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Abstract
Serotonin neurotransmitter deficits are reported in suicide, major depressive disorder (MDD) and alcohol use disorder
(AUD). To compare pathophysiology in these disorders, we mapped brain serotonin transporter (SERT), 5-HT1A, and 5-
HT2A receptor binding throughout prefrontal cortex and in anterior cingulate cortex postmortem. Cases and controls
died suddenly minimizing agonal effects and had a postmortem interval ≤24 h to avoid compromised brain integrity.
Neuropathology and toxicology confirmed absence of neuropathology and psychotropic medications. For most
subjects (167 of 232), a DSM-IV Axis I diagnosis was made by psychological autopsy. Autoradiography was performed
in right hemisphere coronal sections at a pre-genual level. Linear model analyses included sex and age with group and
Brodmann area as interaction terms. SERT binding was lower in suicides (p= 0.004) independent of sex (females <
males, p < 0.0001), however, the lower SERT binding was dependent on MDD diagnosis (p= 0.014). Higher SERT
binding was associated with diagnosis of alcoholism (p= 0.012). 5-HT1A binding was greater in suicides (p < 0.001),
independent of MDD (p= 0.168). Alcoholism was associated with higher 5-HT1A binding (p < 0.001) but only in
suicides (p < 0.001). 5-HT2A binding was greater in suicides (p < 0.001) only when including MDD (p= 0.117) and
alcoholism (p= 0.148) in the model. Reported childhood adversity was associated with higher SERT and 5-HT1A
binding (p= 0.004) in nonsuicides and higher 5-HT2A binding (p < 0.001). Low SERT and more 5-HT1A and 5-HT2A
binding in the neocortex in depressed suicides is dependent on Axis I diagnosis and reported childhood adversity.
Findings in alcoholism differed from those in depression and suicide indicating a distinct serotonin system
pathophysiology.

Introduction
Impaired serotonin (5-HT) neurotransmission is

detectable in the brain of suicide decedents and in the
cerebrospinal (CSF) fluid of nonfatal suicide attempters1,2,
major depressive disorder (MDD) and alcohol use dis-
order (AUD)3,4. Biological findings in suicide include
those related to comorbid diagnoses and those associated

with the diathesis for suicide that explains why only a
subgroup of people with MDD or AUD are at elevated
risk for suicide5,6. Despite the fact that suicide-associated
conditions such as MDD and AUD are frequently co-
morbid, little work has compared 5-HT receptor
abnormalities in suicide, MDD, and AUD (see ref. 1 for
review).
Childhood adversity increases the risk of suicide, MDD,

and AUD in adulthood7,8. What mediates the effect of
childhood adversity on the risk for these diagnoses is not
well understood, but epigenetic and gene-environment
interactions are reported9–11. We hypothesize that child-
hood adversity affects the serotonin system and
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contributes to increased risk for suicide, MDD or AUD in
adulthood.
In vivo and in vitro imaging of the SERT and 5-HT

receptor subtype binding in suicide and nonfatal suicide
suggest there are serotonin system abnormalities; but
there is less agreement about the direction of the findings,
the specificity of the findings for each of these conditions,
including which brain areas are involved12–22. Explana-
tions for discrepant results include small effect sizes,
variability in outcome measures, and biodemographic
variability related to sex and age; other factors are the
heterogeneity in suicide behavior and the effects from
comorbid psychiatric disorders. Abnormalities in the
serotonin system are more pronounced with more lethal
suicidal behavior16,22–25. In the present study, we sought
to determine the effects of suicide on serotonin receptor
binding and separate the effects of suicide from comorbid
MDD, AUD, and early life adversity studying postmortem
brain using quantitative autoradiography, in the hitherto
largest published sample of postmortem suicides and
controls.

