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Abstract

The cetacean conservationist is often faced with evaluating population trends from abun-

dance data that are either sparse or recorded at different times in different years. The pres-

ence of diel or seasonal patterns in the data together with unplanned gaps is often

problematic. Such data are typical of those obtained from static acoustic monitoring. We

present a simple and transparent non-parametric trend evaluation method, ‘Paired Year

Ratio Assessment (PYRA)’ that uses only whole days of data wherever they are present in

each of successive pairs of periods of 365 days. We provide a quantitative comparison of

the performance of PYRA with traditional generalised additive models (GAMS) and non-

parametric randomisation tests that require a greater level of skill and experience for both

application and interpretation. We conclude that PYRA is a powerful tool, particularly in the

context of identifying population trends which is often the main aim of conservation-targeted

acoustic monitoring.

Introduction

Assessing trends in populations is crucial to their conservation. Static acoustic monitoring of

animal vocalisations has become increasingly useful for this purpose because it has the poten-

tial for long periods of monitoring and can deliver large sets of data at relatively lower cost

than line transect survey methods [1–5]. The estimation of trends in the size and distribution

of populations is distinct from estimating changes in absolute population size, and may be pos-

sible without sampling of the whole range of the species and with fewer observational data

[6–8].

Here we address the problem of estimating population trends from data obtained by static

acoustic monitoring of cetaceans. Such data may have been recorded at different times in dif-

ferent years [7,9–11] and may have other limitations. We do not address the question of site

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0264289 March 17, 2022 1 / 20

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Grist EPM, McKinley TJ, Das S, Tregenza

T, Jeffries A, Tregenza N (2022) Estimating

cetacean population trends from static acoustic

monitoring data using Paired Year Ratio

Assessment (PYRA). PLoS ONE 17(3): e0264289.

https://doi.org/10.1371/journal.pone.0264289

Editor: Sathishkumar V E, Hanyang University,

REPUBLIC OF KOREA

Received: November 19, 2021

Accepted: February 7, 2022

Published: March 17, 2022

Copyright: © 2022 Grist et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the manuscript and its Supporting

information files.

Funding: EPMG is supported by a Knowledge

Transfer Partnership from Innovate UK and

Chelonia UK Ltd. [No. 11666] and TJM is

supported by an Expanding Excellence in England

(E3) award from Research England.

Competing interests: The authors have declared

that no competing interests exist.

https://orcid.org/0000-0002-2158-4186
https://orcid.org/0000-0002-8394-5303
https://orcid.org/0000-0002-7720-6467
https://doi.org/10.1371/journal.pone.0264289
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264289&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264289&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264289&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264289&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264289&domain=pdf&date_stamp=2022-03-17
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0264289&domain=pdf&date_stamp=2022-03-17
https://doi.org/10.1371/journal.pone.0264289
http://creativecommons.org/licenses/by/4.0/


representativeness, but rather focus on methods for determining trends in data from one or

more fixed sites even when there may be:

• strong diel and seasonal patterns of habitat use

• variable, unintended data gaps

• large variations in detection rates among sites

• constraints on time available to process data

• limited access to sophisticated statistical expertise

• a need to communicate with statistically non-expert readers

A trend is a smooth long term change or change in average tendency over a period of time

[12–14]. We focus on the trend over the whole time span of the data set. Although sophisti-

cated statistical approaches for estimating trends such as generalized additive modelling

(GAM) or Bayesian methods can be employed, they do so at the cost of importing additional

complexity requiring concomitant user skills for statistical inference [11,15,16]. Here we pro-

pose a simple and transparent non-parametric trend evaluation approach based on the

changes over successive pairs of periods of 365 days. By ‘transparent’ we mean an approach in

which errors or the failure of the method can be readily anticipated by users. This contrasts

with more complex approaches, where it can be difficult for users and readers to evaluate

whether the fit of a model to the data justifies the conclusions that can be drawn when all the

assumptions of the model are met.

Cetaceans, like many highly mobile animals, often show strong diel and seasonal patterns

of habitat use. These may confound assessment of longer trends, particularly when data have

gaps in varying parts of days or years. To manage this issue our approach applies two rules: (1)

only whole days of logging are used, and (2) comparisons across years use only those days that

are ‘paired’ i.e., the days for which the same position in both years were both fully logged. This

removes the need to estimate and manage diel and seasonal patterns. The extra day in leap

years is omitted. In each year in the pair the detections on paired days are summed. Pairs of

365-day data windows can be moved through the time sequence in 1-day steps, giving a new

pair of detection totals each time, and a ratio between them is to taken to provide an estimate

of the change between the two points at the point in time midway between them.

We refer to this approach as Paired Year Ratio Assessment (PYRA) and compare this with

trend estimation using randomisation tests and GAMs and express the method in non-techni-

cal terms as well as formal mathematical terminology.

