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Cycle-Consistent Generative Adversarial Network:  
Effect on Radiation Dose Reduction and Image Quality 
Improvement in Ultralow-Dose CT for Evaluation  
of Pulmonary Tuberculosis
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Objective: To investigate the image quality of ultralow-dose CT (ULDCT) of the chest reconstructed using a cycle-consistent 
generative adversarial network (CycleGAN)-based deep learning method in the evaluation of pulmonary tuberculosis.
Materials and Methods: Between June 2019 and November 2019, 103 patients (mean age, 40.8 ± 13.6 years; 61 men and 
42 women) with pulmonary tuberculosis were prospectively enrolled to undergo standard-dose CT (120 kVp with automated 
exposure control), followed immediately by ULDCT (80 kVp and 10 mAs). The images of the two successive scans were used to 
train the CycleGAN framework for image-to-image translation. The denoising efficacy of the CycleGAN algorithm was compared 
with that of hybrid and model-based iterative reconstruction. Repeated-measures analysis of variance and Wilcoxon signed-
rank test were performed to compare the objective measurements and the subjective image quality scores, respectively.
Results: With the optimized CycleGAN denoising model, using the ULDCT images as input, the peak signal-to-noise ratio and 
structural similarity index improved by 2.0 dB and 0.21, respectively. The CycleGAN-generated denoised ULDCT images typically 
provided satisfactory image quality for optimal visibility of anatomic structures and pathological findings, with a lower level 
of image noise (mean ± standard deviation [SD], 19.5 ± 3.0 Hounsfield unit [HU]) than that of the hybrid (66.3 ± 10.5 HU, 
p < 0.001) and a similar noise level to model-based iterative reconstruction (19.6 ± 2.6 HU, p > 0.908). The CycleGAN-generated 
images showed the highest contrast-to-noise ratios for the pulmonary lesions, followed by the model-based and hybrid 
iterative reconstruction. The mean effective radiation dose of ULDCT was 0.12 mSv with a mean 93.9% reduction compared 
to standard-dose CT.
Conclusion: The optimized CycleGAN technique may allow the synthesis of diagnostically acceptable images from ULDCT of 
the chest for the evaluation of pulmonary tuberculosis.
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INTRODUCTION

Tuberculosis remains a widely distributed infection 
and a major global health problem [1,2]. Tuberculosis 
can be treated with a standard regimen for 6–9 months. 
The treatment may be continued for up to 2 years if M. 
tuberculosis bacteria are multidrug-resistant. Chest CT is an 
important diagnostic imaging modality for the management 
of pulmonary tuberculosis [3]. Health care personnel 
with tuberculosis should undergo a symptom evaluation 
and chest imaging to determine the risks and benefits 
of treatment every 3–6 months [4]. However, repeated 
follow-up CT poses concerns related to the potential risk 
of radiation-induced carcinogenesis. Recent studies have 
focused on dose reduction following the principle of “as low 
as reasonably achievable” while maintaining image quality 
and diagnostic accuracy [5].

Hybrid iterative reconstruction (IR) algorithms are 
routinely used in commercially available reconstruction 
techniques to decrease the radiation dose; they utilize 
statistical model-based denoising in image reconstruction 
[6]. The recent commercial implementation of iterative 
model reconstruction (IMR) is a more advanced and 
knowledge-based IR algorithm based on noise modeling 
techniques to further improve the spatial resolution 
and image quality [7]. Although IMR techniques enable 
substantial image noise reduction, several prior studies 
have shown their limitations related to over-smoothing or 
blotchy pixelated appearance [8,9].

Recently, several deep learning networks for image-
to-image translation have been reported, and they have 
enabled remarkable radiation dose reduction by image 
denoising [10-13]. Specifically, generative adversarial 
networks (GANs) have achieved state-of-the-art performance 
in image generation [14]. These models often consist of 
a generator network focused on image synthesis and a 
discriminator network centered on discrimination. The two 
networks are trained simultaneously and challenge each 
other to achieve high-quality visual images from low-dose 
acquisitions. Kaplan and Zhu [15] proposed an end-to-
end GAN-based framework that transformed low-dose PET 
images into estimates of the corresponding high-quality 
full-dose PET images. Recently, an unsupervised translation 
cycle-consistent GAN (CycleGAN) model was developed to 
convert cone-beam CT images to more accurately synthesize 
CT images for treatment planning [16]. To date, only a few 
clinical studies have evaluated the utility of GANs for noise 

reduction for low-dose CT [17,18]. Furthermore, published 
clinical studies on dose reduction that have compared deep 
learning techniques with commercially available IR methods 
are limited [10,12].

