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ABSTRACT The availability of whole genome sequencing data from multiple related populations creates
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opportunities to test sophisticated population genetic models of convergent adaptation. Recentwork by Lee R

and Coop (2017) developed models to infer modes of convergent adaption at local genomic scales,
providing a rich framework for assessing how selection has acted across multiple populations at the tested
locus. Here | present, rdmc, an R package that builds on the existing software implementation of Lee and
Coop (2017) that prioritizes ease of use, portability, and scalability. | demonstrate installation and compre-

hensive overview of the package’s current utilities.
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Convergent adaptation occurs when natural selection indepen-
dently orchestrates the evolution of the same set of trait or traits
in multiple populations (Takuno et al. 2015; Tishkoff et al. 2007;
Yeaman et al. 2016; Losos 2011). Efforts by Lee and Coop (2017) used
coalescent theory to develop composite likelihood models to infer
which among several competing modes of convergent adaptation
best explains allele frequencies at a putatively selected region.
These models provide rich statistical information about the in-
ferred adaptive mutation, including its location along the region,
the strength of selection, migration rate, age, and its initial allele
frequency prior to selection.

To facilitate use of the convergent adaptation models of Lee and
Coop (2017), T developed rdmc, an R package implementing their
models that was designed to be easy to use, portable, and scalable.
In this short manuscript, I provide an overview of the usage and
installation of the package, concluding with opportunities for future
improvements and expansion to the software.
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MATERIALS AND METHODS

Lee and Coop (2017) described three distinct modes of convergent
adaption: independent mutations, where two or more populations
independently gain the selected mutation; migration, where the
mutation occurs once and subsequently migrates to multiple pop-
ulations prior to fixation; and standing variation, where the muta-
tion was present at low frequency in the ancestral population prior
to divergence. The models are composite likelihood-based, where
likelihood calculations are made over a grid of user-chosen input
parameters.

Data requirements

Using rdmc requires two kinds of allele frequency data. The first is
allele frequencies from unlinked neutral sites across all populations.
The second is allele frequencies from at least three populations
that have putatively undergone convergent adaptation at a specific
locus, and three or more populations that did not. Sample allele
frequencies can be estimated with a number of existing software
resources including VCFtools (Danecek et al. 2011) and ANGSD
(Korneliussen et al. 2014). Typically, the allele frequencies at sites
that have putatively undergone convergent adaptation will have been
identified prior to using rdmc. Numerous methods exists for iden-
tifying such regions, such as finding overlapping selective sweeps in
multiple populations (Stetter et al. 2020), or by identifying regions
with elevated Fgr values between populations that putatively did and
did not experience convergent adaptation (Hohenlohe et al. 2010).
Additionally, rdmc requires an estimate of the per base recombination
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rate for the region or regions of interest, and an estimate of the
effective population size. Assuming a mutation rate, effective pop-
ulation size can be estimated from genetic diversity (Gillespie 2004),
or inferred via multiple methods (Gutenkunst et al. 2010; Schiffels and
Durbin 2014; Excoffier and Foll 2011). Likewise, local recombination rates
can be derived from genetic maps (Swarts et al. 2014), or inferred (Chan
et al. 2012; McVean and Auton 2007; Adrion et al. 2020). At the time of
writing, all available models in rdmc assume a single effective population
size for all populations. Depending on which modes of convergent
adaptation are being investigated, users must also provide vectors of
selection coefficients, migration rates, allele frequency ages, and initial
allele frequencies prior to selection. The exhaustive list of required inputs
and their definitions is given in Table 1.

Installation and dependencies

Installation of rdmc requires the r package devtools (Wickham

et al. 2020b). With devtools available, the package can be

installed and made locally available with the following R

commands:
devtools::install_github(’silastittes/rdmc’)

Tibrary(rdmc)

In addition to devtools, rdmc depends on several other packages.
Namely, MASS (Venables and Ripley 2002), dplyr (Wickham et al.
2020a), tidyr (Wickham and Henry 2020), purrr (Henry and Wickham
2019), magrittr (Bache and Wickham 2014), and rlang (Henry
and Wickham 2020). All dependencies are automatically installed or
updated when the installation command above is issued. I encourage
users to update to the most recent version of R prior to issuing any of
the commands featured here.

Specifying parameters and input data

For convenience, the original simulated example data generated by
Lee and Coop (2017) are provided with the installation and can be
loaded with:

#load example data

data(neutral_freqs)

data(selected_freqgs)

data(positions)

The example data consists of 10,000 simulated base pairs from
six populations, three of which (with indices 1,3,5) independently mutated
to the selected allele at position 0, along with three other populations that
evolved neutrally. Allele frequencies must be be passed to rdmc as a
matrix, where each row is a population and each column is a locus. Users
should note that the simulated positions here take on values between zero
and one, but that base pair positions along the chromosomes of
empirical data should not be altered prior to fitting the models.