Our aims are to:

1. Describe PYRA and compare its performance in case studies with other methods.

2. Identify key practical constraints.

Methods

Among the more complex statistical approaches are some where the exact parametric form of

the model is asserted, such as within a Bayesian framework [2,7] or others such as a GAM

where it is not [11,17]. Here we compare the performance and robustness of PYRA as a

descriptive statistical tool for trend estimation to results obtained with a GAM and with non-

parametric randomisation trend testing [12].
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Synthetic data sets

We generated synthetic data sets with known, exact, intra-, and inter-annual trends in detec-

tions, plus added noise and a pattern of gaps that drifts through successive years. Our data

exemplify the problem of gaps that by chance (or design in this case), over time, may show

some correlation with the seasonal pattern. The potential impact was explored by considering

two extreme case scenarios. In each, daily clicks fluctuations are specified by a Normal

distribution.

Scenario 1. The population drops linearly within each year from a fixed mean value at the

start of the year to a lower fixed mean value of at the year end, as shown in Fig 1. There is no

downward trend across years.

Scenario 2. The population starts at the same level as in Scenario 1 but has a continuous

linear decline that is not seasonal and continues across years, as shown in Fig 2.

Three data sets were extracted from each scenario: complete data, incomplete data and

paired data. These are shown in Figs 1 and 2 and are:

Complete data. All days are ‘fully logged’ so the trend analysis is based on 4 x 365 days as we

omit the extra day from leap years from the analysis.

Incomplete data. Data were drawn from a 100-day window that ‘shifted’ forwards by 30

days each year, giving only 27% (100% x 400/1460) of the complete data and reducing the tem-

poral overlap between successive years to 70 (100–30) paired days, with only 10 [100- (3x30)]

specific days logged in all 4 years.

Paired data. These are the data from the incomplete data set that are used by PYRA and

consists of the logged days in any 365-day period that were also logged (i.e. they have matching

day numbers within the 365-day period) in the succeeding 365-day period. This set has 340

days (23% of the total).

Real data: Harbour porpoises and orcas

As static acoustic monitoring technology has been used mainly for the study of population

impacts and distribution, examples of trend studies are very limited. Here we illustrate the

application of PYRA to real data obtained from a single C-POD acoustic monitor (manufac-

tured by Chelonia Ltd., Mousehole, Cornwall, UK, http://www.chelonia.co.uk, for example,

see [3]) which was deployed over 64 months (5.33 years) between September 2011 to Decem-

ber 2016 in Burrows Pass in the Salish Sea (a marginal sea of the Pacific ocean) in Washington

State, USA at 48˚29’18.13"N 122˚41’13.56"W. Data gaps amounted to 9 of the 64 months. The

species known at this site are the harbour porpoise Phocoena phocoena and orca Orcinus orca.

The porpoise population is declining in many locations worldwide [4,18,19]. It is known to be

changing dynamically in the Salish Sea [20–23], with the initial population decline likely due

to gill net fishing and to pollution. From around the year 2000, the porpoise population

appeared to rebound but since 2010, large numbers of transient orcas have returned regularly

to predate on harbour seals and porpoise. Within the same time frame, grey and humpback

whales, two species mostly absent before 2000, also returned in large numbers to consume

large volumes of forage fish making up the harbour porpoise diet. From extensive visual obser-

vations, an emerging conjecture is that the increase in orca (as predators) combined with a

loss of forage fish (as prey) may have had a negative impact on the Salish Sea harbour porpoise

population. Therefore, the experimental objective of the static acoustic monitoring was to

determine whether the harbour porpoise population trend in the Salish Sea is either increasing

or decreasing. The site selected for the C-POD location was assessed to be a stronghold for the

porpoise population with the benefit of also allowing land-based observers to record and verify

porpoise presence. Fig 3 shows the monthly values and a moving 1-year average.
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Fig 1. Scenario 1: ‘Seasonal’ detection pattern with no long-term trend. (A) complete data, (B) incomplete data and

(C) paired data. The downward trend visible in (B) and (C) is a spurious outcome of the incomplete sampling which

illustrates the type of problem that population trend estimation from incomplete data needs to address.

https://doi.org/10.1371/journal.pone.0264289.g001
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Fig 2. Scenario 2: Uniform downward population trend. (A) complete data, (B) incomplete data and (C) paired data.

https://doi.org/10.1371/journal.pone.0264289.g002
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Paired Year Ratio Assessment (PYRA)—Informal description

We have developed PYRA for the type of time series data obtained from static acoustic moni-

tors at one or more sites in order to provide a measure of the proportional change occurring in

the detection rate of a species between successive years.

The detection metric can be chosen according to the judgement of the user; the number of

detection positive minutes per day (DPM/day) has been used in many studies, as has the total

number of clicks logged. The former entails a risk of encountering saturation of the metric,

and the latter entails some risk of conflating cetacean behaviour with presence of cetaceans as

clicks are produced more rapidly during some social and foraging activities. Other metrics,

such a detection positive seconds could also be used.