The purpose of this study was to train a CycleGAN-
based denoising network to generate high-quality images 
from ultralow-dose CT (ULDCT) at chest radiography dose 
levels and evaluate and compare the quality of CycleGAN-
reconstructed images with those of the hybrid and 
knowledge-based IMR algorithms in patients with pulmonary 
tuberculosis.

MATERIALS AND METHODS

This single-center, Health Insurance Portability and 
Accountability Act-compliant study was approved by the 
Institutional Review Board. Written informed consent was 
obtained from all patients.

Patient Selection
Between June 2019 and November 2019, 129 consecutive 

patients with clinical indications of tuberculosis on chest 
CT were enrolled (Fig. 1). The inclusion criteria were as 
follows: 1) age of ≥ 18 years; 2) characteristic symptoms 
(fever, cough, and night sweats) and microbiological 
confirmation with positive sputum microbiology results; 
3) initial diagnosis or follow-up under tuberculostatic 
medication. The exclusion criteria were as follows: no 
typical morphological features indicative of tuberculosis  
(n = 15) and obesity with body mass index of ≥ 25 kg/m2  
(n = 11). In this study, 103 patients with pulmonary 

Fig. 1. Flowchart showing participant inclusion and exclusion 
criteria. GAN = generative adversarial network
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tuberculosis (61 men, 42 women; mean age ± standard 
deviation [SD], 40.8 ± 13.6 years; age range, 18–68 years; 
mean body mass index ± SD, 20.5 ± 2.4 kg/m2) were finally 
included.

CT Technique and Image Reconstruction
All examinations were performed using a 256-slice CT 

scanner (Brilliance iCT; Philips Healthcare). The standard-
dose CT (SDCT) examinations were performed at 120 kVp 
with automatic exposure control at a dose right index of 13, 
which is routinely used in clinical practice. An additional 
set of ULDCT research images were acquired with the tube 
voltage lowered to 80 kVp, and the fixed-tube current-time 
product was reduced to 10 mAs. All remaining scanning 
parameters were kept constant for the two unenhanced 
image series with a pitch of 0.984:1 and detector 
configuration of 128 x 0.625 mm. The raw data were 
reconstructed using the hybrid IR algorithm (iDose) and 
knowledge-based IMR (Philips Healthcare), with a section 
thickness of 1 mm and a resolution of 512 x 512 pixels. 

Generative Adversarial Network for Noise Reduction 
A total of 103 cases were randomly divided into training 

and testing sets using a ratio of approximately 2:1 (training 
[68 patients]/testing [35 patients]). According to our 
preliminary results (Supplementary Table 1, Supplementary 

Fig. 1) and a previously published report [16], the deep 
learning algorithm for denoising was optimized based 
on CycleGAN rather than WGAN-VGG or Pix2Pix. We 
implemented the network architectures in Pytorch based 
on the GitHub project (https://github.com/UserWendy/
GAN-denoising). The original CycleGAN pipeline contains 
two networks: a generator (G) and a discriminator (D), 
as illustrated in Figures 2 and 3. G contains G1 and G2, 
which simultaneously learn the mappings from ULDCT → 
SDCT and SDCT → ULDCT, respectively. D consists of D1 and 
D2:D1 discriminates the real SDCT images from the source 
domain and synthetic SDCT images from G1, whereas D2 
discriminates the real images from the target ULDCT domain 
and synthetic ULDCT images from G2. In this adversarial 
learning process, networks are simultaneously optimized 
to generate high-quality images. The computation time of 
the optimized CycleGAN denoising model was 0.05–0.07 
seconds per image. The details of the optimized CycleGAN 
network are provided in the Supplementary Materials. To 
validate the performance of our proposed methods, the peak 
signal-to-noise ratio (PSNR) and structural similarity index 
(SSIM) were used for image quality evaluation [17]. 

