NPC). The purpose of this study was to construct a lncRNA-mediated ceRNA network based on
weighted correlation network analysis (WGCNA). First, modules with highly correlated genes were identified from GSE102349
via WGCNA, and the preservation of the modules was evaluated by GSE68799. Then, the differentially expressed lncRNAs and
mRNAs identified from GSE12452 which belonged to the same WGCNA modules and the differentially expressed miRNAs
identified from GSE32960 were used to construct a ceRNA network. The prognostic value of the network was evaluated by
survival analysis. Furthermore, a risk score model for predicting progression-free survival (PFS) of NPC patients was established
via LASSO-penalized Cox regression, and the differences in the expression of the lncRNAs between high- and low-risk groups
were investigated. Finally, 14 stable modules were identified, and a ceRNA network composed of 11 lncRNAs, 15 miRNAs, and
40 mRNAs was established. The lncRNAs and mRNAs in the network belonged to the turquoise and salmon modules. Survival
analysis indicated that ZNF667-AS1, LDHA, LMNB2, TPI1, UNG, and hsa-miR-142-3p were significantly correlated with the
prognosis of NPC. Gene set enrichment analysis indicated that the upregulation of ZNF667-AS1 was associated with some
immune-related pathways. Besides, a risk score model consisting of 12 genes was constructed and showed a good performance
in predicting PFS for NPC patients. Among the 11 lncRNAs in the ceRNA network, SNHG16, SNHG17, and THAP9-AS1 were
upregulated in the high-risk group of NPC, while ZNF667-AS1 was downregulated in the high-risk group of NPC. These results
will promote our understanding of the crosstalk among lncRNAs, miRNAs, and mRNAs in the tumorigenesis and progression
of NPC.

1. Introduction

Nasopharyngeal carcinoma (NPC) is a fatal malignancy aris-
ing from the nasopharynx epithelium. It is characterized by a
distinctive geographical and ethnic distribution with a high
incidence of NPC in Southern China, Southeast Asia, and
Middle East/North Africa [1]. Southern China accounts for
71% of new cases worldwide [2]. It was estimated that there
were 129,079 new cases and 72,987 deaths around the world
in 2018 [3]. With the emergence of advanced diagnostic
methods and improvement of treatment methods, especially

the application of intensity-modulated radiotherapy, the
prognosis of NPC has been dramatically improved over the
past decades [2]. Nevertheless, a portion of patients still had
adverse outcomes because of locoregional recurrence and
distant metastasis [4, 5]. Hence, it is necessary to explore
the molecular mechanisms underlying NPC and develop
more effective therapeutic approaches to reduce the occur-
rence of posttherapy complications and improve the progno-
sis of patients with NPC.

LncRNAs are referred to transcripts longer than 200
nucleotides. Although lacking protein-coding ability, lncRNAs
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can interact with RNA or DNA molecules via base pairing,
even with double-stranded DNA, and form networks with
DNA, protein complexes, and RNA [6]. LncRNAs serve as
competitive endogenous RNAs (ceRNAs) and implicated in
the occurrence and progression of a variety of tumors,
including NPC. For example, lncRNA H19 was suggested
to regulate EZH2 expression by interacting with miR-630
and promotes cell invasion in NPC [7]. LncRNA HOXC13-
AS was reported to positively affect cell proliferation and
invasion in NPC via modulating miR-383-3p/HMGA2 axis
[8]. LncRNA FAM225A was revealed to promote NPC
tumorigenesis and metastasis by sponging mir-590-3p/mir-
1275 and upregulate ITGB3 [9]. LncRNA SNHG1 was shown
to antagonize the effect of miR-145a-5p on the downregula-
tion of NUAK1 in NPC [10]. The ceRNA hypothesis sup-
posed that any RNA transcript that harbors the miRNA
recognition elements (MREs) can sequester miRNAs from
other targets sharing the same MREs, thereby regulating the
expression of target genes [11, 12]. However, there are still
few comprehensive studies concerning lncRNA-mediated
ceRNA network in NPC based on high-throughput data.

Weighted correlation network analysis (WGCNA) is a
widely used and efficient system biology method [13]. This
method can identify clusters (modules) of highly correlated
genes based on high-dimensional data and can further iden-
tify hub genes closely related to external phenotypic traits,
which may be potential diagnostic and therapeutic markers.
This process is different from many other bioinformatics
methods because it does not rely on priori defined gene sets
or pathways [14]. WGCNA has been applied in various bio-
logical processes, such as cancer, genetics, and brain imaging
data analysis [15]. As for NPC, four miRNAs, including hsa-
miR-142-3p, hsa-miR-150, hsa-miR-29b, and hsa-miR-29c,
were obtained as prognostic markers by combining univari-
ate Cox regression analysis with WGCNA [16]. Ge et al.
identified several gene modules with different biological
functions related to NPC through WGCNA analysis [17].
However, to our knowledge, no study has previously
constructed a lncRNA-mediated ceRNA network based on
WGCNA in NPC.

In the present study, we obtained RNA-Seq data of
GSE102349 and performed WGCNA to enrich modules
associated with NPC. Subsequently, we used mRNA profiling
data (GSE12452) and miRNA profiling data (GSE32960)
to identify differentially expressed genes (DEGs) and dif-
ferentially expressed miRNAs (DEmiRNAs). Through anno-
tation of DEGs and intersection with WGCNA modules, we
obtained differentially expressed lncRNAs (DElncRNAs)
and differentially expressed mRNAs (DEmRNAs) in the
WGCNA modules. Then, those DElncRNAs, DEmiRNAs,
and DEmRNAs were used to construct a lncRNA-miRNA-
mRNA ceRNA network based on LncBase v.2 [18] and miR-
TarBase [19] databases. Next, survival analysis was per-
formed to explore the prognostic characteristics of the
ceRNA network. Gene Ontology (GO) and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways enrichment
analyses were implemented for the WGCNA modules,
lncRNAs, and mRNAs in the ceRNA network. Gene set
enrichment analysis (GSEA) was also carried out for the

prognostic lncRNAs in the ceRNA network. Moreover, we
constructed a LASSO-penalized Cox regression model for
progression-free survival (PFS) prediction. The differences
in the expression of the lncRNAs and mRNAs in the ceRNA
network between high- and low-risk groups were investi-
gated. The results of this study will promote our understand-
ing of the crosstalk among lncRNAs, miRNAs, and mRNAs
in the tumorigenesis and progression of NPC.

2. Materials and Methods

2.1. Data Collection. Four public datasets of NPC
(GSE102349, GSE68799, GSE32960, and GSE12452) were
obtained from the Gene Expression Omnibus database
(GEO) (http://www.ncbi.nlm.nih.gov/geo/). GSE102349, per-
formed on the RNA-Seq platform of GPL11154 (Illumina
HiSeq 2000), including 113 NPC tissues, was used to conduct
WGCNA. GSE68799, performed on the same platform as
GSE102349, consisting of 42 NPC and 4 non-NPC tissues,
was used for module preservation analysis [20]. GSE32960,
performed on the miRNA profiling platform of GPL14722
(CapitalBio, Inc., Beijing, China), containing 312 paraffin-
embedded NPC and 18 paraffin-embedded normal nasopha-
ryngeal tissues, was used to identify differentially expressed
miRNAs (DEmiRNAs) between NPC and normal tissues.
GSE12452 performed on the mRNA profiling platform of
GPL570 [HG-U133_Plus_2] (Thermo Fisher Scientific,
Inc.), comprising 31 NPC and 10 normal nasopharyngeal tis-
sues, was used to identify differentially expressed genes
(DEGs) between NPC and normal tissues. Since these data
are downloaded from the public database, the consent of
the ethics committee is not required.