The process applied is:

1. Comparisons are made only between one annual period (termed the first year, Y1) and the

following annual period (termed the second year, Y2), using only the data from those whole

days at each site, specified by their position within the annual cycle, which were fully logged

in both the first and second years—we refer to these as ‘paired data’. At some sites many, or

all, of the paired days may have no detections recorded.

2. The ratio of the sum of the detections at a site in the second year divided by the first is

treated as the year-on-year ratio i.e., the annual proportional change at the end of the first

year for that site.

3. Where multiple sites have paired data in a 730-day (2 year) period, data from the sites are

combined by summing the detections for year 1 across all sites. The same is done for year 2

and a global ratio is can then be obtained.

4. If more than two years of data are available at any site, this two-year data window is moved

forwards one day at a time, and process is repeated.

Fig 3. Data recorded from Burrows Pass, USA, 15th September 2011 to 15th December 2016 and aggregated into

30-day periods. (A) with a 1-year moving average superimposed (solid blue line) For harbour porpoises as the mean

number of detection positive minutes per hour (DPM/hr) and (C) for orcas as the mean number of detection positive

minutes per 30 days (DPM/30d), with corresponding boxplots (B,D) to show seasonal patterns. Over the time span of

the data set there were 35,915 detection hours in which a total of 735,776 and 431 detection positive minutes were

recorded for harbour porpoises and orcas respectively.

https://doi.org/10.1371/journal.pone.0264289.g003

PLOS ONE Estimating cetacean population trends

PLOS ONE | https://doi.org/10.1371/journal.pone.0264289 March 17, 2022 6 / 20

https://doi.org/10.1371/journal.pone.0264289.g003
https://doi.org/10.1371/journal.pone.0264289


5. A measure of uncertainty is obtained by random resampling of the paired data, with

replacement, to give a distribution of ratio values. If the data consists of many sites with

substantial detection rates, the range of uncertainty around the ratio will be lower than

where many sites have low detection rates.

There are strengths and weaknesses to this approach that we discuss later.

Paired Year Ratio Assessment (PYRA)—Formal description

PYRA provides a statistical estimator bP to describe the year-on-year proportional change in

counts of detections between successive years Y1 and Y2 derived over the time span T of the

data set. Here we use ‘year’ to refer to the duration of the periodic cycle of relevance to the data

under consideration because typically this will be of annual duration for cetaceans. However,

the periodic cycle duration could, in general, be of any duration (for example, a day) deemed

appropriate for the data. As a ratio, bP is an increasingly unstable statistical estimator as the

count in year Y1 or year Y2 approaches zero. It will be undefined at any time points when

observations were recorded as zero by the acoustic monitor in the denominator year Y1. This

can be adjusted by inserting a small positive value, as is typically done when transforming data

x to a logarithmic (1+x) scale, or with other unstable ratio statistical estimators such as the

standardised incidence rate employed in spatial epidemiology [24]. However, in practice,

smoothing of the data will generally be required such as through aggregating data by a moving

average window.

We denote the data recorded at time tk at the monitoring site as yk so that the set of all data

points {(tk, yk)} is a time series. The collected data in the baseline year Y1 is denoted by Y1{(tk,
yk)} and the paired data in year Y1, Y1 t�k ; y

�
k

� �� �
is defined as the subset of Y1{(tk, yk)}, such

that for every y�k at time t�k in Y1 there exists a corresponding y�kþC at time t�kþC in the following

year Y2, denoted by Y2 t�kþC; y
�
kþC

� �� �
where C is a constant defining the duration of an annual

cycle in the selected time units. For example, with daily incremental data, C = 365 days, while

with monthly incremental data C = 12 months. Therefore, the set of data points Y1 t�k ; y
�
k

� �� �

in the baseline year Y1 are paired with corresponding data points Y2 t�kþC; y
�
kþC

� �� �
in the fol-

lowing year Y2. If all the times within the year at which data were recorded in Y1 and Y2 are

identical then clearly the paired data Y1 t�k ; y
�
k

� �� �
U Y2 t�kþC; y

�
kþC

� �� �� �
are identical to the

original data set {(tk, yk)}. However, because in practice data gaps in successive years will often

not correspond the paired data set will often be a subset of the original data.

We define PYRA for paired data sets Y1 t�k ; y
�
k

� �� �
and Y2 t�kþC; y

�
kþC

� �� �
at time t�k by the

estimator bPI t�k
� �

bPI t
�

k

� �
¼ mI y

�

kþC

� �
=mI y

�

k

� �
; ð1Þ

where mI(y) is a smoothing function, such as a forward moving average with window span of

width I, operating over a sequence of successive year pairs. The purpose of the smoothing

function mI(y) is to mitigate any bias or inflation occurring in trend estimation from either the

presence of noise, or if the denominator term is zero, or when gaps in the collected data would

otherwise result in bPI t�k
� �

being undefined. The average value of bPI t�k
� �

over the time-span T of

the data set is a summary trend metric defined by

~PI ¼
1

K � I þ 1

� �
Xk¼K� Iþ1

k¼1

mI y
�

kþC

� �
=mI y

�

k

� �� �
ð2Þ
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where ~½X� denotes the sample mean of X and K is the total number of paired data points within

the time span T of the data set.