Objective Image Analysis
Regions of interest (ROIs) were manually drawn within 

the descending aorta at the level of the carina and around 

Fig. 2. A schematic view of the proposed cycle-consistent GAN frameworks for image-to-image translation during the training 
and testing stage. The generator and discriminator networks were simultaneously optimized to generate high-quality images from low-dose 
acquisitions. GAN = generative adversarial network, SDCT = standard dose CT, ULDCT = ultralow dose CT
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the most significant pulmonary lesions (longest diameter 
> 1 cm) by an experienced thoracic radiologist. Large 
vessels and bronchi were avoided when the ROIs were 
placed. The signal-to-noise ratio (SNR) in the aorta and 
contrast-to-noise ratio (CNR) for the lesion and the aorta 
were calculated using the following formulas: SNR = |ROIA/
N| and CNR = |ROIL - ROIA| /N, where the image noise, N, 
was defined as the SD of CT attenuation in the aorta, and 
ROIL and ROIA were the mean CT values within the ROIs of 
the lesion and the aorta, respectively. The image noise was 
normalized based on the effective dose (ED) for the 80- and 
120-kVp protocols using a figure of merit (FOM) defined as 
FOMnoise = 1/(N2 · ED) [9]. These FOM values are mainly used 
for objective noise assessment that is independent of the 
radiation output.

Subjective Image Analysis
The subjective visual assessment was independently 

performed by two experienced thoracic radiologists (with 
5 and 9 years of experience, respectively). All images 
were anonymized, blinded, and analyzed in random order. 
Standard-dose iDose images were used as reference for 
diagnostic interpretation. A consensus reading was used 
to resolve disagreements between the two observers. 
The overall image quality, noise, visibility of anatomical 

structures (proximal bronchi and vessels, peripheral bronchi 
and vessels, fissures, lymph nodes, and pericardium), and 
pathological findings (centrilobular nodules, consolidations, 
tree-in-bud, cavitation, calcification, and fibrosis) were 
evaluated on a 5-point scale (5 indicating best through to 
1 indicating worst, Table 1) [19].

Assessment of Radiation Dose 
The volume CT dose index (mGy) and dose-length product 

(mGy·cm) were recorded from the dose information page. The 
estimated ED was calculated by multiplying the dose-length 
product by a conversion factor (k = 0.014 mSv mGy-1 cm-1).

Statistical Analysis
All statistical analyses were performed using IBM SPSS 

Statistics for Windows, Version 21.0 (IBM Corp.). For the 
baseline patient characteristics, the Student t test for 
continuous variables and the χ2 test for categorical variables 
were used to compare the training and testing data. 
Continuous variables including PSNR, SSIM, CT number, 
noise, SNR, CNR, and FOMnoise were analyzed using repeated-
measures analysis of variance. The Wilcoxon signed-rank 
test was used to assess the subjective image quality scores. 
Interobserver reliability was assessed by calculating the 
weighted ĸ coefficient. The paired student’s t test was 

Fig. 3. The structure of the generator and discriminator network in the proposed cycle-consistent GAN. GAN = generative adversarial 
network, ReLU = rectified linear units
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performed to compare the radiation dose parameters of the 
two successive scans. Bonferroni adjustment was applied to 
the four comparisons of the multiple groups, with p < 0.008 
indicating a statistically significant difference.

RESULTS

The baseline patient characteristics showed no statistically 
significant differences in the training and testing sets (all, 
p > 0.05), as shown in Table 2. In the testing set, the main 
CT findings were centrilobular nodules (27/35, 77.1%), 
followed by fibrosis (60.0%), consolidation (34.3%), tree-
in-bud (20.0%), and cavitation (17.1%). Mediastinal 
calcification, in addition to pulmonary abnormalities, was 
observed in 18 (51.4%) patients. Representative cases of 
pulmonary tuberculosis are presented in Figures 4 and 5. 

Objective Image Analysis
The objective measurements of image quality are 

summarized in Table 3. For the ULDCT images, the proposed 
GAN method demonstrated PSNR and SSIM that were 
significantly higher than IMR and iDose (both p < 0.001). 
The mean CT attenuation values of the aorta significantly 
differed with the various acquisition and reconstruction 
techniques (p < 0.001). For the significant pulmonary 
lesions, the CT attenuation values of the SDCT, ULDCT 
with GAN, IMR, and iDose images were not significantly 
different (p = 0.908). The mean image noise ± SD (19.5 ± 
3.0 Hounsfield unit [HU]) of the GAN-generated images was 
significantly lower than that of iDose (66.3 ± 10.5 HU, p < 
0.001) and similar to that of IMR (19.6 ± 2.6 HU, p = 0.908). 
Among the ultralow-dose CT, the GAN-generated images 
showed the highest SNRs and CNRs for the pulmonary 
lesions, followed by IMR and iDose (GAN vs. IMR, p > 0.05; 
GAN vs. iDose, p < 0.001). The image noise, SNRs, and CNRs 
for the ultralow-dose GAN and standard-dose iDose images 

were similar, with no significant differences (p = 0.042–
0.471). Moreover, our FOM results showed that when the 
radiation dose was kept constant, the ULDCT GAN and IMR 
images yielded significantly lower noise than SDCT (both  
p < 0.001). 

