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ABSTRACT

We are awash in proteins discovered through high-
throughput sequencing projects. As only a minus-
cule fraction of these have been experimentally char-
acterized, computational methods are widely used
for automated annotation. Here, we introduce a user-
friendly web interface for accurate protein function
prediction using the SIFTER algorithm. SIFTER is
a state-of-the-art sequence-based gene molecular
function prediction algorithm that uses a statistical
model of function evolution to incorporate annota-
tions throughout the phylogenetic tree. Due to the
resources needed by the SIFTER algorithm, running
SIFTER locally is not trivial for most users, especially
for large-scale problems. The SIFTER web server
thus provides access to precomputed predictions on
16 863 537 proteins from 232 403 species. Users can
explore SIFTER predictions with queries for proteins,
species, functions, and homologs of sequences not
in the precomputed prediction set. The SIFTER web
server is accessible at http://sifter.berkeley.edu/ and
the source code can be downloaded.

INTRODUCTION

The accurate annotation of protein function is key to un-
derstanding life at the molecular level. With its inherent
difficulty and expense, biochemical characterization of pro-
tein function cannot scale to accommodate the vast amount
of sequence data already available, much less its continued
growth. Thus, there is a need for reliable computational
methods to predict protein function.

To computationally predict protein function, various
schemes have been proposed so far using different data
types such as sequence information (1–4), protein structure
(5,6), phylogenetics and evolutionary relationships (7–10),
interaction and association data (11–19) and a combination
of these (20–26).

The traditional computational approach to predict func-
tion for an unknown protein transfers information from
evolutionarily related proteins. Unfortunately, most such
BLAST-motivated methods, which transfer the annotations
from the most sequence-similar homologue, suffer from
systematic flaws and thus have littered the databases with
erroneous predictions. BLAST (27) is a sequence match-
ing method, but sequence similarity does not directly re-
flect phylogeny (8) and may misrepresent the evolutionary
structure of the tree in terms of the branching order and
duplication/speciation events in the internal nodes.

SIFTER (Statistical Inference of Function Through Evo-
lutionary Relationships) is a statistical approach for pre-
dicting protein molecular function that uses a protein fam-
ily’s phylogenetic tree as the natural structure for represent-
ing protein relationships (7,8). It overlays a phylogenetic
tree with all known protein functions in the family and uses
a statistical graphical model of function evolution to in-
corporate annotations throughout the tree. Predictions are
supported by posterior probabilities for every protein in the
family. SIFTER has been shown previously to perform bet-
ter than other methods in widespread use.

The first Critical Assessment of Function Annotation
(CAFA) experiment provided an independent assessment,
and SIFTER was honored as a ‘top-performing method’
(28). Recently, SIFTER performed with distinction in the
second CAFA experiment. In this experiment, SIFTER pre-
dicted function for nearly 100 000 sequences of unknown
function, provided by the CAFA organizers. The organizers
then assessed the ∼50 submitted methods, and their prelim-
inary evaluations show that SIFTER is among the top four
approaches overall in the molecular function category. No-
tably, in CAFA the improvement of SIFTER predictions
over those from BLAST method is comparable to the im-
provement of BLAST over naı̈ve weighted random predic-
tion.

Open source code for SIFTER has been available since its
first publication and remains so. It has been used by several
other groups, and adapted for their own use (29). However,
the data and CPU resources required for running SIFTER
locally make this impractical for most users. For instance,
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Figure 1. Phylogeny-based protein function prediction with SIFTER. The
reconciliation distinguishes duplication from speciation at each internal
node. Colors indicate functions.

running SIFTER for a protein with a domain in a large fam-
ily may take several days to finish. The SIFTER web server
thus provides access to results for users who do not wish
to invest a local deployment. Because SIFTER naturally
works on the whole family and since its running time may
be longer than users are accustomed to waiting for BLAST
results, we have precomputed the results on the entire set
of families in the Pfam database version 27.0 (30) that have
at least one experimentally annotated protein. This embod-
ies 16 863 537 proteins from 232 403 species, precomputed
with specially optimized parameters for SIFTER that were
developed for this web site. Thus, this web server provides
easy and rapid access to protein function predictions using a
state-of-the-art sequence-based protein function prediction
algorithm.