Typically for cetacean data collected over a period of years, the natural choice for the span

width I in Eq (1) is the duration of the annual cycle C, giving rise to the metric bPC t�k
� �

which,

by a shift of C/2 time units to the right becomes bPC t�kþC=2

� �
; in order to remove the time lag of

C/2 units resulting from the PYRA forward sliding window. The plot of bPC t�kþC=2

� �
against

time over the time span of the data set shows how the trend fluctuates and is referred to as a

PYRA population trend plot.

In Eq (1), if the span width I is set at zero, we obtain the PYRA point estimator which for

conciseness of notation we denote by

bP t�k
� �
¼ y�kþC=y

�

k : ð3Þ

In Eq (2), If the span width I is set at the time span T of the data set, then we obtain the sum-

mary PYRA trend statistic for the time series

~PI ¼ ~PT ¼
bPT t�k
� �

: ð4Þ

The trend statistic bPT t�k
� �

, which we abbreviate to bPT , gives an average measure of the trend

over the time span T of the data set. Specifically, 100% X ð1 � bPTÞ=T quantifies the trend as an

average year-on-year percentage change based on the paired data within the whole time-span

T of the data set. If the proportional decreases are balanced by the proportional increases, then

bPT ¼ 1 which provides a useful ‘no trend’ baseline.

An extension of the approach to determine a regional PYRA from data collected from mul-

tiple acoustic sites is provided in the S1 Appendix.

Incorporation of PYRA uncertainty

The uncertainty associated with bPC t�k
� �

and bPT is estimated through a moving block bootstrap

approach [12,25,26], defined here by a short time window spanning w time units and centred

at the midpoint which slides along the paired data sets Y1 t�k ; y
�
k

� �� �
and Y2 t�kþC; y

�
kþC

� �� �
. The

value of w must be chosen so that there will be little correlation between the first and last obser-

vations in the window. The approach works by randomly resampling the consecutive sets of w
observations defined by the sliding window, several times (typically 1000), then importing

each resample into the smoother function m(y) for the PYRA calculation. This process gener-

ates a distribution of PYRA values which are used to derive a 100(1-α)% percentile confidence

interval at a desired significance level of α% [e.g. 12,26,27].

Randomisation trend tests

Data collected by acoustic monitors are a set of ordered observations in which each observa-

tion has an associated observation time. The data are thus a time series, with the inherent

property that observations are not interchangeable unless the observation values are

completely time independent of each other. One way of testing for a trend in a time series is

through a randomisation trend test which assesses whether the observed data are statistically

significantly different from the null hypothesis of no trend [12,25,28]. The alternative hypothe-

sis is that there is a trend present. In common with PYRA, randomisation trend tests make no

assumption about an underlying model and are nonparametric. They proceed by asserting

that the observed time series is a random permutation drawn from the random distribution of
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all possible permutations of the time series. The presence of any gaps or missing data therefore

does not affect their utility. The randomisation test outcome is based on comparing a relevant

test statistic evaluated for the original time series with its respective randomisation distribution

[12]. We applied four well known nonparametric trend Randomisation Tests (RT) to the time

series data sets {(yt, t)} defined as follows:

RT1. The ‘linear trend test’ with the regression coefficient m (in the regression model y = mx +

c) taken as the test statistic. A significantly negative or positive value for m respectively indi-

cates a downward or upward trend.

RT2. The ‘runs above and below the median’ test, where the test statistic is the number of runs

above and below the median. A ‘run’ is defined as a successive sequence of values {yi} that

are either above or below the median. A significantly low number of runs indicates a trend

(because longer runs lead to a lower number of runs overall).

RT3. The ‘signs test’ where the statistic is the number of positive differences (yi+1 –yi) calcu-

lated between all the successive data points yi and yi+1. A significantly low number of posi-

tive differences indicates a downward trend and a significantly high number indicates an

upward trend.

RT4. The ‘runs up and down test’ where the test statistic is the total number of runs of either

positive or negative differences as defined previously in RT3. A significantly low number of

runs indicates a trend.

For a trend test to be effective, it must properly account for intra-annual or inter-annual

fluctuations which typically occur in cetacean populations. In each randomisation test, the

randomisation distributions were generated by drawing 5000 random samples from the data

set.

General additive modelling

General additive models (GAMs) have been widely applied to a variety of observational data

sets with the purpose of assessing trends in ecological populations [11,17,19]. A GAM is a Gen-

eralised Linear Model (GLM) in which the linear predictor G(Xi) depends linearly on

smoother functions si of predictor variables Xi, but whose exact parametric form is unknown

[17]. As with a GLM, a third and final component to be specified is a link function L defined

by L[G(Xi)] = E[Yi] which maps the linear predictor to the expected value E[Yi] of the observa-

tional data Yi. A GAM is a sophisticated nonparametric regression model which utilises a set

of nonlinear basis functions to determine the smoothers and then arrive at an optimal fitted

curve to the data as a sum of the smoothers, through employing penalty terms for overfitting.