Subjective Image Analysis
The results of the subjective image quality assessment 

are summarized in Tables 4 and 5. For the overall diagnostic 
quality and noise ratings, the ultralow-dose GAN images 
were typically graded as “good image quality with minor 
artifacts” (28/35, 80.0%) and “no significant image noise” 
(26/35, 74.3%). For the visibility of normal anatomic 
structures and pathological findings on ultralow-dose 
images, the hybrid IR iDose images were substantially 
improved with GAN. However, the network generated 
artifacts in the images of 3 of 35 patients (8.6%), although 
they did not affect the diagnostic interpretation. A minor 

Table 1. Grading Scale for Subjective Image Analysis

Grading 
Scale 

Overall Image Quality Noise
Visibility of Anatomic Structures and 

Pathological Findings

1
Excellent image quality without 
  artifacts

Visually no image noise
Excellent visibility of details with sharp demarcation 
  of structures

2
Good image quality with minor 
  artifacts 

No significant noise
Good visibility of the structures, with unrestricted 
  image evaluation

3
Fair image quality with moderate 
  artifacts 

Acceptable noise
Moderate visibility of the interface structures, 
  with slight restricted assessment

4
Poor image quality with substantial
  artifacts

More than acceptable 
  noise

Poorly defined structures, with uncertainty about 
  the evaluation

Table 2. Clinical Characteristics of the Full Cohort

Training Set 
(n = 68)

Testing Set 
(n = 35)

P

Age, years* 40.1 ± 13.9 42.1 ± 13.1 > 0.05
Sex > 0.05

Men 39 (57.4) 22 (62.9)
Women 29 (42.6) 13 (37.1)

BMI, kg/m2* 20.5 ± 2.2 20.6 ± 2.7 > 0.05
Imaging findings > 0.05

Centrilobular nodules 58 (85.3) 27 (77.1)
Tree-in-bud 19 (27.9) 7 (20.0)
Fibrosis 39 (57.4) 21 (60.0)
Calcification 22 (32.4) 18 (51.4)
Cavitation 15 (22.1) 6 (17.1)
Consolidation 26 (38.2) 12 (34.3)

Unless otherwise specified, data are the number of patients, with 
percentages in parentheses. *Data are means ± standard deviation. 
P values for differences were calculated with the student t test or 
χ2 test. BMI = body mass index
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blotchy image appearance was observed in ULDCT IMR 
images (Fig. 4), which mildly limited the visualization of 
the CT features. Additionally, the interobserver agreement 
was substantial (ĸ = 0.61–0.74) for the subjective image 
quality scores.

Radiation Dose
The mean value ± SD of volume CT dose index and the 

dose-length product for SDCT were 163.0 ± 141.7 mGy and 
3.6 ± 0.6 mGy·cm, whereas those for ULDCT were 8.3 ± 0.6 
mGy and 0.2 ± 0.0 mGy·cm, respectively. Compared with 
the standard-dose scan, there was a 93.9% reduction in the 
average ED using the ultralow-dose scan (2.3 ± 2.0 mSv vs. 
0.12 ± 0.01 mSv; p < 0.001).

DISCUSSION

Health care personnel with a positive tuberculosis test 

should be monitored with follow-up chest imaging if 
they begin treatment with a recommended regimen [4]. 
Multidrug-resistant tuberculosis, for which first-line drugs 
are ineffective, requires extensive chemotherapy for up to 
2 years of treatment. CT is a critical imaging modality for 
the assessment of chronic pulmonary diseases. However, 
cumulative radiation exposure from repeated CT has raised 
significant public safety concerns. Several prior studies 
have shown that various drastic dose reduction techniques 
are limited by the inherent trade-off between greater 
image noise and diminished image quality [20,21]. In this 
study, we proposed a CycleGAN-based deep neural network 
framework with feature matching for denoising ultralow-
dose chest CT images for follow-up and visualization 
of pulmonary tuberculosis. Our results showed that the 
CycleGAN model enabled a substantial reduction in the 
radiation dose (93.9%, ED, 0.12/2.3 mSv) delivered for 
chest CT and generated diagnostically acceptable images 