2.2. Weighted Correlation Network Analysis. WGCNA was
performed based on GSE102349 with “WGCNA” package
in the R software (version 3.5.0; http://www.r-project.org)
for a weighted correlation network construction. The gene
expression levels were measured by log2-transformed frag-
ments per kilobase million (FPKM). Only genes with the
highest 25% variance of expression values among samples
were included in WGCNA. The outliers were identified and
removed by hierarchical clustering analysis. Proper soft
thresholding power was obtained based on the criterion of
approximate scale-free topology. Next, “one-step network
construction and module detection” function was used to
construct a signed coexpression network and identify mod-
ules associated with NPC. The preservation of the modules
was examined by GSE68799. The preservation value “med-
ianRank” and “Zsummary.pres” (Z-score) were calculated
using the nPermutations of 200. In general, if Z-score is lower
than 2, the module will be regarded as no evidence of preser-
vation, while Z − score > 10 will be regarded as high preser-
vation. Furthermore, the associations between each module
and the clinical traits were analyzed by Pearson’s correlation
test. P < 0:05 was considered significant.

2.3. Differential Expression Analysis between NPC and Normal
Tissues.To identify DEmiRNAs and DEGs between NPC and
normal tissues, we performed differential expression analysis
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based on GSE32960 and GSE12452 using “limma” package
[21]. Before analysis, miRNA expression values were log2-
transformed and quantiled normalized across multiple
arrays. Gene expression values of GSE12452 were calculated
by the method described in our previous study [22]. The
DEmiRNAs and DEGs with false discovery rate ðFDRÞ <
0:05 and ∣log fold change ðFCÞ ∣ >0:5 were considered signif-
icant and used for subsequent analysis.

2.4. Identification of lncRNAs and Construction of the ceRNA
Network. The lncRNAs and mRNAs in the WGCNA mod-
ules were defined and annotated based on the Gencode
lncRNA annotation file (gencode.v31.long_noncoding_
RNAs.gtf.gz) from the GENCODE database (https://www
.gencode-genes.org). Following, a lncRNA-mediated ceRNA
network was constructed based on the hypothesis that
lncRNAs can interact with target miRNAs and invoked
miRNA sponges to regulate the activity of mRNAs [11].
According to the hypothesis, both lncRNAs and mRNAs
had a negative correlation with the corresponding miRNAs.
We speculated that the mRNAs may be the target genes of
lncRNAs that belong to the same WGCNA module, so we
first obtained up- and downregulated DElncRNAs and
DEmRNAs in NPC by taking the intersection of the DEGs
and the genes from the WGCNA modules. Then, we used
the validated lncRNA-miRNA interaction data from LncBase
v.2 experimental module [18] to predict target miRNAs
for DElncRNAs. The target miRNAs were matched with
DEmiRNAs to acquire up- and downregulated miRNAs for
the ceRNA network. Subsequently, we used the experimen-
tally verified miRNA-mRNA interaction data from miRTar-
Base database [19] to predict target mRNAs for those up-
and downregulated miRNAs. After that, the target mRNAs
were matched with the DEmRNAs in the WGCNA mod-
ules to obtain mRNAs for the ceRNA network. Thus, a
ceRNA network based on the WGCNA modules was con-
structed and visualized by the Cytoscape v3.6 software.
The workflow of building the ceRNA network was provided
in Figure S1.

2.5. Survival Analysis for the lncRNAs, miRNAs, and mRNAs
in the ceRNA Network. There were 88 NPC samples with PFS
data in GSE102349. PFS was defined as the time from the
date of diagnosis to the date of objective tumor progres-
sion or death from any cause [23]. There were 312 NPC sam-
ples with prognostic information in the dataset GSE32960.
The prognostic information included overall survival (OS),
disease-free survival (DFS), and distant metastasis-free
survival (DMFS). To explore the relationship between the
expression level of lncRNAs, miRNAs, and mRNAs in the
ceRNA network and survival time, the samples were divided
into two groups of high expression and low expression
according to the median value. Then, the Kaplan-Meier sur-
vival curve combined with a log-rank test was performed to
compare the survival difference between the high- and low-
expression groups. Survival analysis was implemented using
“survival” and “survminer” packages [24, 25]. P < 0:05 was
considered to be statistically significant.

2.6. Functional and Pathway Enrichment Analysis for the
Genes in the WGCNA Modules and ceRNA Network. To
explore the potential biological functions for the genes in
the WGCNA modules and lncRNA-mediated ceRNA net-
work, the genes were submitted to GO and KEGG pathway
enrichment analysis using “clusterProfiler” package [26].
For GO analysis, the cut-off criteria were P < 0:05 and q <
0:05. For KEGG analysis, the cut-off criterion was P < 0:05.

2.7. GSEA for the Prognostic lncRNAs in the ceRNA Network.
To explore the potential pathways of the prognostic lncRNAs
in the ceRNA network, the samples in the GSE102349 and
GSE12452 were categorized into two groups of high expres-
sion and low expression according to the median value of
the prognostic lncRNAs. Then, GSEA was performed by
“clusterprofiler” package using the annotated gene set,
“c2.cp.kegg.v7.0.symbols.gmt” from the Molecular Signature
Database (MSigDB, http://software.broadinstitute.org/gsea/
msigdb/index.jsp) as the reference gene set. False discovery
rate ðFDRÞ < 0:05 was chosen as the threshold.

2.8. Construction of Risk Score Model. To construct a risk
score model for PFS prediction, the DEGs with false discov-
ery rate ðFDRÞ < 0:05 and ∣log fold change ðFCÞ ∣ >1 in the
high preserved WGCNA modules were subjected to LASSO-
penalized Cox regression analysis by “glmnet” package [27,
28] in R. The function “cv.glmnet” was used to compute
10-fold cross-validation for the Cox model. “Lambda.min”
was selected as the optimal λ value. The prognostic genes
and their coefficients were generated to calculate the risk
score (RS) for each sample. The RS formula was constructed
as follows: risk score =∑ðβ × exprÞ. Here, β represents the
coefficient of a gene, and expr represents the expression level
of the gene. According to the median value of the RS, 88
samples in GSE102349 were classified into high- and low-
risk groups. Then, the Kaplan-Meier survival curve com-
bined with a log-rank test was performed to evaluate the sur-
vival differences between high- and low-risk groups using
“survival” and “survminer” packages. The receiver operating
characteristic (ROC) curve, the area under the curve (AUC),
and the C-index were applied to assess the prognostic accu-
racy of the risk score model using “survivalROC” package
[29]. Besides, the distribution of the risk score, survival sta-
tus, and expression patterns of the prognostic gene signatures
were explored in GSE102349. After that, the prognostic genes
were subjected to univariate Cox analysis and multivariate
Cox analysis. P < 0:05 was considered statistically significant.
Using “forestplot” package [30], a forest plot was used to
illustrate the results of hazard ratio (HR), 95% CI (confidence
interval), and corresponding P value. Finally, we compared
the expression levels of the lncRNAs in the ceRNA network
between high- and low-risk groups in GSE102349 using
two-sided Student’s t-test. P < 0:05 was considered to be sta-
tistically significant.

