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It is an important question how human beings achieve efficient recognition of others’
facial expressions in cognitive neuroscience, and it has been identified that specific
cortical regions show preferential activation to facial expressions in previous studies.
However, the potential contributions of the connectivity patterns in the processing of
facial expressions remained unclear. The present functional magnetic resonance imaging
(fMRI) study explored whether facial expressions could be decoded from the functional
connectivity (FC) patterns using multivariate pattern analysis combined with machine
learning algorithms (fcMVPA). We employed a block design experiment and collected
neural activities while participants viewed facial expressions of six basic emotions (anger,
disgust, fear, joy, sadness, and surprise). Both static and dynamic expression stimuli
were included in our study. A behavioral experiment after scanning confirmed the
validity of the facial stimuli presented during the fMRI experiment with classification
accuracies and emotional intensities. We obtained whole-brain FC patterns for each
facial expression and found that both static and dynamic facial expressions could be
successfully decoded from the FC patterns. Moreover, we identified the expression-
discriminative networks for the static and dynamic facial expressions, which span
beyond the conventional face-selective areas. Overall, these results reveal that large-
scale FC patterns may also contain rich expression information to accurately decode
facial expressions, suggesting a novel mechanism, which includes general interactions
between distributed brain regions, and that contributes to the human facial expression
recognition.

Keywords: facial expressions, fMRI, functional connectivity, multivariate pattern analysis, machine learning
algorithm

INTRODUCTION

Facial expression is an important medium for social communication as it conveys information
about others’ emotion. Humans can quickly and effortlessly decode emotion expressions from faces
and perceive them in a categorical manner. The mechanism under which enables human brain
achieving the efficient recognition of facial expressions is intensively studied.

The usual way in exploring facial expression perception is recoding the brain activity patterns
while participants are presented with facial stimuli. Jin et al. (2012, 2014a,b) have made a
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lot of efforts on the stimulus presentation approaches with face
stimuli. In order to accurately locate the increased neural activity
in brain areas, functional magnetic resonance imaging (fMRI)
technology is widely used. Using fMRI, earlier model for face
perception is proposed by Haxby et al. (2000), in which they
found a “core” and an “extended system” that participated in the
processing of facial signals. Subsequently, the core face network,
which contained the fusiform face area (FFA), the occipital
face area (OFA) and the face-selective area in the posterior
superior temporal sulcus (pSTS) have been widely discussed in
facial expression perception studies and are considered as key
regions (Haxby et al., 2000; Grill-Spector et al., 2004; Winston
et al., 2004; Yovel and Kanwisher, 2004; Ishai et al., 2005;
Rotshtein et al., 2005; Lee et al., 2010; Gobbini et al., 2011).
Previous fMRI studies on facial expression perception mainly
employed static expression images as stimuli (Gur et al., 2002;
Murphy et al., 2003; Andrews and Ewbank, 2004). Because
natural expressions include action, recent studies have suggested
that dynamic stimuli are more ecologically valid than the
static stimuli and the use of dynamic stimuli may be more
appropriate to investigate the “authentic” mechanism of human
facial expression recognition (Trautmann et al., 2009; Johnston
et al., 2013). Recent studies with dynamic stimuli have found
enhanced brain activation patterns compared with static stimuli
and found that in addition to the conventional face-selective
areas, motion-sensitive areas also significantly responded to facial
expressions (Furl et al., 2012, 2013, 2015).

Most of the past fMRI studies on facial expression perception
employed univariate statistics to analyze expression stimuli
induced increments of neural activity in specific brain areas.
Due to the expected existence of interactions between different
brain areas, the analyses of functional connectivity (FC) attracted
more and more attention, which is measured as the temporal
correlations in the fMRI activity between distinct brain areas
(Smith, 2012; Wang et al., 2016). Analysis of FC patterns has been
applied in the recent studies of various objects categorization (He
et al., 2013; Hutchison et al., 2014; Stevens et al., 2015; Wang et al.,
2016), and it was generally observed that distinct brain regions
are intrinsically interconnected. Considering these, FC patterns
may also contribute to the facial expression recognition. A recent
fMRI study on face perception employed FC patterns analysis
to construct the hierarchical structure of the face-processing
network (Zhen et al., 2013). However, it only focused on the
FC patterns among the face-selective areas, the general FC
interactions for facial expression recognition remained unclear.
Consequently, exploring the whole-brain FC patterns during
the processing of different expression information would be
meaningful.