Here we employ a GAM as a benchmark for comparison of PYRA performance in trend esti-

mation with each of the above data sets. The GAM has up to two smoother functions to

account for inter-annual or intra-annual fluctuations in the data and is specified by

G Xi1; Xi2ð Þ ¼ aþ s1 Xi1ð Þ þ s2 Xi2ð Þ þ εi ð5Þ

where, α is an intercept, s1 and s2 are smoother functions of the respective explanatory vari-

ables Xi1 for year, Xi2 for day of year and error εi assumed to be gaussian identically indepen-

dently distributed with εi ~ N (0, σ2) with σ2 constant variance, referred to as homogeneity.

The link function L used here is the identity link so that L[G(Xi1, Xi2)] = G(Xi1, Xi2) = E[Yi]

where yi are the click data. The model was fitted with s1 and s2 as penalized cubic regression

splines with basis dimension 5 using the mgcv R package [17].
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Results

PYRA was applied to each data set and the average trend statistic bPT together with PYRA Pop-

ulation Trend plots for bPC t�k
� �

and 95% percentile confidence limits [L = lower, U = upper]

were determined. The estimated trend in each case was compared with results obtained with

the four nonparametric randomisation trend tests and also with smoothers determined by the

GAM defined in Eq (5).

PYRA and randomisation trend tests

Synthetic data. Fig 4 shows PYRA population trend plots for (A) Scenario 1 and (B) Sce-

nario 2 evaluated using their respective paired data sets. In both cases these confirm that

PYRA correctly identified the underlying patterns enforced by design into each scenario over

the whole-time span of the data.

Table 1 compares the PYRA results together with those of the 4 randomisation trend tests

applied to each of the categorised data sets. As a hypothesis test, a randomisation test only pro-

vides the displayed p-values thereby enabling statistical significance to be evaluated. However,

PYRA provides a quantifiable trend estimate together with an associated uncertainty in the

form of a percentile confidence interval [L, U], as shown in the rightmost column.

Scenario 1. PYRA accurately indicated that the population was stable with no detectable

trend over the whole- time span of the data set, as indicated by the PYRA trend statistic bPT ¼

1:005 (L = 0.947, U = 0.1.013) proximity to the baseline value of 1. However, randomisation

tests RT1 and RT2 incorrectly indicated a highly statistically significant downward trend

(p< 0.0001) using each of the categorised data sets. The test RT3 correctly indicated no statis-

tically significant trend using each categorized data set, as did test RT4 with the incomplete

and paired data sets. Test RT4 incorrectly indicated a statistically significant trend (p< 0.001)

with the complete data set.

Scenario 2. PYRA accurately indicated a strong downward trend with bPT ¼ 0:676

[L = 0.647, U = 0.699] and thus that the year-on-year abundance decreased by an estimated

32% [(1–0.676) x 100%] over the whole- time span of the data set. Although randomisation

tests RT1 and RT2 correctly indicated a highly statistically significant downward trend (p

<0.0001) using each of the categorised data sets, tests RT3 and RT4 failed to determine any

statistically significant trend in all cases.

In summary, the outcome of the randomisation tests demonstrates that the statistical signif-

icance attached to an estimated trend may be strongly influenced by localised short-term fluc-

tuations. This meant that trend assessment was correct only 50% of the time, namely in 2 out

of the 4 tests in each scenario. False positives (Type 1 Error) occurred when no trend was pres-

ent in Scenario 1 (using tests RT1 and RT2) whilst false negatives (Type 2 Error) were pro-

duced when a trend was present in Scenario 2 (using tests RT3 and RT4). In direct contrast,

the PYRA approach yields consistent trend assessments in both scenarios. Furthermore,

PYRA offers an ecologically interpretable measure of effect size associated with any trend

assessment.

The four randomisation trend tests were repeated for each scenario with lower or higher

levels of random variation in the data and results were again compared with trend assessment

by the PYRA approach. The results similarly confirmed the robustness of PYRA (Supporting

Information S2 and S3 Figs, S1 Table).

Harbour porpoises and orcas data. (Fig 5A and 5B) shows the respective PYRA popula-

tion trend plots determined for harbour porpoises and orcas from their paired data sets. The

relatively flat PYRA plot in Fig 5A for harbour porpoises indicates that the year-on-year
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Fig 4. The PYRA statistical estimator bPðt�Þ (solid black) for the paired data sets plotted against time with 95%

percentile lower (L) and upper (U) confidence limits (dotted blue) computed with a sliding bootstrap window of width

w = 21 days (3 weeks) for (A) Scenario 1 and (B) Scenario 2. The respective trend mean averages ½bPgt�ð Þ� ¼ bPT over the

total time span T of the data set are superimposed (dashed black) together with 95% percentile confidence limits