Fig. 5. CT images of multiple calcifications in lobular consolidation shown in the mediastinal window of the standard dose CT 
iDose (A) and ULDCT reconstructed with GAN, iterative model reconstruction, and iDose (B-D). 
Note the lower image noise and improved image quality for the ULDCT GAN (B, output) compared with iDose (D, input). GAN = generative 
adversarial network, ULDCT = ultralow dose CT

A B C D

Fig. 4. SDCT iDose images (A) and ULDCT images of multiple centrilobular nodules with slight ground-glass opacity indicative of 
pulmonary tuberculosis in the lung window reconstructed with GAN, IMR, and iDose (B-D).
The visibility of pathological findings in ULDCT GAN images (B, output) is substantially better than that of iDose (D, input) and visually 
similar to that of SDCT iDose (A). Note the minor blotchy appearance in the IMR image (C); the accompanying ground-glass opacity is slightly 
exaggerated. GAN = generative adversarial network, IMR = iterative model reconstruction, SDCT = standard dose CT, ULDCT = ultralow dose CT

A B C D
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with sufficient image quality for the evaluation of lung 
diseases.

Strategies aimed at reducing radiation dose have become 
particularly important owing to increasing concerns about 
high radiation burdens and the risk of lifetime cancer 
associated with CT examinations. Several recent studies have 
focused on the development of efficient IR techniques to 
provide substantial dose reduction with acceptable image 
quality [22-24]. Messerli et al. [25] proved that ultralow-
dose CT obtained at 100 kVp and 70 mAs and reconstructed 
with model-based IR allowed for lung volumetry and the 
quantification of emphysema. We performed the ULDCT at 
80 kVp and 10 mAs with a mean ED of 0.12 mSv during this 
study. The feasibility of GAN in dose-reduced CT scans at the 
dose level of plain radiography may benefit patients who 
require multiple follow-up studies, especially young patients. 

Another study [24] reported that ultralow-dose CT with IMR 
resulted in approximately 60% dose reduction (ED, 0.3/0.7 
mSv) with an improved depiction of abnormal findings of 
pulmonary invasive fungal infection, compared with low-
dose CT. However, the sharpness of ground-glass opacities 
in model-based IR was rated as blurred for some cases. 
Likewise, the minor blotchy and pixelated appearances were 
also associated with ultralow-dose IMR images in this study. 
The subjective image rating of centrilobular nodules on 
ULDCT IMR images was lower than that of GAN-generated 
images. This may be due to the aggressive denoising by 
the advanced IR algorithm, which affected the sharp 
visualization and subjective analysis scores [26].

Compared with model-based IR approaches, the main 
advantage of the GAN method is that the network learns 
image statistics in an entirely data-driven manner instead of 

Table 3. Objective Measurements of Image Quality Parameters

Parameter
SDCT
iDose

ULDCT P
GAN IMR iDose SDCT vs. GAN GAN vs. IMR GAN vs. iDose

PSNR NA 32.4 ± 3.3 31.0 ± 2.9 30.4 ± 2.2 NA < 0.001 < 0.001
SSIM NA 0.83 ± 0.03 0.77 ± 0.04 0.62 ± 0.05 NA < 0.001 < 0.001
CT valueaorta (HU) 44.3 ± 5.5 54.1 ± 17.6 51.7 ± 9.0 54.9 ± 10.5 < 0.001 0.379 0.776
CT valuelesion (HU) 48.7 ± 111.5 26.6 ± 81.1 42.5 ± 169.9 31.3 ± 167.4 1.000 1.000 1.000
Noise (HU) 16.6 ± 2.7 19.5 ± 3.0 19.6 ± 2.6 66.3 ± 10.5 0.042 0.908 < 0.001
SNR 2.8 ± 6.4 2.9 ± 1.1 2.7 ± 0.6 0.4 ± 2.2 0.471 0.286 < 0.001
CNR 3.9 ± 5.0 3.5 ± 2.5 3.4 ± 3.3 1.5 ± 1.6 0.058 0.902 < 0.001
FOMnoise 10-3 2.0 ± 0.9 25.0 ± 13.2 23.4 ± 7.1 2.1 ± 0.7 < 0.001 0.362 < 0.001