Machine learning techniques make use of the multivariate
nature of the fMRI data and are being increasingly applied
to decode cognitive processes (Pereira et al., 2009). Previous
studies of facial expression decoding combined machine learning
with multi-voxel activation patterns to examine the decoding
performance in the specific brain areas. In these studies, Said
et al. (2010) and Harry et al. (2013) respectively, highlighted
the roles of STS and FFA in the facial expression decoding, and
Wegrzyn et al. (2015) directly compared classification rates across

the brain areas proposed by Haxby’s model (Haxby et al., 2000).
Additionally, Furl et al. (2012) and Liang et al. (2017) showed
that both face-selective and motion-sensitive areas contributed to
the facial expression decoding. Considerable attention has been
paid to activation-based facial expression decoding in individual
brain areas; however, the potential mechanisms of expression
information representation through the FC patterns remained
unclear. Recently, a study by Wang et al. (2016) showed the
successful decoding of various object categories based on the
FC patterns. Their study motivated us to explore whether facial
expression information can also be robust decoded from the FC
patterns.

The present fMRI study explored the role of the FC patterns
in the facial expression recognition. We hypothesized that
expression information may also be represented in the FC
patterns. To address this issue, we collected neural activities
while participants viewed facial expressions of six basic emotions
(anger, disgust, fear, joy, sadness, and surprise) in a block design
experiment. Both static and dynamic expression stimuli were
included in our experiment. After scanning, we conducted a
behavioral experiment in accordance to previous study to assess
the validity of the facial stimuli, in which we recorded the
classification accuracy, the emotional intensity the participants
perceived and the corresponding reaction times for each facial
stimulus (Furl et al., 2013, 2015). A standard anatomical atlas
[Harvard-Oxford atlas, FSL, Oxford University, Meng et al.
(2014)] was employed to define the anatomical regions in
the brain. We obtained the whole-brain FC patterns for each
facial expression and then applied multivariate pattern analyses
with machine learning algorithms (fcMVPA) to examine the
decoding performance for facial expressions based on the FC
patterns.

MATERIALS AND METHODS

Participants
The data used in this study were collected in our previous
study (Liang et al., 2017). Eighteen healthy, right-handed
participants (nine females; range 20–24 years old) took part
in our experiment. They were Chinese students who were
recruited from the Binzhou Medical University. All participants
were with no history of neurological or psychiatric disorders
and had normal or corrected-to-normal vision. Participants
signed informed consent before the experiment. This study was
approved by the Institutional Review Board (IRB) of Tianjin Key
Laboratory of Cognitive Computing and Application, Tianjin
University.

fMRI Data Acquisition
All the participants were scanned using a 3.0-T Siemens
scanner with an eight-channel head coil in Yantai Affiliated
Hospital of Binzhou Medical University. Foam pads and
earplugs were used to reduce the head motion and scanner
noise. Functional images were obtained using a gradient echo-
planar imaging (EPI) sequence (TR = 2000 ms, TE = 30 ms,
voxel size = 3.1 mm × 3.1 mm × 4.0 mm, matrix
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size = 64 × 64, slices = 33, slices thickness = 4 mm,
slice gap = 0.6 mm). In addition, a three-dimensional
magnetization-prepared rapid-acquisition gradient echo (3D
MPRAGE) sequence (TR = 1900 ms, TE = 2.52 ms, TI = 1100 ms,
voxel size = 1 mm × 1 mm × 1 mm, matrix size = 256 × 256)
was used to acquire the T1-weighted anatomical images.
The stimuli were displayed by high-resolution stereo 3D
glasses within a VisualStim Digital MRI Compatible fMRI
system (Choubey et al., 2009; Liang et al., 2017; Yang et al.,
2018).