(dashed blue). The baseline ‘no trend’ PYRA value of 1 is the horizontal green line. In (A) the trend statisticcPT ¼
1:006 (L = 0.947, U = 1.013) indicates the trend is flat; in (B)cPT ¼ 0:676 (L = 0.647, U = 0.699) indicates a downward

trend, estimated at 33% [(1–0.676) x 100%] over the time span T of the data set.

https://doi.org/10.1371/journal.pone.0264289.g004
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fluctuations visible in the time series plots of the data (Fig 3A) were relatively stable. However,

the PYRA trend statistic bPT ¼ 0:928 (0.866–0.990) indicates a downward trend for this species

over the time span of the data set. For orcas, the PYRA population trend plot in Fig 5B shows

an upward trend which peaks in the central point of the observation period. The PYRA trend

statistic bPT ¼ 1:189 (0.962–1.433) indicates that over the time span of the data the general

overall trend is upward but with wide confidence limits implying high uncertainty.

The results in Table 2 show that randomisation tests performed more consistently with real

data than with the synthetic data sets, indicating a downward trend for harbour porpoises that

was statistically significant (p< 0.01) in test RT1, and highly statistically significant

(p< 0.0001) in tests RT2 and RT3. For orcas, although an upward trend was suggested, this

tendency was not statistically significant in any of the four tests. These results concur overall

with the above PYRA population trend estimates for both species shown in the rightmost col-

umn. The PYRA trend statistic bPT for harbour porpoises indicates an average decline of 7%

[(1–0.928) x 100] with the narrow confidence limits implying strong certainty. In contrast, for

orcas, the PYRA trend statistic indicates an average increase of 19% but with high uncertainty

implied by the wide span of the associated confidence limits.

General additive modelling

To compare the performance of the PYRA approach directly with GAM, we fitted the GAM

model defined in Eq (5) to the paired data, that is, the identical data required by PYRA,

obtained for each of the data sets. Arguably, a comparison of GAM should also be made using

the incomplete data since a larger data set may be more informative when modelled via GAM.

The GAM model was therefore also fitted to the respective incomplete data sets obtained in

each case and results were similar throughout (Supporting Information S2 Appendix and S3

Figures (3–4) in S1 Fig).

Table 1. Comparison of PYRA trend statistic cPT with four randomisation trend tests applied to the synthetic data.

Randomisation trend test PYRA

RT1 RT2 RT3 RT4 cPT

Scenario 1 data Stat m p value Stat p value Stat p value Stat p value

Complete -1.489 < 0.0001 96 < 0.0001 948 0.0554 697 0.0002 N/A

Incomplete -1.906 < 0.0001 70 < 0.0001 258 0.1824 192 0.1136 N/A

Paired -1.389 < 0.0001 70 < 0.0001 218 0.1564 164 0.1766 1.006 (0.947–1.013)

Scenario 2 data

Complete -6.230 < 0.0001 90 < 0.0001 958 0.1848 726 0.3850 N/A

Incomplete -6.271 < 0.0001 2 < 0.0001 256 0.1198 199 0.5010 N/A

Paired -6.311 < 0.0001 2 < 0.0001 217 0.1320 171 0.4304 0.676 (0.647–0.699)

The sample statistic Stat was determined by the randomisation test and is shown with p-values for each data set. RT1: Linear regression with the regression slope

coefficient m as the sample statistic; RT2: Number of runs above or below the median value of the data; RT3: Number of runs of positive or negative differences; RT4:

Count of positive or negative differences between consecutive data points. cPT with 95% percentile confidence limits (lower, upper) and statistical significance at the

0.01% significant level. 5000 randomisations were used to generate the randomisation distributions and percentile confidence intervals throughout.

https://doi.org/10.1371/journal.pone.0264289.t001
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Fig 5. PYRA population trend plots showingcPC ðt�Þ against time (solid black) with 95% percentile lower (L) and

upper (U) confidence limits (dotted blue) computed with a sliding bootstrap window of width w = 3 months (90 days)

over the time span T of the Salish Sea data set for harbour porpoises (A) and orcas (B). The baseline ‘no trend’ PYRA

value of 1 is the horizontal green line. (A) harbour porpoises show a recent downward tendency, the trend statistic

cPT ¼ 0:928 (L = 0.886, U = 0.990) indicates an overall downward trend. (B) orcas show an upward followed by recent

downward fluctuation, the trend statisticcPT ¼ 1:189 (L = 0.962, U = 1.433) indicates an overall upward trend but with

high uncertainty.

https://doi.org/10.1371/journal.pone.0264289.g005

PLOS ONE Estimating cetacean population trends

PLOS ONE | https://doi.org/10.1371/journal.pone.0264289 March 17, 2022 13 / 20

https://doi.org/10.1371/journal.pone.0264289.g005
https://doi.org/10.1371/journal.pone.0264289


Synthetic data

Scenario 1 and Scenario 2. Fig 6 compares plots of the smoothers s1 and s2 obtained from

fitting the GAM model to the paired data of each scenario. The corresponding GAM diagnos-

tic plots are shown in the Supporting Information S3 Figures (1–2) S1 Fig.