Users can access the protein function predictions by
searching for one or multiple proteins (using UniProt iden-
tifiers or protein sequences), searching for all proteins in a
given species, or searching for proteins in a given species
that are predicted to have the given functions. For proteins
not yet in our precomputed prediction set, users can sub-
mit the protein sequence and the web server will show the
predictions for homologs of that gene in our prediction set
(found based on top BLAST hits). The input field provides
autocomplete and text suggestions to help users enter their
queries. The server reports predictions based on experimen-
tal evidence alone by default for the highest precision. For
more advanced predictions with broader coverage, users can
combine other evidence. SIFTER then outputs predicted
functions along with confidence scores for each function
that reflect the reliability of the predictions.

Users can also download SIFTER code and run SIFTER
locally. The database of the precomputed SIFTER results
and associated query scripts are available for download as
well.

SIFTER APPROACH

Figure 1 illustrates the conceptual approach used in
SIFTER for protein function prediction. SIFTER uses a
statistical model of function evolution to incorporate an-

notations throughout the evolutionary tree. First, SIFTER
takes the reconciled phylogenetic tree of homologs of the
given query protein (protein B in Figure 1). Then it overlays
known annotations of all homologous proteins on the tree.
In the figure, proteins A and C are annotated with the blue
function, while proteins D and E are annotated with the red
function. SIFTER propagates the overlaid annotations up
to the root using its underlying statistical model of function
evolution. This model incorporates details such as branch
length and distinguishes duplication from speciation events.
It then propagates back down the complete set of informa-
tion. Based on the propagated information, it infers the pos-
terior probabilities of candidate functions for every protein
in the family. That is, it infers for the query protein B the
posterior probability of having either blue or red function.
In this example, it is more likely that the tree has only one
functional change (indicated by the arrow), in which the an-
cestral red function is mutated to the blue function on one
lineage, following the duplication. So the blue function is a
more likely annotation for the query protein. SIFTER as a
phylogenetics-based approach reaches this conclusion nat-
urally and the blue function will have higher posterior prob-
ability in SIFTER predictions for the query protein B.

SIFTER’s phylogenetics-based approach to protein func-
tion prediction avoids systematic flaws in pairwise methods
like BLAST. Lineage-specific rate variation is a complex
phenomenon that may lead to a situation where the most
similar sequences according to BLAST (i.e., roughly those
with the shortest path length in the tree) may not be the
sequences most recently diverged from the query sequence.
For instance in the above example, BLAST will predict the
red function due to the shortest path length from the query
protein B to the protein D. Thus, the approach of using the
most significant hits according to BLAST is systematically
flawed and may yield erroneous results even as the num-
ber of known protein sequences increases. SIFTER incor-
porates the evolutionary history, minimizes problems due
to rate variation and suggests an evolutionarily principled
means of merging functional evidence from homologous
proteins.

Another important factor in the SIFTER algorithm that
sets it apart from some other techniques is that it systemat-
ically weighs the input evidence based on the quality of the
annotations. As different experimental and computational
functional annotation techniques have different error rates,
uniformly treating the existing annotations in the databases
as accurate propagates large numbers of erroneous anno-
tations into predictions (31). For this reason, SIFTER in-
corporates evidence about annotation quality using a set of
prior probabilities, which inform all analyses.

SIFTER PERFORMANCE

SIFTER has been shown to outperform other sequence-
based techniques in widespread use (7,8,28). Figure 2(a)
compares SIFTER performance with BLAST for the Nudix
family of proteins. Nudix is a difficult protein family to pre-
dict function for due to high sequence diversity that reduces
the alignment quality of these proteins, which, in turn, re-
duces the quality of the phylogeny. In this figure, we see that
SIFTER outperforms BLAST at all levels of false positives.
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Figure 2. (A) The ROC-like comparison of SIFTER with BLAST for the Nudix family of proteins. SIFTER consistently dominates BLAST annotations
in this family. (Figure adapted from (8)). (B) The CAFA precision-recall analysis of SIFTER, BLAST and naı̈ve weighted random. (Data provided by
CAFA2 analyst, Jiang Yuxiang).