Procedure
All facial expression stimuli were taken from the Amsterdam
Dynamic Facial Expression Set (ADFES), which is a standard
facial expression database containing both images and videos
of basic emotions (van der Schalk et al., 2011). Video clips of
12 different identities (six males andsix females) displayed six
basic emotions (anger, disgust, fear, joy, sadness, and surprise)
were chosen. The exemplar stimuli for the six basic emotions
are shown in Figure 1A. We created the dynamic expression
stimuli by cropping all videos to 1520 ms to retain the transition
from a neutral expression to the expression apex, and the apex
expression image was used as the static stimuli (Furl et al., 2013,
2015).

The experiment employed a block design, with four runs.
There were three conditions in our experiment: static facial
expressions, dynamic facial expressions and dynamic expressions

with obscured eye-region. Each condition included all six basic
expressions: anger, disgust, fear, joy, sadness, and surprise. Data
from the obscured condition were not analyzed in the current
study but were included for the purpose of another study (Liang
et al., 2017). In each run, there were 18 blocks (6 expressions × 3
conditions), each expression and condition appearing once.
The 18 blocks were presented in a pseudo-random order to
ensure that the same emotion or condition were not presented
consecutively (Axelrod and Yovel, 2012; Furl et al., 2013, 2015).
Figure 1B shows the schematic representation of the employed
paradigm. At the beginning of each run, there was a 10 s fixation
cross, which was followed by a 24 s stimulus block (the same
condition and expression) and then a 4 s button task. Successive
stimulus blocks were separated by the presentation of a fixation
cross for 10 s. In each stimulus block, 12 expression stimuli were
presented (each for 1520 ms) with an interstimulus interval (ISI)
of 480 ms. During the course of each stimulus block, participants
were instructed to carefully watch the facial stimuli, and after
the block, a screen appeared with six emotion categories and
corresponding button indexes to instruct the participants to press
a button to indicate the facial expression they had seen in the
previous block (Liang et al., 2017; Yang et al., 2018). Participants
were provided with one response pad per hand with three buttons
each in the fMRI experiment (Ihme et al., 2014), and they were
pre-trained to familiarize the button pad before scanning. The
total duration of the experiment was 45.6 min, with each run
lasting 11.4 min. Stimulus presentation was performed using

FIGURE 1 | Exemplar facial stimuli (A) and schematic representation of the experimental paradigm (B). All facial expression stimuli were taken from the ADFES
database. The experiment employed a block design, including four runs. There was a fixation cross (10 s) before each block, and then 12 expression stimuli
appeared. Subsequently, the participants completed a button task after each block to indicate their discrimination of the expression they had seen.
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E-Prime 2.0 Professional (Psychology Software Tools, Pittsburgh,
PA, United States).

After scanning, participants were required to complete a
behavioral experiment outside the scanner in accordance to the
previous studies (Furl et al., 2013, 2015). During it, we recorded
their classification of emotion category, emotional intensity
rating and the corresponding reaction times for each stimulus
used in the fMRI experiment. The emotional intensity for each
stimulus was rated on a 1–9 scale with 1 refers to the lowest and
9 refers to the highest emotional intensity (Furl et al., 2013). Each
stimulus was presented once in a random order, with the same
duration as in the fMRI experiment.

Data Preprocessing
Functional image preprocessing was conducted using SPM8
software1. For each run, the first five volumes were discarded
to allow for T1 equilibration effects. The remaining functional
images were corrected for the slice-time and head motion.
Next, the functional data were normalized by using the
structural image unified segmentation. The high-resolution
structural image was co-registered with the functional images
and was subsequently segmented into gray matter, white
matter and cerebrospinal fluid. And the spatial normalization
parameters estimated during unified segmentation were applied
to normalize the functional images into the standard Montreal
Neurological Institute (MNI) space, with a re-sampled voxel size
of 3 mm × 3 mm × 3 mm. Finally, the functional data were
spatially smoothed with a 4-mm full-width at half-maximum
Gaussian kernel.