3. Results

3.1. Weighted Correlation Network Analysis. A weighted
correlation network of NPC based on GSE102349 was
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constructed using “WGCNA” package. After removing three
samples (GSM2735294, GSM2735309, and GSM2735313)
which were considered abnormal after sample clustering
analysis, 110 samples were retained for further analysis
(Fig. S2). We chose the soft-thresholding power of β as three,
which was the lowest power for which the scale-free topology
fit index (scale-free R2) achieved 0.9 (Fig. S3). Then, a
weighted correlation network with 14 modules was con-
structed. The sizes of the modules ranged from 52 (cyan
module) to 2045 (turquoise module) genes. A hierarchical
clustering dendrogram (tree) was generated with the color
assignment (Figure 1(a)). The genes labeled with “gray” rep-
resented background genes that were not assigned to any
coexpressive gene modules. Following, the preservation of
the modules were examined using GSE68799. Results showed
that the 14 modules were stable because their Z-scores were
all higher than two (Fig. S4). Among them, ten modules
(blue, turquoise, yellow, brown, red, cyan, magenta, black,
tan, and purple) were high preserved (Z − score > 10).
Besides, we calculated the correlations between the 14
modules and the clinical traits (Figure 1(b)). The results
showed that three modules (cyan, turquoise, and black) were
significantly correlated with clinical stage, four modules
(tan, red, turquoise, and magenta) were significantly corre-
lated with the event, and four modules (brown, red, tur-
quoise, and black) were significantly correlated with time
to event (P < 0:05).

3.2. Identification of DEmiRNAs and DEGs in NPC Tissues.
Based on the miRNA profiling dataset GSE32960, we iden-
tified a total of 196 DEmiRNAs, including 87 (44.4%)
upregulated miRNAs and 109 (55.6%) downregulated miR-
NAs. Meanwhile, based on the mRNA profiling dataset
GSE12452, we identified 2371 DEGs, including 1191 (50.2%)
upregulated genes and 1180 (49.8%) downregulated genes.
The DEmiRNAs (Figure 2(a)) and DEGs (Figure 2(b)) were
depicted in volcano plots, respectively.

3.3. Identification of lncRNAs and Construction of the
ceRNA Network. Using GENCODE database, we identified
65 lncRNAs in theWGCNAmodules. However, after match-
ing with the DEGs from GSE12452, LncBase v.2, and miR-
TarBase databases, only 11 lncRNAs were retained to
construct the lncRNA-mediated ceRNA network (Table 1).
Of them, ZNF667-AS1 was downregulated in NPC, and the
others (GAS5, SNHG1, SNHG12, SNHG15, SNHG16,
SNHG17, SNHG6, SNHG8, THAP9-AS1, and ZFAS1) were
upregulated in NPC. As demonstrated in Figure 3, we
eventually constructed a ceRNA network composed of 11
lncRNAs (Table 1), 15 miRNAs (Table S1), and 40 mRNAs
(Table S2) from turquoise and salmon modules.

3.4. Survival Analysis for the lncRNAs, miRNAs, and mRNAs
in the ceRNA Network. Kaplan-Meier survival analysis was
performed to explore the prognostic value of the lncRNAs,
miRNAs, and mRNAs in the ceRNA network. Results
showed that four mRNAs, including LDHA, LMNB2, TPI1,
and UNG, were negatively correlated with PFS, and lncRNA
ZNF667-AS1 was positively correlated with PFS. Patients in

the high-expression group of ZNF667-AS1 had longer PFS
than those in the low-expression group (Figure 4(a)). Addi-
tionally, hsa-miR-142-3p was found to be positively corre-
lated with OS, DFS, and DMFS (Figure 4(b)).

3.5. Functional and Pathway Enrichment Analysis for the
Genes in the WGCNA Modules. The potential biological
function of the genes in the WGCNA modules was investi-
gated by GO and KEGG pathway enrichment analysis.
Results indicated that the genes in the modules were associ-
ated with different functional categories and pathways (Fig.
S5A-B). For example, “Wnt signaling pathway” was enriched
in the black module; “Small cell lung cancer” was enriched in
the brown module; “p53 signaling pathway” was enriched in
the brown and tan modules; “PI3K-Akt signaling pathway”
was enriched in the brown, turquoise, and yellow modules;
“Epstein−Barr virus infection” was enriched in the cyan
and turquoise modules; “IL−17 signaling pathway” was
enriched in the green modules; “Amoebiasis” was enriched
in the purple, turquoise, and yellow modules; “Cell cycle,”
“Oocyte meiosis,” and “DNA replication” were enriched in
the tan module; “Protein digestion and absorption” was
enriched in the yellow module.

3.6. Functional and Pathway Enrichment Analysis for the
Genes in the ceRNA Network. Through GO and KEGG
pathway enrichment analysis, we also studied the potential
biological functions of the genes in the ceRNA network.
Results showed that the genes were significantly enriched in
76 GO terms for biological processes (BP), two GO terms
for molecular function (MF), and one GO term for cellular
components (CC) (Table S3). For BP, enriched terms
included “nucleocytoplasmic transport,” “nuclear transport,”
“regulation of organ morphogenesis,” “regulation of
morphogenesis of an epithelium,” and “sulfur amino acid
metabolic process”. For CC, the enriched term was “nuclear
periphery.” For MF, the enriched terms included “ribosomal
small subunit binding” and “histone kinase activity.”
Additionally, KEGG pathway enrichment analysis indicated
that “Wnt signaling pathway” and “HIF-1 signaling
pathway” were significantly enriched. We displayed the
results as 4 networks that depict the representative GO terms
and KEGG pathways (Figure 5).

3.7. GSEA for ZNF667-AS1. As shown in the above analysis,
of the 11 lncRNAs, only ZNF667-AS1 was correlated with
PFS significantly. To better understand the role of ZNF667-
AS1 in NPC, GSEA was performed on GSE102349 and
GSE12452. The results showed that 58 pathways were
enriched in GSE102349 (Table S4), and 54 pathways were
enriched in GSE12452 (Table S5). Further analysis revealed
that these two datasets shared 44 pathways. Figure 6 showed
the top five activated pathways and five suppressed pathways
when ZNF667-AS1 was upregulated and downregulated. The
upregulation of ZNF667-AS1 was associated with “intestinal
immune network for IgA production,” “hematopoietic_cell_
lineage,” “B cell receptor signaling pathway,” “T cell receptor
signaling pathway,” “leukocyte transendothelial migration,”
and other pathways. The downregulation of ZNF667-AS1
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was related to “DNA replication,” “cell cycle,” “P53 signaling
pathway,” “spliceosome,” and other pathways.