Materials and methods
Subjects
The Division of Molecular Imaging and Neuropathol-

ogy at the New York State Psychiatric Institute was the
source of the brain samples. The Institutional Review
Boards of the appropriate Institutions approved all pro-
cedures. Subjects had postmortem intervals (PMI) of 24 h
or less and died suddenly. The Coroner or Medical
Examiner diagnosed suicides on the basis of evidence of
intent and a self-inflicted fatal act. There were 232 cases
total (Table 1): suicide decedents (n= 83) and non-
suicides (n= 149). The majority of the cases and controls
used have been published elsewhere in smaller, focused
studies4,26–31.
The next-of-kin of 167 subjects (Table 2) agreed to a

psychological autopsy interview32. We fully implemented
the psychological autopsy protocol only after the first
65 suicides and nonsuicides had been collected. Diagnoses
were based on DSM-IV criteria and used the Structured
Clinical Interview for DSM (SCID-I and SCID-II33), and
the Brown-Goodwin Aggression History Scale34. AUD
diagnosis was based on the psychological autopsy and
autopsy findings such as liver cirrhosis combined with a
blood or brain alcohol level of >0.15%. Medication use
within three months of death were recorded and recent
use was confirmed by toxicology. All diagnoses, or lack
thereof for controls, were made at a consensus conference
with experienced psychiatrists, psychologists and other
researchers. In the 232 cases, 65 subjects did not have a
psychological autopsy, but we were able to review charts
and other medical examiner records and arrive at a con-
sensus diagnosis. Ta
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Brain collection
After brain removal, the brainstem was separated by a

transverse cut at the rostral margin of the superior colli-
culus. The cerebellum was removed by severing the
peduncles. The brain was bisected and the right hemi-
cerebrum was cut into 2cm-thick coronal slabs. The slabs
were placed on a glass plate, frozen in liquid Freon 12
(DuPont), placed in labeled plastic bags and transferred to
a −80 °C freezer. Cerebellar tissue was collected for
genetics and brain toxicology. The left hemisphere was
placed in formalin for neuropathology.

Receptor autoradiography
Quantitative in vitro receptor autoradiography was

done on frozen tissue sections as described elsewhere26,27.
A single concentration of ligand was used which was
based on the Kd reported in the literature and verified
previously in our laboratories26,28. In brief, 20 µm sections
were used for [3H]Cyanoimipramine, [3H]8-OH-DPAT
and [3H]Ketanserin binding, to label SERT sites, 5-HT1A

and 5-HT2A receptors, respectively (Fig. 1). Six tissue
sections were used for each assay, three for total binding
and three adjacent sections for non-specific binding.
Sections were preincubated in buffer to remove endo-
genous ligands and incubated with radioligand under
optimal conditions. Nonspecific binding was determined
by incubation with appropriate displacers. Sections were
then washed in buffer (4 °C), dipped in water, rapidly
dried and transferred to a vacuum desiccator until expo-
sure (24 h).
Dried slides were exposed to tritium-sensitive film

(Hyperfilm from Amersham, or MS film from Kodak).
Each film was exposed with tritium standards (American
Radiolabeled Chemicals, Inc.). Films were developed
(Kodak D-19) for 4 min at 17 °C, rinsed briefly, and fixed
(Kodak Rapid Fixer) for 5 min The sections were fixed in
buffered formalin and stained with thionin or cresyl violet.
Autoradiograms were quantified using an image analy-

sis system (MCID, Imaging Research, Inc.). Images of
standards were calibrated to femtomoles of radioligand
per milligram of tissue. Samples of receptor binding were
averaged from three sections to produce one binding
measure for that individual.
(a) [3H]Cyanoimipramine (CN-IMI) binding to

serotonin transporter sites: Total SERT binding was
determined with 0.4 nM 3H-CN-IMI and
nonspecific binding using 10 μM sertraline26.

(b) [3H]8-OH-DPAT binding to 5-HT1A receptors: 5-
HT1A receptors were measured using our
modifications of the protocol of Hoyer et al.35.
Slides were incubated with 2 nM [3H]8-OH-DPAT
and 100 nM sertraline (to block SERT sites).

(c) [3H]-Ketanserin (Ket) binding to 5-HT2A receptors:
Total binding was determined by incubation withTa
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2 nM 3H-Ket, 1 μM prazosin and 1 μM
tetrabenazine.