Construction of Whole-Brain FC Patterns
Estimation of the task-related whole-brain FC was carried
out using the CONN toolbox2 (Whitfield-Gabrieli and
Nieto-Castanon, 2012) in MATLAB. For each participant,
the normalized anatomical volume and the preprocessed
functional data were submitted to CONN. We employed the
Harvard-Oxford atlas3 (FSL, Oxford University, Meng et al.,
2014) as network nodes, which contained 112 cortical and
subcortical regions. Time series of functional MRI signal were
extracted from each voxel and averaged within each ROI for each
condition. CONN implemented a component-based (CompCor)
strategy to remove the non-neural sources of confounders.
Principle components associated with white matter (WM) and
cerebrospinal fluid (CSF) were regressed out along with the
six head movement parameters, and the data were temporally
filtered with band-pass filter 0.01 – 0.1 HZ as previously
used for task-induced connectivity analysis (Wang et al.,
2016). We conducted ROI-to-ROI analysis to assess pairwise
correlations between the ROIs. For both static and dynamic
facial expressions, we obtained six FC matrices (112 × 112)
for each participant, one per emotion category. Second-level
analysis was performed for each facial expression for the
group comparisons of the differences in expression-related FC

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2http://www.nitrc.org/projects/conn
3http://www.cma.mgh.harvard.edu/fsl_atlas.html

between ROIs (p < 0.001, FDR corrected for connection-level,
two-sides).

Across-Subject Expression
Classification Based on the FC Patterns
We employed multivariate pattern analysis and machine learning
to examine whether facial expression information could be
decoded from the FC patterns (fcMVPA). Figure 2 represents
the framework overview of our fcMVPA classification. We
performed a six-way expression classification separately for the
static and dynamic facial expressions. Due to some evidence
showed that the interpretation of the negative FCs remained
controversial (Fox M.D. et al., 2009; Weissenbacher et al.,
2009; Wang et al., 2016), we also focused mainly on the
positive FCs in current study. For each category, we obtained
6216 [(112 × 111)/2] connections in total. We performed the
procedure adopted in Wang et al. (2016) to obtain the positive
FCs. For each category, we conducted a one-sample t-test across
participants for each of the 6216 connections and retained FCs
that had values significantly greater than zero. P-values were
corrected for multiple comparisons with the false discovery rate
(FDR) q = 0.01. This procedure identified 1540 positive FCs
for anger, 1792 positive FCs for disgust, 1466 positive FCs for
fear, 1838 positive FCs for joy, 1799 positive FCs for sadness
and 1726 positive FCs for surprise for the static expressions,
while for the dynamic expressions, it correspondingly identified
1944, 1798, 1696, 1703, 1608, and 1822 positive FCs for each
of the six basic expressions. Pooling the positive FCs together
separately for static and dynamic conditions, we obtained a
total of 3014 (for static) and 2986 (for dynamic) FCs that
were significantly positive for at least one expression (Wang
et al., 2016). For classification, we employed a linear support
vector machine (SVM) classifier as implemented in the LIBSVM4.
A leave-one-subject-out cross-validation scheme (LOOCV) was
used to evaluate the performance (Liu et al., 2015; Wang
et al., 2016; Jang et al., 2017). For multi-class classification, this
implementation used a one-against-one voting strategy. In each
iteration of LOOCV, we trained the classifier in all but one
participant and the remaining one was used as the testing set.
During the classifier training, we first obtained 15 classifiers for
each pair of expressions and then added these pairwise classifiers
to yield the linear ensemble classifier for each expression. Feature
selection was executed using ANOVA (p < 0.05), which was
only performed on the training data of each LOOCV fold
to avoid peeking. The statistical significance of the decoding
performance was evaluated with permutation test, in which the
same cross-validation procedure was carried out for 1000 random
shuffles of class labels (Liu et al., 2015; Wang et al., 2016;
Fernandes et al., 2017). The p-value for the decoding accuracy
was calculated as the fraction of the number of accuracies from
1000 permutation tests that were equal to or larger than the
accuracy obtained with the correct labels. If no more than 5%
(p < 0.05) of the accuracies from all permutation tests exceeded
the actual accuracy using correct labels, the results was thought
to be significant.