At 99% specificity, we can observe that approximately 2.4%
of annotations are correct in BLAST whereas 24.4% of the
annotations are correct for SIFTER.

As an independent analysis of SIFTER performance,
Figure 2(b) compares the precision-recall curve for SIFTER
predictions against the BLAST predictions as well as the
naive random predictions on CAFA2 benchmark genes.
These are the 1139 genes out of 100 000 CAFA2 target genes
that acquired experimental annotations during the waiting
period of 6 months in the CAFA2 experiment. Here, naı̈ve
is a weighted random prediction in which every protein was
‘predicted’ to have functions proportional to the relative fre-
quency of the terms in Swiss-Prot. As we see, the improve-
ment of SIFTER over the BLAST method may be as great
as the improvement of BLAST over naı̈ve random predic-
tion. For instance, at the recall rate of 30%, the precision
rate of SIFTER, BLAST and naı̈ve random predictions are
respectively 72%, 53% and 32%.

SIFTER SEARCH

The SIFTER web server provides easy access to SIFTER
predictions of protein functions.

To assist users with different types of queries, the
SIFTER web server is designed to provide search results for
different input types. Here, we detail the search capabilities
implemented in the server.

Quick search

Users can access SIFTER predictions either through
‘Quick’ or ‘Advanced’ search. The Quick Search option is a
single input field search mechanism that can identify differ-
ent query types (including proteins, species and functions)
and provide search results accordingly.

Input. Input to the quick search field can be any of the
following:

� Protein: Users can search for the predicted functions for
their query protein. The server accepts both UniProt ac-
cession number and UniProt ID (for one protein).

� Species: Users can search for the predicted functions for
all proteins in a given species. The server accepts both
species name and NCBI taxonomy identifier.

� Function: Users can search for proteins that are predicted
to have the given functions in a given species. The server
accepts both function name and Gene Ontology (GO)
molecular function identifier.

The input field in the quick search option can provide
auto-complete and text suggestions for the given input to
help users enter their queries.

For any of the above query types, the SIFTER web server
provides corresponding search results as detailed below.

Output. SIFTER web server output is the set of predic-
tions for the submitted query. The predicted functions are
selected from the Gene Ontology molecular function on-
tology (32). The SIFTER web server provides the follow-
ing outputs based on the query type it has identified as dis-
cussed above:

� Protein: If the entered protein identifier is in the precom-
puted results, the SIFTER web server provides the list of
predicted functions from the GO molecular function on-
tology for the queried protein, along with a confidence
score (between 0 and 1) for each function. This score is
determined based on the number of candidate functions,
the family size, and the frequency and distribution of can-
didate terms in the phylogenetic tree. Figure 3 shows sam-
ple output for a queried protein.

� Species: The web server provides the list of predicted
functions for all of the proteins of the entered species that
have predictions in the precomputed results.

� Function: The web server lists all the proteins in the
queried species that have the entered function (or any of
its descendants in the GO directed acyclic graph) as their
top prediction.

Advanced search

For more advanced predictions, users can pick their spe-
cific querying method from the list of four available op-
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Figure 3. Sample output for searching SIFTER predictions by protein ID. Results are shown for protein PA24B MOUSE.

tions: ‘Predict by protein ID,’ ‘Predict for all proteins of
a species,’ ‘Find proteins that have given functions,’ and
‘Predict for homologs of given sequences.’ The first three
options are more advanced versions of the quick search
discussed above. In the advanced search, users can search
for multiple proteins or functions simultaneously using the
‘Predict by protein ID’ and ‘Find proteins that have given
functions’ options. The last option in the advanced search,
‘Predict for homologs of given sequences,’ allows users to
search for proteins not yet in our precomputed prediction
set, as discussed below.