Data are means ± standard deviation. P values for differences were calculated with the repeated-measures analysis of variance with 
Bonferroni test for post-hoc comparisons. CNR = contrast-to-noise ratio, FOM = figure of merit, GAN = generative adversarial network, 
HU = Hounsfield unit, IMR = iterative model reconstruction, PSNR = peak signal-to-noise ratio, SDCT = standard dose CT, SNR = signal-to-
noise ratio, SSIM = structural similarity index, ULDCT = ultralow dose CT

Table 4. Qualitative Assessment of the Overall Image Quality and Noise

Parameter
SDCT
iDose

ULDCT P
GAN IMR iDose SDCT vs. GAN GAN vs. IMR GAN vs. iDose

Overall image quality 0.005 0.083 < 0.001
5, excellent 16 (45.7) 6 (17.1) 4 (11.4) 0
4, good 19 (54.3) 28 (80.0) 29 (82.9) 1 (2.9)
3, fair 0 1 (2.9) 2 (5.7) 22 (62.9)
2, poor 0 0 0 12 (34.3)
1, nondiagnostic 0 0 0 0

Noise 0.796 0.008 < 0.001
5, no 10 (28.6) 9 (25.7) 3 (8.6) 0
4, little 25 (71.4) 26 (74.3) 32 (91.4) 0
3, acceptable 0 0 0 4 (11.4)
2, more than acceptable 0 0 0 31 (88.6)
1, unacceptable 0 0 0 0

Data are the number of patients, with percentages in parentheses. P values for differences were calculated with the Wilcoxon signed-rank 
test. GAN = generative adversarial network, IMR = iterative model reconstruction, SDCT = standard dose CT, ULDCT = ultralow dose CT 
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depending on hand-tuned regularizations. In recent years, 
GANs have gained much attention in medical imaging in 
many traditional and novel applications, such as synthesis, 
segmentation, reconstruction, classification, registration, 
and others [10]. GANs are special models in which a 
generator network generates realistic images to confuse the 
discriminator, while the discriminator network recognizes 
whether the generated images are real or fake, which work 
in competition with each other. For example, Wolterink et 
al. [17] reported that training with an adversarial network 
improved coronary artery calcification quantification over 
standard filtered back-projection reconstruction for low-
dose cardiac CT. The quantitative PSNR results are consistent 
with ours. With a similar architecture, Ouyang et al. [27] 
proposed a conditional GAN-based model to generate a 
high-quality full-dose PET image from the corresponding 
low-dose PET image for amyloid status assessment. 
Consistent with recently published studies [12,17,28], our 
CycleGAN model converted ultralow-dose CT images into 
standard-dose visually similar images without any blurring 
or blotchy appearance. However, GAN for CT denoising may 
suffer from artifacts present in the synthesized images 
(8.6%). This can be attributed to the potential mode-
collapsing behavior of the GAN when the generator network 
generates limited outputs regardless of the input [29]. 
Fortunately, the likelihood of the problem was significantly 
reduced after the implementation of an inverse path in the 

network architectures. Furthermore, the drift of CT density, a 
frequent problem of dose-reduced exams, was still not well 
resolved for the GAN technique in our study. The minimal 
alteration of attenuation values is directly related to the 
different tube voltages and reconstruction techniques [20].

GAN is a promising method for image-to-image 
translation with several variants, including WGAN [17], 
CycleGAN [16,29], and pix2pix conditional GAN [30]. In this 
study, breath movement between two successive CT scans 
resulted in a mismatch in pixel-to-pixel correspondence. 
Theoretically, CycleGAN is a favorable model for inconsistent 
input data in medical imaging generation [29]. This model, 
as part of the denoising task, could enable a good style 
transfer with or without matching paired data [18], which 
outperforms other paired approaches such as WGAN and 
pix2pix (Supplementary Materials). The smart design of 
reverse mapping and cycle consistent loss will facilitate 
a more accurate translation from inconsistent ultralow-
dose to standard-dose visually similar CT images. In our 
study, the innovative inclusion of an extra L1 loss in the 
original CycleGAN model further strengthens the confidence 
in denoising performance. In this optimized model, the 
generator is designed not only to fool the discriminator but 
also to smoothen generated images using a Gaussian filter 
in an L1 sense. Previous approaches have found it useful to 
use the GAN model with a traditional loss function [31,32]. 
In addition, the CycleGAN approaches make real-time 

Table 5. Subjective Image Quality Scores of Visibility of Normal Anatomic Structure and Pathological Findings

Parameter
SDCT
iDose

ULDCT P

GAN IMR iDose
SDCT vs. 