4http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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FIGURE 2 | Framework overview of the fcMVPA. The pairs of preprocessed functional images and the corresponding labels of expression categories were used as
the input data. Estimation of the FC patterns was performed using CONN toolbox. Denoising was used to remove unwanted motion, physiological and other
artifactual effects from the BOLD signals before the connectivity measured. Then, the whole-brain FC patterns for each of the six facial expressions were computed
using ROI-to-ROI analysis with the 112 nodes defined by the Harvard-Oxford atlas. Feature selection was performed with ANOVA only using the training data. Finally,
the FC pattern classification of six facial expressions was carried out in a leave-one-subject-out cross-validation scheme with a SVM classifier.

RESULTS

Behavioral Results
Participants completed a behavioral experiment in which they
classified the emotional categories and rated the perceived
emotional intensities for each facial stimulus after scanning.
Figure 3 shows the behavioral results. These results verified
the validity of the facial stimuli used in our experiment as
both static and dynamic facial expression stimuli could be
successfully classified with high accuracies (Figure 3A). A further
comparison of the classification accuracies, intensity ratings and
the corresponding reaction times between static and dynamic
facial expressions, we found that participants showed higher
classification accuracies for dynamic compared with static facial
expressions [one-tailed paired t-test, t(17) = 3.265, p = 0.002].
For the emotional intensity and the reaction times, there were no
significant differences.

Whole-Brain FC Patterns for Each Facial
Expression in Static and Dynamic
Conditions
We constructed the whole-brain FC patterns for each facial
expression separately for the static and dynamic stimuli. For
each participant, we got 12 FC matrices with each contained
6216 [(112 × 111)/2] connections between the pre-defined 112
brain notes. Second-level analysis was performed for each facial
expression for the group comparisons of the differences in
these ROI-to-ROI functional connections. Figures 4, 5 show

the results of group-level analysis of the FC patterns for each
facial expression (p < 0.001, FDR corrected for connection-level,
two-sides).

Facial Expression Decoding Based on
fcMVPA
In this section, we explored whether facial expressions could
be decoded from the FC patterns using fcMVPA. Since the
interpretation of the negative FCs remained controversial
(Fox M.D. et al., 2009; Weissenbacher et al., 2009; Wang
et al., 2016), we focused on the positive FCs in the fcMVPA
classification. Separately for the static and dynamic conditions,
we obtained the positive FCs for each facial expression using one-
sample t-test across participants with multiple comparisons (FDR
q = 0.01) and by pooling the positive FCs together, we obtained
3014 (for static) and 2986 (for dynamic) FCs for the classification
of static and dynamic facial expressions (Wang et al., 2016).
In the main results below, we used these positive FCs. For the
multiclass facial expression classification, the performance was
evaluated with the LOOCV strategy. As shown in Figure 6 (left
columns), we found that classification accuracies based on the
FC patterns were significantly above the chance level for both
static and dynamic facial expressions (p = 0.003 for static facial
expressions and p < 0.001 for dynamic facial expressions, 1000
permutations), indicating that expression information could be
successfully decoded from the FC patterns.

Furthermore, we identified the expression-discriminative
networks for the static and dynamic facial expressions, defined
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FIGURE 3 | Behavioral results. (A) Classification rates, (B) perceived emotional intensities, (C) reaction times for facial expression classification, and (D) reaction
times for emotional intensity rating. All error bars indicate the SEM. ∗ Indicates statistical significance with paired t-test, p < 0.05.