Predictions for multi-domain proteins

SIFTER predicts function for each domain of a protein sep-
arately, using the phylogenetic tree of the family of each do-
main. To provide a single set of predictions for each protein,
the SIFTER web server combines the individual domain
predictions, assuming independence of domain functions.
Consider protein g with k domains gi, where i = 1···k, and
sgi ( f ) is the probability that ith domain has function f. We
then compute sg(f), the probability that protein g has func-
tion f, as:

sg( f ) = 1 −
k∏

i=1

(1 − sgi ( f )) (1)

The web server reports the combined sg(f) score as the
default prediction for the query protein g. However, users
may also access the predictions for each individual domain
for more insight about domain-specific annotations. Users
may also download the phylogenetic tree of each specific do-
main, overlaid with experimental annotations in the family.

Predict for homologs of given sequences. In this option,
users can submit the sequences of proteins not yet in our
precomputed prediction set, and the web server will show
the predictions for the closest homologs in our prediction
set (found based on top BLAST hits obtained from the
NCBI-BLAST website (33)). The output includes the statis-
tics of the significance of the hits along with the SIFTER
predictions for each of the hits to the given input sequence.
For each search, users can enter up to 10 protein sequences.
Figure 4 illustrates sample output for a queried sequence.
While this option embodies limitations of BLAST, often

there is such a close homolog with a precomputed SIFTER
prediction that the errors are limited. By contrast, the dis-
tance to the closest experimentally annotated protein is of-
ten so far as to introduce significant errors.

More control on the SIFTER options in Advanced Search.
For highest precision, the server reports predictions based
on experimental evidence by default. However, in Ad-
vanced Search, users can access more predictions for
special applications by combining other lower quality
but more extensive evidence. Users can also balance the
sensitivity/specificity trade-off by adjusting the relative
weighting of the SIFTER predictions obtained based ex-
clusively on experimental evidence versus those predictions
that include non-experimental evidence. As the default,
for advanced combined predictions we use the weighting
scheme that performed well in the second CAFA experi-
ment.

Estimating SIFTER processing time on a local machine

Users can download the SIFTER source code and run it lo-
cally. Since the time complexity of the algorithm underlying
SIFTER is exponential in the number of candidate molec-
ular functions, SIFTER offers a heuristic that sets the max-
imum number of molecular functions present in any pro-
tein. This significantly reduces the running time with min-
imal impact on the prediction results (8). In order to se-
lect the truncation level that maximizes prediction accuracy
without exceeding the available running time, users can esti-
mate the processing time of a given family for each heuristic
level. In the SIFTER web server, we provide an interactive
framework that yields this estimate using a predictive model
trained on existing SIFTER data. Users can enter the Pfam
ID of their family of interest or provide the number of can-
didate molecular functions and family size of their query.
Figure 5 illustrates complexity estimations for a sample pro-
tein family.

Data sources and updates

To precompute the SIFTER web server predictions, we used
the UniProt Gene Ontology Annotation (GOA) database
(34) (update 09/2013) as the source of annotation. SIFTER
currently uses the Gene Ontology (32) molecular function
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Figure 4. Sample output for searching SIFTER predictions for homologs of a given sequence.
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Figure 5. Estimating SIFTER processing time for a sample Pfam family (PF00735) with 11 candidate molecular functions and family size 2609.

ontology (update 09/2013). Pfam v27.0 (30) provides pro-
tein families used to build the phylogenetic trees. We down-
loaded aligned homologous protein domain sequences from
Pfam, and generated the phylogenetic tree using FastTree
version 2.1.3 (35) with default parameters. We divided large
families into smaller sub-trees and ran SIFTER on each
sub-tree. For such families we also ran SIFTER with the
truncation heuristic parameter 1 (8), and we merged these
results to obtain final predictions. We will update all predic-
tions with any major release of the Pfam database and also
annually to include new annotations in GOA.

DISCUSSION

SIFTER is a state-of-the-art sequence-based protein func-
tion prediction algorithm that infers protein function using
a statistical model of function evolution in the phylogenetic

tree. Here, we introduced the SIFTER web server, which
provides easy access to precomputed SIFTER predictions
using specially optimized parameters. Users can search
SIFTER predictions using different querying schemes such
as querying for a protein, all proteins of a species, or pro-
teins predicted to have a function. The web server also pro-
vides predictions for homologs of proteins not yet in our
precomputed prediction set. Thus, the SIFTER web server
provides a unique environment to explore the SIFTER
function prediction algorithm easily and swiftly.
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