Statistical analyses
Statistical tests were done using SPSS (Version 24, IBM

Analytics, NY) and R (Version 3.3.2, R Foundation for
Statistical Computing; https://cran.r-project.org).
There were three primary hypotheses: (1) SERT are

reduced in suicides; (2) there are more 5-HT1A receptors
in the PFC in suicide; and, (3) there are more 5-HT2A

receptors in the PFC in suicides. Linear models were used
since the response variables were continuous (scalar)
(SPSS Procedures UNIANOVA, REGRESSION, and T-
TEST). Post hoc tests were performed only when main
factors had a significant interaction with brain region.
Suicide and MDD were fixed factors, brain regions were
assigned as a random factor. All models tested included
age and sex as covariates, and when found to be sig-
nificant, correlation analysis was performed. Statistical
tests were performed on raw values. The three receptors
(SERT, 5-HT1A and 5-HT2A) were examined individually,
and while uncorrected p-values are reported, a
Bonferroni–adjusted significance level of 0.017 was used

to preserve an experiment-wise Type I error rate of 0.05
for the primary analyses.
We sought to determine whether any differences in sui-

cide, MDD, AUD or reported early life adversity (ELA) were
widespread in PFC or anatomically discrete. The Brodmann
areas present at this anatomical level included BA8, BA9,
BA46, BA45, BA47, BA11, BA12, BA24, and BA32.
The primary hypotheses were re-tested in a sensitivity

analysis limited to subjects with psychological autopsy:
Two secondary analyses for each outcome tested whether
the difference of binding in suicides is accounted for by
the MDD or AUD; a third analysis tested whether binding
is associated with aggression or reported early childhood
adversity. These hypotheses were made a priori, but being
secondary, no p-value adjustment was made for multiple
testing other than using the 0.017 significance level to
adjust for the three outcome measures.

Results
Serotonin transporter (SERT)
In nonsuicides (n= 143), SERT binding ranged from

5.9 ± 2.1 fmol/mg tissue in BA8 to 23.9 ± 12.0 fmol/mg
tissue in BA24 (mean ± SD, Table 3).

³H-8-OH-DPAT niresnateK-H³enimarpimionayC-H³

Total Binding

Nonspecific Binding

Specific Binding

250

83

33

17

2

7

0

fmol/mg tissue

Fig. 1 Representative autoradiograms of receptor binding of [3H]-Cyanoimipramine to the serotonin transporter (left), [3H]-8-OH-DPAT to
the 5-HT1A receptor (center) and [3H]-Ketanserin to the 5-HT2A receptor (right). The autoradiograms are from sections cut from the right
hemisphere of a representative nonpsychiatric control. The upper row has images of total binding, the middle row is of nonspecific binding and the
lower row has subtracted images of specific binding. See methods for displacers and assay conditions. The images were calibrated to fmol/mg tissue
using radioactivity standards and color-mapped to a single scale on the right
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Suicide
Including all cases, and adjusting for sex and age, SERT

binding was lower in suicides (F= 15.367, df= 1,9, p=

0.004). There was no interaction between suicide and
Brodmann area (F= 0.828, df= 8,1665, p= 0.578) indi-
cating the effect of suicide was comparable in all areas.
Limiting the cases to only those with psychological
autopsy, the effect of suicide remained significant (F=
11.464, df= 1,9, p= 0.008, Fig. 2a).

Major depressive disorder
There was lower SERT binding with MDD (F= 9.476,

df= 1,13, p= 0.009), and the lower binding was found in
all brain regions (region by depression interaction F=
0.378, df= 8,8, p= 0.878). In the model with suicide and
MDD, the effect of suicide was not significant (F= 5.147,
df= 1,9, p= 0.050) suggesting that lower SERT in suicide
is attributable, at least in part, to the MDD diagnosis
(Table 3, Fig. 2a).

Alcohol use disorder
There were cases with AUD in both nonsuicides (n= 53

with AUD) and suicides (n= 20 with AUD). The AUD
diagnosis was associated with more SERT (Fig. 2b, Table
4; F= 8.135, df= 1,16, p= 0.012); the AUD interaction
with brain region was not significant (F= 0.671, df= 8,10,
p= 0.708) indicating the effect of AUD was comparable in
all areas. In the same model, the suicide effect adjusted for
AUD was not significant (F= 2.972, df= 1,10, p= 0.117),
suggesting the AUD effect is in nonsuicides (Fig. 2b).
Similarly, with MDD in the model, the diagnosis of MDD
was also no longer significant (F= 3.418, df= 1,23, p=
0.078). This may reflect the lower rate of MDD in the
alcoholics in our sample. In nonalcoholics, 34 of 40 sui-
cides had MDD. In alcoholics, 14 of 58 had MDD.