3.8. Construction of Risk Score Model. LASSO-penalized Cox
regression analysis along with 10-fold cross-validation was

conducted to build risk score model for PFS prediction
(Figures 7(a) and 7(b)), which resulted in the identification
of 12 prognostic genes: RRM2, VILL, MANSC1, CYP4B1,
LXN, MLF1, CRIP1, WDR54, MNS1, CNN3, CTHRC1,
and NFE2L3. Risk score for each sample was calculated based
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Figure 1: Weighted gene coexpression network analysis. (a) Hierarchical clustering dendrogram of the 14 modules. The branches of the tree
represent the clusters of genes. Colors below the tree display the gene modules that correspond to the clusters. (b) Heatmap of the correlation
between module eigengenes and clinical traits of NPC. Each row corresponds to a module eigengene, column to a trait. Each cell contains the
corresponding correlation and P value. NPC: nasopharyngeal carcinoma.
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on the following formula: RS = 0:07785695 × exprRRM2 −
0:05729219 × exprVILL + 0:15392701 × exprMANSC1 −
0:02185837 × exprCYP4B1 − 0:05553768 × exprLXN +
0:19470422 × exprMLF1 − 0:44565573 × exprCRIP1 +
0:22242843 × exprWDR54 + 0:39891041 × exprMNS1 −
0:27436890 × exprCNN3 − 0:03554977 × exprCTHRC1 +
0:08434817 × exprNFE2L3. According to the median value of
RSs, 88 samples in the dataset GSE102349 were separated
into high- and low-risk groups. Kaplan-Meier analysis
showed that patients in the high-risk group had poorer PFS
than those in the low-risk group (Figure 7(c)). Time-
dependent ROC analysis at varying follow-up times was used
to explore the prognostic capacity of the risk score model for
PFS. Results showed that the AUC received 0.932, 0.943, and

0.967 at 12, 24, and 36 months (Figure 7(d)). The C-index for
the model was 0.891. Therefore, this model has good PFS
prediction ability in GSE102349. The distribution of the risk
score indicated that patients in the high-risk group had a
worse outcome of PFS than those in the low-risk group
(Figures 7(e)–7(f)), and the former tended to have overex-
pression of RRM2, MANSC1, MLF1, WDR54, MNS1, and
NFE2L3, whereas the latter tended to have overexpression
of VILL, CYP4B1, LXN, CRIP1, CNN3, and CTHRC1
(Figure 7(g)). Besides, multivariate Cox regression analysis
indicated that MANSC1, CYP4B1, MLF1, CRIP1, MNS1,
CNN3, and CTHRC1 were independent prognostic factors
associated with the DFS in NPC (Figure 7(h)). Among the
11 lncRNAs in the ceRNA network, SNHG16, SNHG17,
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Figure 2: Volcano plots of (a) DEmiRNAs and (b) DEGs. Spots on the right represent upregulated genes, and spots on the left represent
downregulated genes. False discovery rate ðFDRÞ < 0:05 and ∣log fold change ðFCÞ ∣ >0:5 were considered significant. DEmiRNAs:
differentially expressed miRNAs; DEGs: differentially expressed genes.

Table 1: The differential expressed lncRNAs in the ceRNA network.

Module color Symbol LogFC adj.P.Val Group Target miRNA

Salmon ZFAS1 0.804750464 2.10E-04 Up hsa-miR-34c-5p; hsa-miR-421; hsa-miR-449a

Salmon SNHG12 0.710805371 0.007409834 Up hsa-miR-34c-5p; hsa-miR-449a

Salmon GAS5 0.902974269 1.73E-05 Up hsa-miR-34c-5p; hsa-miR-449a

Salmon SNHG6 0.615722821 0.003071714 Up hsa-miR-421

Salmon SNHG1 1.067332781 2.98E-07 Up
hsa-miR-125a-5p; hsa-miR-34c-5p;

hsa-miR-421; hsa-miR-449a

Salmon SNHG8 1.065333272 1.10E-05 Up hsa-miR-125a-5p

Turquoise SNHG16 0.722248011 9.24E-04 Up
hsa-miR-140-3p; hsa-miR-142-3p; hsa-miR-342-3p;

hsa-miR-361-3p; hsa-miR-449a; hsa-miR-564

Turquoise SNHG17 0.627392375 0.001876364 Up
hsa-miR-125a-5p; hsa-miR-140-5p;
hsa-miR-28-5p; hsa-miR-342-3p

Turquoise SNHG15 0.668944147 1.22E-04 Up hsa-miR-125a-5p; hsa-miR-28-5p; hsa-miR-449a

Turquoise THAP9-AS1 0.759104166 0.003243755 Up
hsa-miR-142-5p; hsa-miR-146b-5p;
hsa-miR-28-5p; hsa-miR-361-5p

Turquoise ZNF667-AS1 -1.117518496 5.97E-07 Down hsa-miR-574-5p

Abbreviation: LogFC: log2-fold change; adj.P.Val: P value adjusted for multiple testing.
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and THAP9-AS1 were upregulated in the high-risk group of
NPC, while ZNF667-AS1 was downregulated in the high-risk
group of NPC (Figure 8).

4. Discussion

LncRNAs, function as ceRNAs by binding miRNAs, have
been reported to be involved in the physiological and patho-
logical processes of various diseases. One of the most effective
methods to predict the function of ceRNAs was to construct a
ceRNA network based on the high-throughput data together
with bioinformatic tools and computational approaches [31].
However, the comprehensive analysis of lncRNA-mediated
ceRNA regulatory network in NPC remains scarce.

In the present study, we conducted WGCNA using RNA-
Seq data of GSE102349 to enrich modules associated with
NPC. Finally, we built a weighted correlation network com-
posed of 14 modules. Through enrichment analysis, we found
that the modules were related to some terms and pathways
that had been previously reported by us or other researchers,
such as “Wnt signaling pathway,” “Small cell lung cancer,”

“PI3K−Akt signaling pathway,” “Epstein−Barr virus infec-
tion,”, “Cell cycle,” and “DNA replication” [17, 22, 32].

To better understand the potential roles of lncRNAs in
NPC, we identified lncRNAs from the WGCNA modules.
Combining with mRNA expression profile data, we identified
the up- and downregulated lncRNAs and mRNAs in the
same module. The mRNAs in the same module may be the
regulatory targets for lncRNAs, so we used the lncRNAs
and mRNAs in the same module to construct a ceRNA
network. To improve the reliability of the ceRNA network,
we identified the DEmiRNAs from GSE32960. Following,
LncBase v.2 database was utilized to predict target miRNAs
for lncRNAs, and miRTarBase was utilized to predict target
mRNAs for miRNAs. Finally, we developed a ceRNA net-
work composed of 11 lncRNAs, 15 miRNAs, and 40 mRNAs
from turquoise and salmon modules. It is noteworthy that
the genes in the ceRNA network were significantly enriched
in the “Wnt signaling pathway” and “HIF-1 signaling path-
way” which had been shown to be related to the development
of NPC. For instance, Wang et al. [33] revealed that Wnt/β-
catenin signaling (including β-catenin, cyclin D1, c-Myc, and
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MMP-7) and p-eIF4E expression were elevated in NPC com-
pared with noncancerous nasopharyngeal epithelial tissues
and associated with clinical characteristics of NPC patients.
Sung et al. [34] showed that HIF-1 alpha, HIF-2 alpha, CA
IX, and VEGF were frequently coexpressed in NPC biopsies
and associated with poor outcomes after radiotherapy.