as FCs that contributed significantly in discriminating
between different expression categories. Connections that
were selected over all iterations of LOOCV feature selection
(consensus features, ANOVA p < 0.05) composed the
expression-discriminative networks. Figure 7 shows the
expression-discriminative networks for the static and dynamic
facial expressions, all of which were widely distributed in both
hemispheres. We summarized the brain regions that were
involved in both static and dynamic expression-discriminative
networks in Table 1. We found conventional face-selective
areas, including the insula, inferior frontal gyrus, superior
temporal gyrus, lateral occipital cortex (inferior occipital gyrus);
temporal fusiform cortex (fusiform gyrus) and amygdala,
which were commonly studied in previous fMRI studies on
facial expression perception (Fox C.J. et al., 2009; Trautmann
et al., 2009; Furl et al., 2013, 2015; Johnston et al., 2013; Harris
et al., 2014). Moreover, we found the expression-discriminative
networks contained brain regions far beyond these conventional
face-selective areas. For instance, the middle temporal gyrus,
which was reported sensitive to facial motion (Furl et al., 2012;

Liang et al., 2017), was also included. Other regions that
were not classically considered in previous fMRI studies on
facial expression perception with activation measure were also
included, such as the supramarginal gyrus, the lingual gyrus and
the parahippocampal gyrus.

DISCUSSION

The main purpose of this study was to explore whether the
FC patterns effectively contributed to human facial expression
recognition. To address this issue, we employed a block
design experiment and conducted fcMVPA. We obtained the
whole-brain FC patterns for each facial expression separately
for static and dynamic stimuli and found that both static and
dynamic facial expressions could be successfully decoded from
the FC patterns. We also identified the expression-discriminative
networks for the static and dynamic facial expressions, composed
of FCs that significantly contributed to the classification between
different facial expressions.
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FIGURE 4 | Group-level results of ROI-to-ROI connections for each facial expression (anger, disgust, fear, joy, sadness, and surprise) in static condition (p < 0.001,
FDR corrected at the connection-level, two-sided). All ROIs are deriving from the Harvard-Oxford brain atlas and are labeled with the abbreviations for clarity.

Facial Expressions Are Decoded From
the FC Patterns
Using multivariate connectivity pattern analysis and machine
learning algorithm, we found the successful decoding of
both static and dynamic facial expressions based on the FC
patterns.

Previous studies on facial expression recognition are
dominated by identifying cortical regions showing preferential

activation to facial expressions (Gur et al., 2002; Winston et al.,
2004; Trautmann et al., 2009; Furl et al., 2013, 2015; Johnston
et al., 2013; Harris et al., 2014). Although a few recent studies have
started to explore the decoding of facial expressions, they only
conducted activation-based classification analyses on individual
brain regions (Said et al., 2010; Furl et al., 2012; Harry et al.,
2013; Wegrzyn et al., 2015; Liang et al., 2017). The potential
effects of the FC patterns on the facial expression decoding still
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FIGURE 5 | Group-level results of ROI-to-ROI connections for each facial expression (anger, disgust, fear, joy, sadness, and surprise) in dynamic condition
(p < 0.001, FDR corrected at the connection-level, two-sided). All ROIs are deriving from the Harvard-Oxford brain atlas and are labeled with the abbreviations for
clarity.

undetected. Our study obtained the whole-brain FC patterns
for each of the six basic expressions. Using fcMVPA, we found
that expression information could be successfully decoded from
the FC patterns. These results reveal that facial expression

information may also be represented in the FC patterns, which
add to the recently growing body of evidence for the large
amount of information that the FC patterns contain for the
decoding of individual brain maturity (Dosenbach et al., 2010),

Frontiers in Human Neuroscience | www.frontiersin.org 8 March 2018 | Volume 12 | Article 94

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00094 March 15, 2018 Time: 18:1 # 9

Liang et al. Decoding Facial Expressions via fcMVPA

object categories (Wang et al., 2016), tasks (Cole et al., 2013)
and mental states (Pantazatos et al., 2012; Shirer et al., 2012).
Our study further provides new evidence for the potential of the
FC patterns in the facial expression decoding. To summarize,
our results suggest that the FC patterns may also contain
rich expression information and effectively contribute to the
recognition of facial expressions.