Adversity
When childhood adversity was included in the model

along with suicide, there were no SERT differences related
to childhood adversity (F= 1.907, df= 1,9, p= 0.20, Table
5). The suicide effect of less SERT binding was significant
(p= 0.006) and there was a suicide*adversity interaction
(p= 0.007) with adversity associated with more SERT
binding, but only in non-suicides (Fig. 2c). The interaction
term with Brodmann area was significant with the dif-
ference localized to BA24.

Sex, age, aggression
Both sex and age were significant in every statistical

model examined. Females (n= 49) had less SERT binding
than males (n= 171, b=−0.33, t=−4.27, df= 216, p <
0.0001) in all BA areas, except BA24 (post hoc test, p=
0.069). SERT binding declined with age (t=−3.04, df=
215, p= 0.0027), and the effect was uniform across brain
regions (age by BA interaction p > 0.05). SERT positively
correlated with aggression in BA9 (r= 0.193, p= 0.0220),
BA46 (r= 0.270, p= 0.0020), BA45 (r= 0.179, p=
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Fig. 2 Serotonin transporter (SERT) binding in the prefrontal
cortex. A suicide and major depressive disorder (MDD), B alcohol use
disorder and C early life adversity (ELA). SERT sites were labeled with
[3H]-Cyanoimipramine. Note that: SERT is less in depressed suicide
decedents and with MDD. With AUD there is more SERT but only in
suicides, and there is more in ELA but only in nonsuicides. Values are
expressed as mean ± SEM
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0.0350), BA11 (r= 0.173, p= 0.0460) and BA32 (r=
0.198, p= 0.022) in cases overall.

5-HT1A receptors
In nonsuicides (n= 143), 5-HT1A binding ranged from

13.9 ± 4.8 fmol/mg tissue in BA8 to 19.5 ± 7.2 fmol/mg
tissue in BA24 (Table 3).

Suicide
There was no significant effect of suicide (F= 0.163, df

= 1,10, p= 0.695) and the suicide by brain region inter-
action term was not significant (F= 0.270, df= 8,1714, p
= 0.976). However, in the sensitivity analysis limited to
cases with psychological autopsy data, suicide was sig-
nificant with more 5-HT1A binding (F= 60.049, df= 1,14,
p < 0.001) and the suicide by brain region interaction was
not significant (F= 0.320, df= 8,1179, p= 0.959, Fig. 3a).

Major depressive disorder
5-HT1A binding was not different in MDD (F= 2.148,

df= 1,12, p= 0.168) and there was no significant inter-
action between suicide and MDD (F= 2.680, df= 1,12, p
= 0.128) or interaction between MDD and Brodmann
area (F= 0.909, df= 8,8, p= 0.552, Table 3, Fig. 3a).

Alcohol use disorder
With AUD in the model with suicide, MDD and sex,

AUD was associated with more 5-HT1A binding (F=
35.703, df= 1,20, p < 0.001) and the interaction with brain
region was not significant (F= 1.852, df= 8,2, p= 0.397,
Fig. 3b, Table 4). The effect of suicide was still significant
(F= 18.054, df= 1,12, p= 0.001) and there was a sig-
nificant interaction between suicide and AUD (F=
16.562, df= 1,19, p < 0.001) with AUD associated with
more 5-HT1A binding but only in suicides. There was no
effect of MDD (p= 0.696) and there was no interaction
between suicide and MDD (p= 0.087), but there was an
interaction between MDD and AUD (F= 53.894, df=
1,18, p < 0.001) with more 5-HT1A binding only in MDD
cases with AUD.