When fitting possible convergent adaptation models, several quan-
tities are reused regardless of which modes of convergent adaptation
are of interest. In efforts to minimize computation, all parameters
and quantities that are common across models are stored in a single
named list generated with the function parameter_barge() that can be
used when fitting any of the possible models. The list of quantities is
generated using:

#specify parameters and input data.

param_list <-

parameter_barge(
Ne = 10000,
rec=0.005,
neutral_freqgs = neutral_fregs,
selected_freqgs = selected_freqgs,
selected_pops = c(1, 3, 5),
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positions = positions,
n_sites =10,
sample_sizes = rep(10, 6),
num_bins = 1000,
sels =c(
le-4,
le-3,
0.01,
seq(0.02, 0.14, by =0.01),
seq(0.15, 0.3, by =0.05),
seq(0.4, 0.6, by =0.1)
),
times=c(0, 5, 25, 50, 100, 500, 1000, 1e4, 1e6),
gs=c(1l/ (2+10000), 10 =(4:1)),
migs = c(10 =(seq(5, 1, by =-2)), 0.5, 1),
sources = selected_pops,
locus_name = "test_locus”,
cholesky = TRUE
)

where all the arguments are fully described in Table 1. This
command also determines the grid of parameter values (namely
the arguments, sels, times, gs, migs, sources, and n_sites or positions)
that will be used in the likelihood calculations. Depending on which
modes of convergent adaptation are being studied, some of these grid
parameters may not be used for inferences. Users must still input
values for all of the grid parameters.

Naturally, features of the input data (the density and amount of
variation in the allele frequencies, the effective population size, and
the mutation and recombination rates), will impact the model results,
and will determine the resolution we have to infer the model
parameters. The number and density of points along the grid of
parameters also affect the resolution one has to make inferences.
However, computation time and memory usage may become in-
feasible if these grids are made too large.

Fitting the models

Once the parameter barge is constructed, all models can be fit using
this list of quantities as the only data input. All of the mode types
(neutral, independent mutations, standing variation with and without
a source population, migration, and mixed-modes) are implemented
using the same function, mode_cle(), passing the desired mode as
an argument to the function. The neutral, independent mutations,
migration, and standing variation with a source population modes
can be fit, respectively with:

#fit composite 1ikelihood models

neut_cle < -mode_cle(param Tist, mode ="neutral”)

ind_cle < -mode_cle(param 1ist, mode ="independent”)

mig_cle < -mode_cle(param 1list, mode = "migration”)
sv_cle <-mode_cle(param_Tlist, mode="standing_
source”)

Models of mixed modes, where specified populations are
modeled under different modes, can be also implemented by
modifying the parameter list object in-place. Specifically, mixed
modes are constructed by adding the sets and modes arguments,
which groups the population indices according the vector of
modes, and specifies which modes are to be used. For example,
to fit a model where populations with indices 1 and 3 adapted via
standing variation, and population 5 gained the same mutation
independently, and another mixed-mode model where popula-
tions 1 and 3 adapted via migration, and population 5 mutated
independently:
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B Table 1 Description of the arguments used with the function parameter_barge()

neutral_fregs Matrix of allele frequencies at putatively neutral sites with dimensions, number of populations x number of sites.

selected_freqgs Matrix of allele frequencies at putatively selected sites with dimensions, number of populations x number of sites.

selected_pops Vector of indices for populations that experienced selection.

Positions Vector of genomic positions for the selected region.

n_sites Integer for the number of sites to propose as the selected site. Sites are uniformly placed along positions using
seq(min(positions), max(positions), length.out = n_sites). Must be less than or equal to length(positions). Cannot be used with
sel_sites.

sel_sites Optional vector of sites to propose as selected site. Useful if particular sites are suspected to be under selection. Cannot be
used with n_sites.

sample_sizes Vector of sample sizes of length number of populations. (i.e., twice the number of diploid individuals sampled in each
population).

num_bins The number of bins in which to bin alleles a given distance from the proposed selected sites.

Sets A list of population indices, where each element in the list contains a vector of populations with a given mode of

convergence. For example, if populations 2 and 6 share a mode and population 3 has another, sets = list(c(2,6), 3). Only
required for fitting models with mixed modes. Must be used in conjunction with the “modes” argument.

Modes Character vector of length sets defining mode for each set of selected populations (“independent”, “standing”, and/or
“migration”). Only required for fitting models with mixed modes. More details about the modes is available on help page for
mode_cle

Sels Vector of proposed selection coefficients.