Expression-Discriminative Networks
Contain Brain Areas Far Beyond
Conventional Face-Selective Areas
Neuroscience studies on facial expressions have paid considerable
attention to the face-selective areas which exhibited selectivity to

FIGURE 6 | Accuracies of decoding static and dynamic facial expressions
using fcMVPA. The black line indicates the chance level, and all error bars
indicate the SEM. ∗Represents statistical significance over 1000 permutation
tests.

facial stimuli based on traditional activation analyses. Previous
fMRI studies have indicated that face-selective areas are involved
in the processing of facial expressions (Fox C.J. et al., 2009; Fox
M.D. et al., 2009; Trautmann et al., 2009; Foley et al., 2011;
Furl et al., 2013, 2015; Johnston et al., 2013; Harris et al., 2014).
In our study, we obtained compatible results. We found the
involvement of the face-selective areas in both static and
dynamic expression-discriminative networks. In particular, the
lateral occipital cortex (inferior occipital gyrus) for the early
face perception (Rotshtein et al., 2005); the temporal fusiform
cortex (fusiform gyrus) for the processing of facial features
and identity (Fox M.D. et al., 2009) and the superior temporal
gyrus for the processing of transient facial signals (Hoffman and
Haxby, 2000; Harris et al., 2014) which together constitute the
“core face network,” as well as a subset of brain areas in the
extended face system including the amygdala, the insula and
the inferior frontal gyrus that support the core system regions
(Haxby et al., 2000; Fox C.J. et al., 2009; Trautmann et al., 2009;
Johnston et al., 2013; Wegrzyn et al., 2015). Together, our results
provide additional support for the importance of face-selective
areas in the facial expression recognition with evidence from
fcMVPA.

In addition, we found brain regions beyond these
conventional face-selective areas participated in the expression-
discriminative networks. The middle temporal gyrus, which
was unanimously found sensitive to facial motion in the
previous studies (Schultz and Pilz, 2009; Trautmann et al.,
2009; Foley et al., 2011; Pitcher et al., 2011; Grosbras et al.,
2012; Furl et al., 2013, 2015; Johnston et al., 2013; Schultz
et al., 2013), was also included in our discriminative networks.
Our results suggest the important role of the motion-sensitive
areas in the processing of facial expressions. This is consistent
with the previous evidence, which showed that motion-
sensitive areas also represented expression information
and contributed to the facial expression recognition (Furl
et al., 2012; Liang et al., 2017). Moreover, other brain areas,
which were found related to face or emotion perception in
previous studies, were also included. For instance, the inferior

FIGURE 7 | Expression-discriminative networks for the static and dynamic facial expressions. The coordinates of each node are according to the Harvard-Oxford
brain atlas. The brain regions are scaled by the number of their connections and the results are mapped on the cortical surfaces using BrainNet Viewer.

Frontiers in Human Neuroscience | www.frontiersin.org 9 March 2018 | Volume 12 | Article 94

https://www.frontiersin.org/journals/human-neuroscience/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/human-neuroscience#articles


fnhum-12-00094 March 15, 2018 Time: 18:1 # 10

Liang et al. Decoding Facial Expressions via fcMVPA

TABLE 1 | Overlapping regions across static and dynamic
expression-discriminative networks.

Label x y Z

L Frontal pole −25 53 8

L Insular cortex −36 1 0

R Insular cortex 38 3 0

L Inferior frontal gyrus, pars
triangularis

−50 29 9

R Inferior frontal gyrus, pars
opercularis

52 15 16

L Precentral gyrus −34 −12 49

R Temporal pole 41 13 −29

L Superior temporal gyrus,
anterior division

−56 −4 −8

R Superior temporal gyrus,
anterior division

57 −1 −10

L Superior temporal gyrus,
posterior division

−62 −29 4

L Middle temporal gyrus, anterior
division

−58 −4 −22

R Middle temporal gyrus,
posterior division

61 −22 −12

L Inferior temporal gyrus, anterior
division

−48 −5 −39

L Inferior temporal gyrus,
posterior division

−53 −28 −26

R Inferior temporal gyrus,
temporooccipital part

54 −50 −17

L Postcentral gyrus −39 −28 52

R Postcentral gyrus 37 −27 53

L Supramarginal gyrus, posterior
division

−55 −46 34

R Lateral occipital cortex, inferior
division

45 −74 −2

L Intracalcarine cortex −10 −75 8

R Intracalcarine cortex 12 −74 8

R Frontal medial cortex −5 44 −18

R Juxtapositional lobule cortex
(formerly supplementary motor
cortex)