Among the 40 mRNAs in the ceRNAs, four mRNAs were
found to have a significant impact on the prognosis of NPC,
including LDHA, LMNB2, TPI1, and UNG. High expression
of LDHA, LMNB2, TPI1, and UNG indicated unfavorable
outcomes in patients with NPC. LDHA is upregulated in
NPC tissues and cells, and it was reported to be an indepen-

dent adverse prognostic factor of NPC [35, 36]. Through
inhibition of LDHA, miR-34b-3 and miR-449a suppressed
NPC progression and metastasis [37]. Therefore, the ceRNA
network was reliable because the regulatory relationship
between LDHA and miR-449a was indicated in our ceRNA
network. LMNB2, a B type nuclear lamin, binds to the C-
terminus of MCM7 and competes with the binding of the
tumor suppressor RB protein, thus regulates human non-
small-cell lung cancer progression [38]. TPI1, an enzyme that
catalyzes the interconversion of DHAP and G3P in glycolysis
and gluconeogenesis, might be a novel prognostic factor to
evaluate gastric cancer patients’ survival [39, 40]. UNG is a
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Figure 4: Survival analysis for the lncRNAs, miRNAs, and mRNAs in the ceRNA network. LDHA, LMNB2, TPI1 and UNG, and ZNF667-
AS1 were significantly correlated with PFS of patients with NPC (a). Hsa-miR-142-3p were significantly correlated with OS, DFS, and DMFS
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critical mediator of pemetrexed sensitivity in lung cancer
[41]. The role and mechanism of LMNB2, TPI1, and UNG
in NPC remain elusive.

Among the 15 miRNAs in the ceRNAs, hsa-miR-142-3p
was demonstrated to be downregulated in NPC, and a high
level of hsa-miR-142-3p indicated favorable prognosis,
which was consistent with the previous studies [16, 42]. Li
Y et al. revealed that miR-142-3p was epigenetically silenced
by EZH2-recruited DNMT1 and suppress NPC cell metasta-
sis and EMT through targeting ZEB2 [43]. However, Qi et al.
reported that miR-142-3p inhibits the expression of SOCS6
and promotes cell proliferation in NPC [44]. Therefore, the
role of miR-142-3p in the progression of NPC deserves fur-
ther studied.

Among the 11 lncRNAs in the ceRNAs, ZNF667-AS1
was found to be related to the PFS of patients with NPC.
ZNF667-AS1, also known as MORT, is located in 19q13.43.
Dysregulated expression of ZNF667-AS1 has been reported
in many tumors, including breast cancer, cervical cancer,
laryngeal squamous cell carcinoma, and esophageal squa-
mous cell carcinoma [45–48]. Li et al. found that ZNF667-
AS1 reduces tumor invasion and metastasis in cervical cancer
by counteracting microRNA-93-3p-dependent PEG3 down-
regulation [46]. Dong et al. demonstrated that aberrant
hypermethylation-mediated downregulation of ZNF667-
AS1 and ZNF667 correlates with progression and prognosis
of esophageal squamous cell carcinoma [47]. Further,
ZNF667-AS1 was revealed to be silenced by aberrant DNA
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were shown in (a). Plot of the cross-validation error rates was shown in (b). The left vertical line in the plot shows the CV-error curve hits its
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12 BioMed Research International



methylation in 22 of 33 of TCGA cancer types [49]. In this
study, ZNF667-AS1 was shown to be downregulated in
NPC compared with normal tissues, and it was downregu-
lated in the high-risk patients with poor prognosis. The
expression level of ZNF667-AS1 was positively correlated
with PFS of NPC. Combined with the above literature, we
speculated that the downregulation of ZNF667-AS1 might
also be caused by methylation in NPC, but it needs further
molecular experiments to prove this hypothesis. Besides, we
found that ZNF667-AS1 may regulate the expression of
PRKCB and PAX5 through competitively binding to hsa-
miR-574-5p. What is more, GSEA analysis showed that
ZNF667-AS1 was associated with some important pathways
related to tumorigenesis. Therefore, ZNF667-AS1 might act
as a tumor suppressor and participate in the occurrence and
development of NPC. To the best of our knowledge, the pres-
ent study was the first to demonstrate the relation between
ZNF667-AS1 and NPC using bioinformatics analysis.

In the present study, we constructed a risk score model
for predicting PFS of NPC patients. This model consists of
12 genes RRM2, VILL, MANSC1, CYP4B1, LXN, MLF1,
CRIP1, WDR54, MNS1, CNN3, CTHRC1, and NFE2L3.
Among them, RRM2, MANSC1, MLF1, WDR54, MNS1,
and NFE2L3 were associated with high risk of poor progno-
sis, while VILL, CYP4B1, LXN, CRIP1, CNN3, and CTHRC1
were associated with low risk of poor prognosis. Multivariate
Cox regression analysis indicated that MANSC1, CYP4B1,
MLF1, CRIP1, MNS1, CNN3, and CTHRC1 were indepen-
dent prognostic factors associated with the DFS in NPC.
Kaplan-Meier survival analysis, ROC curve and the C-index
demonstrated that the predictive capability of the risk model
was successful in GSE102349. Among the prognostic genes in
the model, RRM2 encodes a subunit of ribonucleotide reduc-
tase, which catalyzes the conversion of ribonucleotides into

deoxyribonucleotides. Overexpression of RRM2 predicts an
unfavorable prognosis for patients with NPC [50]. CYP4B1
encodes a member of the cytochrome P450 superfamily of
enzymes, which catalyze many reactions involved in drug
metabolism and synthesis of cholesterol, steroids, and other
lipids. Although CYP4B1 was detected in NPC tissues [51],
the role of CYP4B1 is little known. In addition to RRM2
and CYP4B1, the relationship between NPC and other prog-
nostic genes in the risk model has not been reported in the
literature.

What is more, we analyzed the expression differences of
lncRNAs in the ceRNA network between two risk groups.
Results showed that SNHG16, SNHG17, and THAP9-AS1
were upregulated in the high-risk group of NPC, while
ZNF667-AS1 was downregulated in the high-risk group of
NPC. SNHG16 was regarded as an oncogene and associated
with neuroblastoma, bladder cancer, colorectal cancer,
esophageal squamous cell carcinoma, and hepatocellular car-
cinoma [52–54]. Zhang et al. suggested that SNHG16 pro-
motes tumor progression through acting as an endogenous
“sponge” by competing with miR-140-5p, thereby regulating
target ZEB1 [53]. SNHG17 was reported to promote gastric
cancer progression by epigenetically silencing of p15 and
p57, and it was an unfavorable prognostic factor in colorectal
cancer and gastric cancer [55, 56]. Extensive overexpression
of THAP9-AS1 was observed in pancreatic ductal adenocar-
cinoma which is associated with poor clinical outcomes [57].
Function as ceRNA, THAP9-AS1 facilitated YAP expression
by sequestrating miR-484, and it can bind YAP to inhibit
phosphorylation-mediated inactivation by LATS1 [57]. The
function and mechanism of those identified lncRNAs in
NPC warrant further study.