For Scenario 1 the smoother curve s1 in Fig 6A indicated no statistically significant trend

over the time span of the data set (p = 0.282), while the smoother curve s2 in Fig 6B indicated

the presence of a highly significant periodic component within the year (p< 0.0001). For Sce-

nario 2 the smoother s1 in Fig 6C indicates a highly statistically significant downward trend

over the time span of the data set (p<0.0001), while the smoother s2 in Fig 6D also indicates a

highly statistically significant annual downward trend (p< 0.0001). Similar results were

obtained from fitting the GAM to the incomplete data set and these are provided in the Sup-

porting Information S2 Appendix. The PYRA trend assessments for both Scenarios were

therefore found to be consistent with those achieved by fitting the appropriate GAM model.

Table 2. Comparison of PYRA trend statistic cPT with the four randomisation trend tests applied to the Salish Sea data set.

Randomisation trend test PYRA

RT1 RT2 RT3 RT4 cPT

Salish Sea data Stat m p value Stat p value Stat p value Stat p value

Porpoises (n = 55) -0.137 0.004 14 < 0.0001 22 < 0.0001 27 0.584 0.928 (0.886–0.990)

orcas (n = 55) 0.063 0.127 26 0.297 32 0.106 30 0.096 1.189 (0.962–1.433)

RT1: Linear regression with the regression slope coefficient m as the sample statistic; RT2: Number of runs above or below the median value of the data; RT3: Number of

runs of positive or negative differences; RT4: Count of positive or negative differences between consecutive data points. cPT with 95% percentile confidence limits (lower,

upper) and statistical significance at the 0.01% significant level. 5000 randomisations were used to generate the randomisation distributions and percentile confidence

intervals throughout.

https://doi.org/10.1371/journal.pone.0264289.t002

Fig 6. Smoothers (solid line); s1 for year and s1 for day within the year (Yday), with 95% confidence bands (dashed)

and partial residuals (dots) obtained by fitting the GAM model to the paired data of (A-B) Scenario 1 and bottom row

(C-D) Scenario 2. For Scenario 1, the plots respectively indicate in (A) no long-term trend (p = 0.282), in (B) a seasonal

decline which is highly statistically significant (p = 2e-16). Conversely, for Scenario 2, in (C) the long-term decline

trend is highly statistically significant (p = 2e-16), in (D) the seasonal linear downward trend is highly statistically

significant (p = 4.05e-09). The fitted GAM model diagnostics were reasonable for both Scenarios (see Supporting

Information S3 Figures (1–2) in S1 Fig).

https://doi.org/10.1371/journal.pone.0264289.g006
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GAM analyses were similarly repeated for each scenario with lower or higher levels of ran-

dom variation in the data and results were again compared with trend assessment by the

PYRA approach. The results similarly confirmed the robustness of PYRA (Supporting Infor-

mation S2 and S3 Figs, S1 Table).

Harbour porpoises and orca data. Fig 7 shows the plots of smoothers s1 for Year and s2

day of year (Yday) obtained for the GAM from model fitting to (AB) harbour porpoises and

(CD) orcas.

For harbour porpoises, the smoother s1 for year shown in Fig 7A indicates a slight down-

ward trend which is not statistically significant over the observation period (p = 0.0826), while

the smoother curve s2 of Fig 7B for within the year fluctuations confirmed the presence of a

highly significant seasonal component (p<0.0001) as can be seen by visual inspection of the

data in Fig 3B. Model diagnostics indicated the model was a reasonable fit (Supporting Infor-

mation S3 Figure 5 in S1 Fig). For orcas, the smoother s1 for year shown in Fig 7C displayed a

trough in the central part of the trend but this was not significant (p = 0.145). Similarly, the

smoother curve s2 shown in Fig 7D suggested a periodic component within the year but this

was also not significant (p = 0.310). However, the model diagnostics indicated the model pro-

vided a poor fit (Supporting Information S3 Figure 6 S1 Fig).

In summary, the estimated trends over the timespan of the data set for each species inferred

from the GAM smoother s1 in each Scenario are broadly in line with those obtained with

PYRA, indicating a significant downward trend for harbour porpoises but with no clear or sig-

nificant trend inferable for orcas.

Discussion

In recent years static acoustic monitoring has succeeded in cetacean monitoring tasks that

were beyond the reach of other methods. In the SAMBAH project [29], 300 site-years of data

Fig 7. GAM smoothers (solid line) s1 for year and s2 for day within the year (Yday), with 95% confidence bands

(dashed) and partial residuals (dots) obtained by fitting the GAM model to the Salish Sea data for (A-B) harbour

porpoises and (C-D) orcas. For harbour porpoises, (A) s1 shows a slight downward long-term trend which is not

statistically significant (p = 0.0826); (B) s2 shows a deep seasonal trough which is highly significant (p< 2e-16). For

orcas, (C) s1 shows an upward long-term trend (p = 0.145); (D) s2 shows a seasonal downward decline (p = 0.310),

neither of which are statistically significant. The fitted GAM model diagnostics were reasonable for harbour porpoises

but weak for orcas (Supporting Information S3 Figures (5–6) in S1 Fig).

https://doi.org/10.1371/journal.pone.0264289.g007
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were collected from 200 sites across the Baltic Sea and have transformed knowledge of the elu-

sive Baltic Sea harbour porpoise. In the Vaquita monitoring project in Mexico, static acoustic

monitoring has been the basis for tracking the tragic decline of the last tiny population of Pho-
coena sinus [3]. Both these projects used sophisticated analysis that represent ideal approaches,

and both indicate that this form of monitoring has a valuable future role.