6 −3 58

R Subcallosal cortex 6 20 −16

L Frontal orbital cortex −30 24 −16

R Parahippocampal gyrus,
anterior division

23 −8 −31

L Lingual gyrus −13 −66 −5

R Lingual Gyrus 14 −63 −5

R Temporal fusiform cortex,
posterior division

−36 −24 −28

L Planum polare −47 −5 −8

R Planum polare 48 −4 −7

R Heschl’s gyrus (includes H1
and H2)

46 −17 7

L Planum temporale −53 −30 11

R Planum temporale 55 −25 12

R Supracalcarine cortex 9 −74 14

L Hippocampus −25 −23 −14

R Amygdala 23 −4 −18

The label and coordinates of each node are according to the Harvard-Oxford
cortical and subcortical structural atlas.

temporal gyrus was related to emotional processing of faces
in the study of effectivity connectivity on face perception
(Fairhall and Ishai, 2007); the supramarginal gyrus and
parahippocampal gyrus were found preference to face category
by the fcMVPA (Wang et al., 2016); the lingual gyrus was
reported in response to face stimuli, independent of emotional
valence (Fusar-Poli et al., 2009) and the hippocampus was
conventionally considered as an emotion-related region which
was involved in emotion processing, learning and memory
(Amunts et al., 2005; Xia et al., 2017). Furthermore, our study
showed that brain regions, such as the postcentral gyrus and
the Heschl’s gyrus, which were not classically considered
in previous studies on facial expression perception with
activation measure, were also included in the expression-
discriminative networks. Together, these results suggest
the potential effects of the activation-defined face-neutral
regions in the recognition of facial expressions. To sum,
our study showed the involvement of widespread brain
regions beyond the conventional face-selective areas in the
expression-discriminative networks, suggesting a potential
mechanism which supports general interactive nature between
distributed brain regions for the human facial expression
recognition.

Moreover, it has been demonstrated a common neural
substrate underlying the processing of static and dynamic facial
expressions (Johnston et al., 2013). Our results support this idea
with the analysis of FC, showing that a majority of common brain
regions, which were involved in facial expression perception, are
shared in the discriminative networks for both static and dynamic
facial expressions.

In our present study, we employed comparable sample
size as the previous fMRI studies on facial expression
perception and MVPA-based analyses (Furl et al., 2012;
Harry et al., 2013; Wegrzyn et al., 2015; Wang et al., 2016).
Future studies with more samples may further improve the
implementation of the classification scheme and boost the
accuracy. Additionally, including of both Eastern and Western
emotional expressions as stimuli in future studies could further
investigate the potential cultural effect on facial expression
recognition. In addition to the emotion information perceives
from faces, body parts also convey emotion information
(Kret et al., 2011, 2013). Therefore, further studies with
comprehensive exploration of the FC patterns for both
face and body emotions, investigating their similarities and
differences may help to better understand human emotion
perception.

CONCLUSION

In summary, we show that expression information can be
successfully decoded from the FC patterns and the expression-
discriminative networks include brain regions far beyond the
conventional face-selective areas identified in previous studies.
Our results highlighted the important role of the FC patterns
in the facial expression decoding, providing new evidence that
the large-scale FC patterns may also contain rich expression
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information and effectively contribute to the facial expression
recognition. Our study extends the traditional research on facial
expression recognition and may further the understanding of the
potential mechanisms under which human brain achieve quick
and accurate recognition of facial expressions.
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