Altogether, based on the WGCNA method and ceRNA
hypothesis, combined with bioinformatics database, this
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study constructed a lncRNA-mediated ceRNA network,
which is of great significance for us to identify lncRNAs with
important biological significance in NPC, especially the
lncRNAs’ relevance to prognosis and risk, and to understand
the regulatory mechanism and function of lncRNAs. The
lncRNAs, miRNAs, and mRNAs identified in this study
may serve as candidate diagnostic and therapeutic targets
for NPC and provide clues for further in-depth research in
the future.

It should be acknowledged that there were certain limita-
tions to the present study. Firstly, only 11 differential
expressed lncRNAs were obtained from the integrated analy-
sis of RNA-Seq data and mRNA profiling data. Some
lncRNAs may be ignored, for only a portion of the possible
lncRNAs was included in HG-U133 Plus 2.0 platform. Sec-
ondly, the sample size of GSE102349 was relatively limited.
There were only 113 NPC samples included in GSE102349,
and only 88 samples had survival information; thus, research
with large sample sizes, high-quality high-throughput data
are required to verify our findings in the future. Thirdly,
due to the lack of important clinical information such as gen-
der and age, we cannot confirm the independence of the risk
model. Moreover, due to the absence of similar NPC public
datasets with survival information, external validation was
not conducted. Finally, although we have constructed a
ceRNA network using multiple datasets and experimental-
based databases, the regulatory relationship among lncRNAs,
miRNAs, and mRNAs still requires to verify using molecular
experiments in vivo and in vitro.

5. Conclusions

Collectively, we constructed a ceRNA network based on
WGCNA. The network can reflect the mutual regulated rela-
tionships among lncRNAs, miRNAs, and mRNAs, and it can
reflect the changes in their expression level between NPC and
normal tissues. This ceRNA network provided novel insights
into the understanding of the crosstalk among lncRNAs,
miRNAs, and mRNAs in the tumorigenesis and progression
of NPC. Moreover, we developed a LASSO-penalized Cox
regression model for NPC that may contribute to predict
PFS of NPC patients. Furthermore, we identified several
potential prognostic biomarkers and high-risk biomarkers
from the ceRNA network. Further evaluation of those bio-
markers is needed by well-designed scientific experiments
in the future.

Data Availability

The data used for analysis in this study are available from the
Gene Expression Omnibus database.

Conflicts of Interest

The authors declare that there is no conflict of interest
regarding the publication of this paper.

Authors’ Contributions

Zhenning Zou and Shuguang Liu contributed equally to this
work.

Acknowledgments

We thank the Research Square Preprint Platform for sharing
our work at https://www.researchsquare.com/article/rs-
35735/v1. This study was supported by the Scientific and
Technological Project of Zhanjiang (grant no. 2010C
3104008), the Medical Science and Technology Research
Project of Guangdong (grant no. A2019527), and the Doc-
toral Research Start-up Fund of Guangdong Medical Univer-
sity (grant no. B2019025).

Supplementary Materials

Figure S1: workflow of the construction of lncRNA-mediated
ceRNA network. Figure S2: sample clustering analysis to
detect outliers. Figure S3: network topology analysis for var-
ious soft-thresholding powers (β). The scale-free fit index
(left) and the mean connectivity (right) were displayed as a
function of the soft-thresholding power. The red line repre-
sents the standard line when R2 reached a value of 0.9. Figure
S4: the medianRank and Zsummary statistics of module
preservation of GSE102349 modules in GSE68799 modules
(y-axis) vs. module size (x-axis). Figure S5: enriched GO
terms and KEGG pathways for WGCNA modules. (A) GO
term enrichment for biological processes, molecular func-
tions, and cellular components. (B) KEGG pathway analysis.
The number on the x-axis is the number of enriched genes.
The circle size indicates the ratio of genes in each term; colors
correspond to Padj. P values were adjusted by the Benjamini-
Hochberg method. GO, Gene Ontology; KEGG, Kyoto Ency-
clopedia of Genes and Genomes; Padj, adjusted P value.
Table S1: DEmiRNAs in the ceRNA network. Table S2:
DEmRNAs in the ceRNA network. Table S3: enriched GO
terms and KEGG pathways for the genes in the ceRNA net-
work. Table S4: gene set enrichment analysis (GSEA) for
ZNF667-AS1 using GSE102349. Table S5: gene set enrich-
ment analysis (GSEA) for ZNF667-AS1 using GSE12452.
(Supplementary Materials)

References

[1] E. T. Chang and H. O. Adami, “The enigmatic epidemiology of
nasopharyngeal carcinoma,” Cancer Epidemiology, Biomarkers
& Prevention, vol. 15, no. 10, pp. 1765–1777, 2006.

[2] M. L. K. Chua, J. T. S. Wee, E. P. Hui, and A. T. C. Chan,
“Nasopharyngeal carcinoma,” The Lancet, vol. 387,
no. 10022, pp. 1012–1024, 2016.

[3] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in
185 countries,” CA: A Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[4] S. H. Cheng, J. Jer-Min Jian, S. Y. C. Tsai et al., “Long-term sur-
vival of nasopharyngeal carcinoma following concomitant
radiotherapy and chemotherapy,” International Journal of

14 BioMed Research International

https://www.researchsquare.com/article/rs-35735/v1
https://www.researchsquare.com/article/rs-35735/v1
http://downloads.hindawi.com/journals/bmri/2020/1468980.f1.pdf


Radiation Oncology • Biology • Physics, vol. 48, no. 5, pp. 1323–
1330, 2000.

[5] Y. Nakanishi, N. Wakisaka, S. Kondo et al., “Progression of
understanding for the role of Epstein-Barr virus and manage-
ment of nasopharyngeal carcinoma,” Cancer and Metastasis
Reviews, vol. 36, no. 3, pp. 435–447, 2017.

[6] S. U. Schmitz, P. Grote, and B. G. Herrmann, “Mechanisms of
long noncoding RNA function in development and disease,”
Cellular and Molecular Life Sciences, vol. 73, no. 13,
pp. 2491–2509, 2016.

[7] X. Li, Y. Lin, X. Yang, X. Wu, and X. He, “Long noncoding
RNA H19 regulates EZH2 expression by interacting with
miR-630 and promotes cell invasion in nasopharyngeal carci-
noma,” Biochemical and Biophysical Research Communica-
tions, vol. 473, no. 4, pp. 913–919, 2016.

[8] C. Gao, W. Lu, W. Lou, L. Wang, and Q. Xu, “Long noncoding
RNA HOXC13-AS positively affects cell proliferation and
invasion in nasopharyngeal carcinoma via modulating miR-
383-3p/HMGA2 axis,” Journal of Cellular Physiology,
vol. 234, no. 8, pp. 12809–12820, 2019.

[9] Z.-Q. Zheng, Z.-X. Li, G.-Q. Zhou et al., “Long noncoding
RNA FAM225A promotes nasopharyngeal carcinoma tumor-
igenesis and metastasis by acting as ceRNA to sponge miR-
590-3p/miR-1275 and upregulate ITGB3,” Cancer Research,
vol. 79, no. 18, pp. 4612–4626, 2019.