PYRA is designed as a descriptive exploratory tool for estimating trends from such data

where it extends over multiple years. It provides a quantitative description of how a cetacean

population trend fluctuates year-on-year, over the monitored timespan. These estimates are

readily interpretable and the uncertainty around them can be quantified. The trend estimation

is achieved by making nonparametric year-on-year evaluations with only the recorded data in

hand, without a need to quantify diel or intra-annual or seasonal variations as separate

components.

Our approach contrasts with GAM where the user must a priori specify a seasonal compo-

nent if one is to be incorporated into the trend estimation process, as with the s2 term included

in the GAM model of Eq (5). As a more sophisticated approach, GAM permits refined analyses

to be carried out, but only if the researcher (and ultimately reader) has the necessary knowl-

edge and model interpretive skills. Contrastingly, PYRA is simple to understand and gives

results that are readily interpreted and accessible to statistically less expert researchers and

could act as a precursor to a more sophisticated analysis if required.

The estimation of the uncertainties of the PYRA outputs can easily be related to their bio-

logical significance. In many other simple testing approaches, for example, with a randomisa-

tion trend test, biological and statistical significance are hard to disentangle. In that case,

failure to reject the null hypothesis does not mean that there is no trend, just that there was a

lack of statistical power to detect it. Conversely, in a large study one might detect statistically

significant but ecologically weak effect sizes and conflate one with the other.

The effectiveness of GAM smoothing for the purpose of stabilisation of bPI t�k
� �

will necessar-

ily be influenced by the amount and pattern of missing data. In particular, smoothing may

introduce a bias into an estimated time series trend when the proportion of missing data is

high. An alternative option in this situation is to apply an imputation method to assign esti-

mated values to the missing data [30]. The data recorded by multiple site monitors equate to

multivariate time series so that multiple imputation methods such as MICE may be applied to

infer any missing values [31]. In the case of single acoustic monitor site data, univariate impu-

tation methods ranging from linear interpolation to Kalman smoothing may be used. How-

ever, there is no general consensus in the literature on what the maximum proportion of

‘missingness’ should be for such approaches to be demonstrably efficient [32,33]. Conse-

quently, application of such approaches requires considerable skill and experience.

The key practical constraints that field biologists need to recognise come from some factors

that affect all forms of point monitoring and some factors that are specific to acoustic

monitoring.

Factors affecting any type of point monitoring:

• Few detections: this situation gives high sampling error and wide confidence intervals.

• Large data gaps, irregularly distributed: these can distort results from most methods.

• Changes in logging stations: any change that is liable to affect detection rates would require

the site data to end and restart as a new site.

• Representativeness of sites: if monitoring is intended to reflect changes within some area,

rather than at one location, then sites in a range of habitat types within that area are needed,
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if they exist. If differing trends are seen across different habitat types, then some assessment

of redistribution is needed.

Factors specific to acoustic monitoring:

• Choice of detection statistic: as discussed above.

• Changes in acoustic behaviour: for click monitoring these have not emerged as problematic,

but they can be assessed as changes in the distribution of click rates within click trains.

• Changes in environmental conditions: such things as a persistent increase in local noise lev-

els, or the onset of construction work nearby require the site identity to end and would gen-

erally require a new site to be found.

• Changes in position of logger: large changes in position within the water column can sub-

stantially affect detection rates and would require a change in site identity.

Factors specific to use of PYRA:

• Large data gaps irregularly distributed: this is the issue on which PYRA generally does best,

but it may effectively ‘cancel’ a large part of the data that is unpaired and give rise to the

problems of few detections. It is possible that more sophisticated approaches may work bet-

ter here but are particularly difficult to apply in this circumstance.

Conclusions

Our assessment of Paired Year Ratio Assessment (PYRA) demonstrates that it is a relatively

simple, and well-behaved assessment tool for multi-year point monitoring data, particularly

the static acoustic data for which it was designed. It is tolerant of irregular gaps although it nec-

essarily must fail when large gaps are both numerous and irregularly distributed in time. The

level of skill and experience required to apply it, and the danger of misapplying it are less than

that for the alternatives. In principle it could be applied in any context where there is a known,

fixed, periodicity other than the day or the year in gappy data. In the context of static acoustic

monitoring of cetaceans, PYRA is not intended to replace any specific method, but provides

an additional useful tool in progressing towards trend monitoring as a cost-effective service to

future conservation efforts globally.
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