Migs Vector of proposed migration rates (proportion of individuals of migrant origin each generation). Cannot be 0.

Times Vector of proposed times in generations the variant is standing in populations before selection occurs and prior to migration
from source population.

Gs Vector of proposed frequencies of the standing variant.

Sources Vector of population indices to propose as the source population of the beneficial allele. Used for both the migration and
standing variant with source models. Note: the source must be one of the populations contained in selected_pops.

Ne Effective population size (assumed equal for all populations).

Rec Per base recombination rate for the putatively selected region.

locus_name String to name the locus. Helpful if multiple loci will be combined in subsequent analyses. Defaults to “locus”.

Cholesky Logical to use cholesky factorization of covariance matrix. Used for both inverse and determinant. Faster, but not guaranteed

to work for all data sets. TRUE by default. if FALSE, ginv from MASS is used.

#update barge to fit a mixed-mode model modes = c(“migration”, “independent”))
param_list <- #fit mixed-mode model
update_mode( multi_migind <- mode_cle(param_Tist, "multi”)
barge = param_1list, Regardless of which mode is used when calling mode_cle(),
sets = 1ist(c(1, 3), 5), the data frame returned will always contain the same 10 features:
modes =c(”standing_source”, "independent”))  The 6 grid parameters generated by parameter_barge() (Table 1), the
#fit mixed-mode model composite likelihood score calculated over all possible combinations
multi_svind <- mode_cle(param_1list, "multi”) of the grid parameters, the indices of the selected populations, and
#update to another mixed-mode the names of the locus and mode that were used. To always maintain
param_list <- the same number of columns, missing (NA) values are added when
update_mode( variables are not used for a given mode type. As will be shown below,
barge = param_1list, this design facilitates combining results from multiple models for
sets = 1ist(c(1, 3), 5), downstream analyses.

B Table 2 Benchmarking of three rdmc model types. Computation time, memory allocation, and the number of garbage collections are
reported for the original (dmc) code written by Lee and Coop (2017), and the two matrix inversion methods available in rdmc(ginv and chol.).
Median time was estimated using 5 iterations of each model. Execution time is reported in seconds. Benchmarking was conducted using the
R package, bench(Hester 2020). Code was executed in an interactive job on the UC Davis Farm HPC (2.00GHz Intel Xeon CPU, 124GB RAM)

ind. Dmc 15.1 230.6MB 1
ind. chol. 12.9 109.2MB 3
ind. Ginv 18.4 195.6MB 1
migration dmc 264.6 2.9GB 19
migration chol. 182.3 1.6GB 55
migration ginv 321.5 2.8GB 18
std.var dmc 780.2 8.6GB 52
std.var chol. 537.4 4.8GB 136
std.var ginv 898.5 8.6GB 49

Z-G3:Genes | Genomes | Genetics Volume 10 September 2020 | rdmc | 3043



A 12004
- 1100+
s]
e]
—
£ 1000
2
2
S 900+
E
s]
O
800
7001
0.00 0.25 0.50 0.75 1.00
B Position
12501 H
1000
-
Is]
2 model
2 7501 ~ independent
B - migration
B - migration-migration-independent
Q2 500+ - standing_source
g = standing_source-standing_source-independent
O 2501
04

0.0 0.2 04 06
Selection coefficient

RESULTS AND DISCUSSION

Benchmarking

The computation time and memory usage of rdmc increases with
the complexity of the model and size of the input data used.
Compared to the original code implemented by Lee and Coop
(2017), rdmc is slightly faster computationally, and requires sub-
stantially less memory. However, the reduced time and memory
allocation for rdmec only occurs when Cholesky factorization is used
to obtain the inverse of the neutral and selected covariance matrices
(Tables 1 and 2). Alternatively, the matrix inverses are obtained using
ginv() from the MASS package (Venables and Ripley 2002), which
requires a larger memory allocation, but will still approximate the
inverse even if the covariance matrix is not positive definite. Users are
therefore encouraged to use the default parameter_barge() argument
cholesky = TRUE unless Cholesky factorization fails.