[10] X. Lan and X. Liu, “LncRNA SNHG1 functions as a ceRNA to
antagonize the effect of miR-145a-5p on the down-regulation
of NUAK1 in nasopharyngeal carcinoma cell,” Journal of Cel-
lular and Molecular Medicine, vol. 23, no. 4, pp. 2351–2361,
2019.

[11] L. Salmena, L. Poliseno, Y. Tay, L. Kats, and P. P. Pandolfi, “A
ceRNA hypothesis: the Rosetta Stone of a hidden RNA lan-
guage?,” Cell, vol. 146, no. 3, pp. 353–358, 2011.

[12] F. A. Karreth and P. P. Pandolfi, “ceRNA cross-talk in cancer:
when ce-bling rivalries go awry,” Cancer Discovery, vol. 3,
no. 10, pp. 1113–1121, 2013.

[13] P. Langfelder and S. Horvath, “WGCNA: an R package for
weighted correlation network analysis,” BMC Bioinformatics,
vol. 9, no. 1, p. 559, 2008.

[14] R. Liu, W. Zhang, Z. Q. Liu, and H. H. Zhou, “Associating
transcriptional modules with colon cancer survival through
weighted gene co-expression network analysis,” BMC Geno-
mics, vol. 18, no. 1, p. 361, 2017.

[15] Q. Wan, J. Tang, Y. Han, and D. Wang, “Co-expression mod-
ules construction by WGCNA and identify potential prognos-
tic markers of uveal melanoma,” Experimental Eye Research,
vol. 166, pp. 13–20, 2018.

[16] S. Zhang, W. Yue, Y. Xie et al., “The four-microRNA signature
identified by bioinformatics analysis predicts the prognosis of
nasopharyngeal carcinoma patients,” Oncology Reports,
vol. 42, no. 5, pp. 1767–1780, 2019.

[17] Y. Ge, Z. He, Y. Xiang et al., “The identification of key genes in
nasopharyngeal carcinoma by bioinformatics analysis of high-
throughput data,” Molecular Biology Reports, vol. 46, no. 3,
pp. 2829–2840, 2019.

[18] M. D. Paraskevopoulou, I. S. Vlachos, D. Karagkouni et al.,
“DIANA-LncBase v2: indexing microRNA targets on non-
coding transcripts,” Nucleic Acids Research, vol. 44, no. D1,
pp. D231–D238, 2016.

[19] C.-H. Chou, S. Shrestha, C. D. Yang et al., “miRTarBase update
2018: a resource for experimentally validated microRNA-

target interactions,” Nucleic Acids Research, vol. 46, no. D1,
pp. D296–D302, 2018.

[20] P. Langfelder, R. Luo, M. C. Oldham, and S. Horvath, “Is my
network module preserved and reproducible?,” PLoS Compu-
tational Biology, vol. 7, no. 1, article e1001057, 2011.

[21] M. E. Ritchie, B. Phipson, D. Wu et al., “limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, article e47,
2015.

[22] Z. Zou, S. Gan, S. Liu, R. Li, and J. Huang, “Investigation of dif-
ferentially expressed genes in nasopharyngeal carcinoma by
integrated bioinformatics analysis,” Oncology Letters, vol. 18,
no. 1, pp. 916–926, 2019.

[23] L. Zhang, K. D. MacIsaac, T. Zhou et al., “Genomic analysis of
nasopharyngeal carcinoma reveals TME-based subtypes,”
Molecular Cancer Research, vol. 15, no. 12, pp. 1722–1732,
2017.

[24] T. Therneau, “A package for survival analysis in S. version
2.38,” 2015, https://CRAN.R-project.org/package=survival.

[25] A. Kassambara and M. Kosinski, “Survminer: drawing survival
curves using “ggplot2,”, R package version 0.4.3,” 2018, https://
CRAN.R-project.org/package=survminer.

[26] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS: A Journal of Integrative Biology, vol. 16, no. 5,
pp. 284–287, 2012.

[27] R. Tibshirani, “The lasso method for variable selection in the
Cox model,” Statistics in Medicine, vol. 16, no. 4, pp. 385–
395, 1997.

[28] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,”
Journal of Statistical Software, vol. 33, no. 1, pp. 1–22, 2010.

[29] P. J. Heagerty and P. Saha-Chaudhuri, “SurvivalROC: time-
dependent ROC curve estimation from censored survival data,
R package version 1.0.3,” 2013, https://CRAN.R-project.org/
package=survivalROC.

[30] M. Gordon and T. Lumley, “Forestplot: advanced forest plot
using ‘grid’graphics, R package version 1.9,” 2019, https://
CRAN.R-project.org/package=forestplot.

[31] L.-L. Guo, C.-H. Song, P. Wang, L.-P. Dai, J.-Y. Zhang, and K.-
J. Wang, “Competing endogenous RNA networks and gastric
cancer,” World Journal of Gastroenterology, vol. 21, no. 41,
pp. 11680–11687, 2015.

[32] J. Chen, R. Yang, W. Zhang, and Y. Wang, “Candidate
pathways and genes for nasopharyngeal carcinoma based
on bioinformatics study,” International Journal of Clinical
and Experimental Pathology, vol. 8, no. 2, pp. 2026–2032,
2015.

[33] W. Wang, Q. Wen, J. Luo et al., “Suppression of β-catenin
nuclear translocation by CGP57380 decelerates poor progres-
sion and potentiates radiation-induced apoptosis in nasopha-
ryngeal carcinoma,” Theranostics, vol. 7, no. 7, pp. 2134–
2149, 2017.

[34] F. L. Sung, E. P. Hui, Q. Tao et al., “Genome-wide expression
analysis using microarray identified complex signaling path-
ways modulated by hypoxia in nasopharyngeal carcinoma,”
Cancer Letters, vol. 253, no. 1, pp. 74–88, 2007.

[35] A. C. Li, W. W. Xiao, L. Wang et al., “Risk factors and
prediction-score model for distant metastasis in nasopharyn-
geal carcinoma treated with intensity-modulated radiother-
apy,” Tumour Biology, vol. 36, no. 11, pp. 8349–8357, 2015.

15BioMed Research International

https://CRAN.R-project.org/package=survival
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survminer
https://CRAN.R-project.org/package=survivalROC
https://CRAN.R-project.org/package=survivalROC
https://CRAN.R-project.org/package=forestplot
https://CRAN.R-project.org/package=forestplot


[36] Y. Su, Q. H. Yu, X. Y. Wang et al., “JMJD2A promotes the
Warburg effect and nasopharyngeal carcinoma progression
by transactivating LDHA expression,” BMC Cancer, vol. 17,
no. 1, p. 477, 2017.

[37] H. Li, X. Li, X. Ge et al., “MiR-34b-3 and miR-449a inhibit
malignant progression of nasopharyngeal carcinoma by tar-
geting lactate dehydrogenase A,” Oncotarget, vol. 7, no. 34,
pp. 54838–54851, 2016.