Adversity
With adversity in the model, suicide was associated with

higher 5-HT1A binding (F= 27.697, df= 1,14, p < 0.001),
adversity was not significant (F= 0.619, df = 1,28, p=
0.438, Table 5). There was no interaction between suicide
and Brodmann area (F= 0.319, df= 8,8, p= 0.937). There
was an interaction between suicide and adversity (F=
14.133, df= 1,9, p= 0.004) with adversity associated with
more 5-HT1A binding, but only in non-suicides (Fig. 3c).
There was no interaction between adversity and brain
region (F= 0.273, df= 8,8, p= 0.958).Ta
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Sex, age, aggression
Sex was significant in select models particularly those

examining the effect of suicide and AUD. 5-HT1A binding
was negatively correlated with age in BA9, BA46 and
BA32 (Pearson correlation values −0.141, −0.147,
−0.151, p values 0.037, 0.037 and 0.029 respectively). 5-
HT1A binding correlated positively with lifetime aggres-
sion in BA9 (r= .299, p < 0.001), BA46 r= .259, p=
0.003), BA45 (r= .194, p= 0.023), BA47 (r= .258, p=
0.002), BA11 (r= .212, p= 0.014), BA24 (r= .248, p=
0.036) and BA32 (r= .179, p= 0.036).

5-HT2A receptors
Suicide
There was no suicide effect detected overall (F= 2.139,

df= 1,9, p= 0.176) and no suicide by region interaction
(F= 0.477, df= 8,1687, p= 0.873). However, in the sub-
group with psychological autopsies, there was more 5-
HT2A binding in suicides (F= 41.226, df= 1,12, p < 0.001,
Table 3). There was no suicide by region interaction (F=
0.386, df= 8,1193, p= 0.929) suggesting the greater
amount of binding in suicide was widespread and the
diagnosis of cases was important (Fig. 4a).

Major depressive disorder
With MDD in the model, higher 5-HT2A binding was

still significant with suicide (F= 18.695, df= 1,30, p <
0.001) and there was no suicide:Brodmann area interac-
tion (F= 0.510, df= 8,8, p= 0.820). There was no sig-
nificant effect of MDD (F= 2.570, df= 1,39, p= 0.117)
and no MDD by brain region interaction (F= 0.361, df=
8,8, p= 0.914). This suggests that the diagnosis of MDD
does not explain higher 5-HT2A binding in suicides (Fig.
4a).

Alcohol use disorder
There was no significant association between AUD and

5-HT2A binding (F= 2.302, df= 1,17, p= 0.148, Table 4);
there was no interaction between AUD and Brodmann
area on binding (F= 0.206, df= 8,1193, p= 0.990). With
AUD in the model with suicide and MDD, the effect of
suicide remained and MDD became significant (F= 17.59,
df= 1,313, p < 0.001), and there was an interaction
between AUD and suicide (F= 31.427, df= 1,130, p <
0.001) with more 5-HT2A binding in suicides with AUD
(Fig. 4b), but not in suicides without AUD. There was no
interaction between AUD and MDD (F= 0.687, df= 1,33,
p= 0.413).

Adversity
Adversity was associated with more 5-HT2A binding (F

= 25.484, df= 1,78, p < 0.001); the brain region by
adversity interaction term was not significant (F= 0.743,
df= 8,8, p= 0.658, Table 5). With adversity and suicide in
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Fig. 3 5-HT1A receptor binding in the prefrontal cortex. A suicide
and major depressive disorder (MDD), B alcohol use disorder and C
early life adversity (ELA). 5-HT1A receptors were labeled with [3H]-8-
OH-DPAT. There is no data for BA8 or BA24 for MDD nonsuicides
because there was only one case with these regions. Note: 5-HT1A
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mean ± SEM

Underwood et al. Translational Psychiatry           (2018) 8:279 Page 9 of 15



the model, higher 5-HT2A binding remained associated
with suicide (F= 37.658, df = 1,12, p < 0.001). There was
an interaction between suicide and childhood adversity (F
= 201.938, df= 1,21, p < 0.001) such that higher 5-HT2A

binding was in suicides with adversity regardless of
Brodmann area examined (Fig. 4c).

Sex, age, aggression
5-HT2A receptor binding negatively correlated with age

in all regions (r=−0.227 to −0.441, p= 2.43 × 10−9 to
7.9 × 10−12). Females (n= 48) had lower 5-HT2A binding
than males (n= 175) (b=−0.14, t=−2.32, df= 218, p=
0.0210). 5-HT2A binding correlated positively with
aggression in all brain regions (r= 0.270–0.396, p < 0.05)
except BA24 (r= 0.199, p= 0.085).