The composite likelihood calculations are made over a grid of
input parameters chosen when constructing the parameter barge
(code shown above), hence, a denser grid will also have a considerable
impact on time and memory usage. The size of the example data
provided gives a realistic sense of memory and time usage for
potential empirical data. While most modern laptops are capable
of handling the required memory, many users will be interested in
genome-wide analysis, where the mode of convergence for many
separate regions are of interest. In these instances, cloud or high
performance computing environments will be more appropriate.
Making rdmc a portable and easy to install R package simplifies
running separate genomic regions as independent jobs in parallel
using workflows such as Snakemake (Koster and Rahmann 2012)
or Nextflow (Di Tommaso et al. 2017).
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Figure 1 Visualizing rdmc re-
sults for several modes. (A) The
composite likelihood score at each
of the 10 proposed sites of se-
lection for each model. The true
selected site was modeled at po-
sition 0. The data were simulated
as independent mutations in the
three selected populations. (B)
The composite likelihood scores
over grid of selection coefficients.
Dotted line indicates true selec-
tion coefficient (s = 0.05) the data
were modeled under. Visualizations
were made using the R packages,
ggplot2(Wickham 2016) and
cowplot(Wilke 2019).

Extracting useful quantities and visualization
Once the models of interest have finished, the common format of the
returned data frames allows all of the inferences to be combined into a
single data frame, which simplifies creation of statistical and graphical
summaries, and storage:
#rdmc loads dplyr::bind_rows()
all_mods <-
bind_rows(
ind_cle,
mig_cle,
sv_cle,
multi_svind,
multi_migind
)
#save results to file
readr: :write_csv(neut_cle, "rdmc_neutral.csv”)
readr::write_csv(all_mods, "rdmc_modes.csv”)
With a single data frame containing output from all tested models,
there are many visualization and summary methods available in the R
ecosystem (R Core Team 2020). For example, the maximum com-
posite likelihood estimate of the selection coefficient for each model
can be accessed with:
#rdmc Toads dplyr: :group_by() and magrittr: :%>%
all_mods %>%
group_by(model) %>%
filter(cle == max(cle)) %>%
select(selected_sites, sels, model)
#returns (model names edited here for space)
#A tibble: 4x3
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# Groups: model [4]
selected_sites sels model
<db1> <db1> <chr>
0.0017 0.03 independent
0.0017 0.03 migration
0.0017 0.03 stdvar-stdvar-ind.
0.0017 0.03 mig.-mig.-ind.
Visualizing the composite likelihood values by genomic position
(relative to the neutral composite likelihood) (Figure 1) can be done with:
Tibrary(ggplot2)
Tibrary(cowplot)
theme_set(theme_cowplot(font_size = 18))
neut <- unique(neut_cle$cle)
all_mods %>%
group_by(selected_sites, model) %>%
summarize(mcle = max(cle) - neut) %>%
ggplot(aes(selected_sites, mcle, color=model)) +
geom_Tine() +
geom_point() +
xTab(”Position”) +
ylab(“Composite TikeTihood”) +
theme(legend.position ="n") +
scale_color_brewer(palette = ”Setl”)
Lastly, one can visualize the likelihood surface with respect to
specific parameter, such as selection (Figure 1):
#visualize likelihood surface wrt selection
all_mods %>%
group_by(sels, model) %>%
summarize(mcle = max(cle) - neut) %>%
ggplot(aes(sels, mcle, color = model)) +
geom_Tline() +
geom_point() +
ylab(”Composite TikeTihood”) +
xTab(”Selection coefficient”) +
scale_color_brewer(palette = "Setl”)

A wWN R

CONCLUDING REMARKS AND FUTURE DEVELOPMENTS
rdmc was made to facilitate the use of convergent adaptation models
of Lee and Coop (2017). The package is easy to install, and requires
only a few lines of code to generate and analyze the output. By making
rdmc an R package, the code is highly portable and has relatively
few, highly maintained dependencies, making it simpler to adopt to
different computing systems. Because of its portability and ease of
use, rmdc also simplifies downstream tasks which facilitates usage at
large scales, such as modeling thousand of genomic regions simul-
taneously on high performance computing resources.

Several elaborations to the currently available utilities in the rdmc
package could be addded. Since the methods developed in Lee and
Coop (2017), additional models have been developed, including ones
that can use putatively selected deletion variation, strong selection,
concurrent sweeps, and variation in population size among popula-
tions (Oziolor et al. 2019). Lee and Coop (2017) also introduced
parametric bootstrapping to evaluate support for alternative modes.
While not currently incorporated into rdmc, future development
of the package would include functions to perform bootstrapping.
However, for the same reasons mentioned above, rdmc should facilitate
creation and computation of bootstrap replicates in parallel.

WEB RESOURCES
The source of the package and workflow outlined above are available
at https://github.com/silastittes/rdmc. The package is released under
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GNU General Public License (v3.0). All of the presented analyses
were computed on a personal laptop (x86_64, Apple) using R version
4.0.0 2020-04-24).

The original code associated with Lee and Coop (2017) is available
https://github.com/kristinmlee/dmc.
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