[38] Y. Ma, L. Fei, M. Zhang et al., “Lamin B2 binding to minichro-
mosome maintenance complex component 7 promotes non-
small cell lung carcinogenesis,” Oncotarget, vol. 8, no. 62,
pp. 104813–104830, 2017.

[39] L. E. Maquat, R. Chilcote, and P. M. Ryan, “Human triosepho-
sphate isomerase cDNA and protein structure. Studies of trio-
sephosphate isomerase deficiency in man,” The Journal of
Biological Chemistry, vol. 260, no. 6, pp. 3748–3753, 1985.

[40] T. Chen, Z. Huang, Y. Tian et al., “Clinical significance and
prognostic value of Triosephosphate isomerase expression in
gastric cancer,” Medicine, vol. 96, no. 19, article e6865, 2017.

[41] L. D. Weeks, P. Fu, and S. L. Gerson, “Uracil-DNA glycosylase
expression determines human lung cancer cell sensitivity to
pemetrexed,” Molecular Cancer Therapeutics, vol. 12, no. 10,
pp. 2248–2260, 2013.

[42] N. Liu, N. Y. Chen, R. X. Cui et al., “Prognostic value of a
microRNA signature in nasopharyngeal carcinoma: a micro-
RNA expression analysis,” Lancet Oncology, vol. 13, no. 6,
pp. 633–641, 2012.

[43] Y. Li, Q. He, X. Wen et al., “EZH2-DNMT1-mediated epige-
netic silencing of miR-142-3p promotes metastasis through
targeting ZEB2 in nasopharyngeal carcinoma,” Cell Death
and Differentiation, vol. 26, no. 6, pp. 1089–1106, 2019.

[44] X. Qi, J. Li, C. Zhou, C. Lv, and M. Tian, “MiR-142-3p sup-
presses SOCS6 expression and promotes cell proliferation in
nasopharyngeal carcinoma,” Cellular Physiology and Biochem-
istry, vol. 36, no. 5, pp. 1743–1752, 2015.

[45] L. Vrba and B. W. Futscher, “Epigenetic silencing of MORT is
an early event in cancer and is associated with luminal, recep-
tor positive breast tumor subtypes,” Journal of Breast Cancer,
vol. 20, no. 2, pp. 198–202, 2017.

[46] Y.-J. Li, Z. Yang, Y.-Y. Wang, and Y. Wang, “Long noncoding
RNA ZNF667-AS1 reduces tumor invasion and metastasis in
cervical cancer by counteracting microRNA-93-3p-dependent
PEG3 downregulation,” Molecular Oncology, vol. 13, no. 11,
pp. 2375–2392, 2019.

[47] Z. Dong, S. Li, X. Wu et al., “Aberrant hypermethylation-
mediated downregulation of antisense lncRNA ZNF667-AS1
and its sense gene ZNF667 correlate with progression and
prognosis of esophageal squamous cell carcinoma,” Cell Death
& Disease, vol. 10, no. 12, p. 930, 2019.

[48] W. Meng, W. Cui, L. Zhao, W. Chi, H. Cao, and B. Wang,
“Aberrant methylation and downregulation of ZNF667-AS1
and ZNF667 promote the malignant progression of laryngeal
squamous cell carcinoma,” Journal of Biomedical Science,
vol. 26, no. 1, p. 13, 2019.

[49] L. Vrba and B. W. Futscher, “Epigenetic silencing of lncRNA
MORT in 16 TCGA cancer types,” F1000Research, vol. 7,
p. 211, 2018.

[50] P. Han, Z. R. Lin, L. H. Xu et al., “Ribonucleotide reductase M2
subunit expression and prognostic value in nasopharyngeal
carcinoma,” Molecular Medicine Reports, vol. 12, no. 1,
pp. 401–409, 2015.

[51] J. H. Jiang, W. H. Jia, H. D. Qin, H. Liang, Z. G. Pan, and Y. X.
Zeng, “Expression of cytochrome P450 enzymes in human
nasopharyngeal carcinoma and non-cancerous nasopharynx
tissue,” Ai Zheng, vol. 23, no. 6, pp. 672–677, 2004.

[52] L. L. Christensen, K. True, M. P. Hamilton et al., “SNHG16 is
regulated by the Wnt pathway in colorectal cancer and affects
genes involved in lipid metabolism,” Molecular Oncology,
vol. 10, no. 8, pp. 1266–1282, 2016.

[53] K. Zhang, J. Chen, H. Song, and L.-B. Chen, “SNHG16/miR-
140-5p axis promotes esophagus cancer cell proliferation,
migration and EMT formation through regulating ZEB1,”
Oncotarget, vol. 9, pp. 1028–1040, 2018.

[54] H. Chen, M. Li, and P. Huang, “LncRNA SNHG16 promotes
hepatocellular carcinoma proliferation, migration and inva-
sion by regulating miR-186 expression,” Journal of Cancer,
vol. 10, no. 15, pp. 3571–3581, 2019.

[55] Z. Ma, S. Gu, M. Song et al., “Long non-coding RNA SNHG17
is an unfavourable prognostic factor and promotes cell prolif-
eration by epigenetically silencing P57 in colorectal cancer,”
Molecular BioSystems, vol. 13, no. 11, pp. 2350–2361, 2017.

[56] L. L. Chen, J. He, X. T. Qiu, J. Yu, and Z. M. Wang, “The prog-
nostic roles of long non-coding RNA SNHG17 in the patients
with gastric cancer,” European Review for Medical and Phar-
macological Sciences, vol. 23, no. 3, pp. 1063–1068, 2019.

[57] N. Li, G. Yang, L. Luo et al., “lncRNATHAP9-AS1Promotes
pancreatic ductal adenocarcinoma growth and leads to a poor
clinical outcome via sponging miR-484 and interacting with
YAP,” Clinical Cancer Research, vol. 26, no. 7, pp. 1736–
1748, 2020.

16 BioMed Research International


	Construction and Analysis of lncRNA-Mediated ceRNA Network in Nasopharyngeal Carcinoma Based on Weighted Correlation Network Analysis
	1. Introduction
	2. Materials and Methods
	2.1. Data Collection
	2.2. Weighted Correlation Network Analysis
	2.3. Differential Expression Analysis between NPC and Normal Tissues
	2.4. Identification of lncRNAs and Construction of the ceRNA Network
	2.5. Survival Analysis for the lncRNAs, miRNAs, and mRNAs in the ceRNA Network
	2.6. Functional and Pathway Enrichment Analysis for the Genes in the WGCNA Modules and ceRNA Network
	2.7. GSEA for the Prognostic lncRNAs in the ceRNA Network
	2.8. Construction of Risk Score Model

	3. Results
	3.1. Weighted Correlation Network Analysis
	3.2. Identification of DEmiRNAs and DEGs in NPC Tissues
	3.3. Identification of lncRNAs and Construction of the ceRNA Network
	3.4. Survival Analysis for the lncRNAs, miRNAs, and mRNAs in the ceRNA Network
	3.5. Functional and Pathway Enrichment Analysis for the Genes in the WGCNA Modules
	3.6. Functional and Pathway Enrichment Analysis for the Genes in the ceRNA Network
	3.7. GSEA for ZNF667-AS1
	3.8. Construction of Risk Score Model

	4. Discussion
	5. Conclusions
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