GAN
GAN vs. 

IMR
GAN vs. 
iDose

Normal structures 
Peripheral bronchi and vessels 4.43 ± 0.50 4.20 ± 0.58 4.06 ± 0.59 2.71 ± 0.52 0.059 0.059 < 0.001
Proximal brochi and vessels 4.80 ± 0.41 4.60 ± 0.50 4.49 ± 0.51 3.43 ± 0.61 0.020 0.157 < 0.001
Fissures 4.37 ± 0.55 3.63 ± 0.55 3.31 ± 0.53 2.49 ± 0.56 < 0.001 0.002 < 0.001
Lymph nodes (n = 25) 4.38 ± 0.58 2.96 ± 0.36 3.46 ± 0.51 2.04 ± 0.20 < 0.001 0.021 < 0.001
Pericardium 4.46 ± 0.51 3.29 ± 0.46 3.26 ± 0.44 2.11 ± 0.32 < 0.001 0.739 < 0.001

Pathological findings 
Centrilobular nodules (n = 25) 4.64 ± 0.49 4.28 ± 0.46 4.00 ± 0.00 3.12 ± 0.33 0.013 0.008 < 0.001
Fibrosis (n = 21) 4.43 ± 0.51 4.14 ± 0.57 4.00 ± 0.00 2.71 ± 0.56 0.034 0.257 < 0.001
Calcification (n = 18) 4.67 ± 0.49 3.94 ± 0.64 4.28 ± 0.46 3.11 ± 0.58 0.002 0.014 0.036
Consolidation (n = 12) 4.92 ± 0.29 4.50 ± 0.52 4.08 ± 0.29 3.08 ± 0.52 0.025 0.025 0.002
Tree-in-bud (n = 7) 4.29 ± 0.49 4.00 ± 0.00 3.71 ± 0.49 2.86 ± 0.38 0.157 0.157 0.011
Cavitation (n = 6) 4.83 ± 0.41 4.17 ± 0.41 4.17 ± 0.41 3.00 ± 0.00 0.046 0.317 0.014

Data are mean ± standard deviation of the subjective scores. Grading for subjective image analysis of normal and pathological findings 
was performed evaluated on a 5-point scale (5 indicating best through to 1 indicating worst). P values for differences were calculated 
with the Wilcoxon signed-rank test. P < 0.008 indicates a statistically significant difference. GAN = generative adversarial network, IMR = 
iterative model reconstruction, SDCT = standard dose CT, ULDCT = ultralow dose CT
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reconstruction possible (0.05–0.07 second per image) once 
the adversarial network is trained.

Our study had several limitations. First, the sample size 
was relatively small. It is anticipated that an increase in 
training data will improve the performance of the deep 
learning framework. Second, this population included 
patients with a narrow body size range. Extremely large or 
obese patients need to be investigated in separate studies. 
Third, because of the inherent imaging characteristics of 
the different reconstruction methods, it was infeasible 
to completely blind the radiologists during subjective 
image analysis. Additionally, the higher attenuation of 
the pulmonary lesion (and chest wall) was noted in the 
GAN images. It may have affected the accuracy of the CT 
diagnosis in individual patients and should be investigated 
in future studies. Fourth, the SD of the CT values in the 
descending aorta was relatively high in the GAN-generated 
image, which may have been caused by large dosimetric 
errors around the paraspinal regions. CT density is critical 
for diagnosis, but the CT values of the pulmonary lesions 
measured in GAN images seem lower than those in other 
iteratively reconstructed images. This potentially limits 
the performance and generalizability of the current deep 
learning model in daily clinical practice. Further network 
design and optimization of this system are required. Lastly, 
the visibility of anatomic structures, including fissures and 
the pericardium, in the GAN-generated images was still not 
as good as that of standard-dose images. Future studies will 
focus on further improving the local structure of the GAN 
model to address this problem.

In conclusion, we developed and evaluated a CycleGAN-
based deep learning technique for generating denoised 
ultralow-dose CT images with preserved image quality. The 
optimized CycleGAN technique may allow the synthesis of 
diagnostically acceptable images from ULDCT of the chest 
for the evaluation of pulmonary tuberculosis.

Supplement

The Data Supplement is available with this article at 
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