Discussion
The main findings in the present study were: (1) SERT

binding was lower in suicides independent of sex, but
dependent on MDD diagnosis; higher SERT binding is
associated with AUD; (2) 5-HT1A binding was greater in
suicides, independent of MDD, while AUD was associated
with higher 5-HT1A binding but only in suicides; (3) 5-
HT2A binding was greater in suicides only when
accounting for the effects of MDD and AUD in the model.
(4) Reported childhood adversity was associated with
higher SERT, 5-HT1A binding, and 5-HT2A binding.
These findings illustrate that the ability to detect differ-
ences in SERT, 5-HT1A, and 5-HT2A binding in the brain
between cases with mood disorders and dying by suicide
is dependent on Axis I diagnosis and reported childhood
adversity, therein demonstrating the importance of clin-
ical characterization of both cases and controls under
investigation. Different findings in alcoholism from
depression and suicide indicate distinct serotonin system
pathophysiology.

Serotonin transporter
We previously found lower SERT binding in suicides in

ventral PFC26,27,29. We confirm and extend this, finding
the lower SERT is widespread and appears associated
more with MDD than with suicide. Lower SERT in sui-
cides is reported by some investigators, but not all
(see12,36,37 for review). Our current study suggests one
factor contributing to the discrepancy between studies is
the proportion of MDD cases in the suicide group. Ima-
ging studies in nonfatal attempters also report less
SERT22,38–40. Interestingly, Miller et al.20 reported less
SERT in depressed suicide attempters but not depressed
nonattempters compared to controls, raising the possibi-
lity that SERT is related more to suicidal behavior than to
depression. We observed a p-value of 0.053 which did not
reach statistical significance but arguably is suggestive of
an effect of suicide. Our findings here regarding suicide
and MDD suggest that low SERT throughout the PFC is
related to MDD more than to suicide, and the suicide
effect may be the result of a more pronounced difference
in the ventral PFC. Hypofunction of the ventral PFC may
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Fig. 4 5-HT2A receptor binding in the prefrontal cortex. A suicide
and major depressive disorder (MDD), B alcohol use disorder and C
early life adversity (ELA). 5-HT2A receptors were labeled with [3H]-
Ketanserin. Note that: there is more 5-HT2A binding in suicides but no
difference with MDD; there is more binding in AUD and ELA, but only
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lead to increased suicide risk due to the inability to
restrain the self-destructive act.
In AUD, we found more SERT binding, but others

report lower SERT in cerebral cortex41. No difference in
alcoholics or alcoholic-suicides in SERT mRNA was
found in BA9 or BA2442, but there was a negative asso-
ciation between SERT mRNA in BA24 and anxiety
symptoms. In in vivo imaging studies, alcoholics had less
[11C]McN5652 binding to the SERT43. Others44,45 did
not find any difference in [11C]DASB binding to the
SERT in alcoholics. Comorbidity with mood disorders
may contribute to the inconsistent findings and future
studies of AUD should consider effects of comorbid MDD
since the two diagnoses may have opposite effects on
binding.

5-HT1A receptors
We observed more 5-HT1A binding in suicides, but only

in cases that underwent psychological autopsy. We did
not detect a difference in 5-HT1A binding in MDD, but we
found more 5-HT1A binding associated with AUD. Sev-
eral investigators, though not all, report higher 5-HT1A

binding in depressed suicides (for review see ref. 36). We
previously reported26,27 higher 3H-8-OH-DPAT binding
in suicide that was anatomically restricted to ventrolateral
prefrontal cortex, as were the increases reported by oth-
ers46,47. Parsey et al.48 found that MDD patients whose
depression did not remit had higher 5-HT1A binding and
also an over-representation of GG genotype, suggesting
that genotype may also affect the level of receptor binding,
symptom progression and treatment response. Negative
reports did not examine binding in anatomically discrete
areas or did not examine ventral prefrontal cortex49–52.
The lack of agreement about elevated 5-HT1A binding
raises the possibility that the differences associated with
suicide are anatomically discrete. The radioligand used
may also affect receptor binding since antagonist but not
agonist binding is decreased in MDD, suggesting binding
differences may reflect the G-protein coupled or uncou-
pled state of the receptor53. Lower 5-HT1A receptor
binding is reported in the cerebral cortex in alco-
holics4,49,54. Lastly, we did not find differences in 5-HT1A

binding when all cases and controls were examined
together, greater 5-HT1A binding in suicides was only
found when restricting the analysis to only those cases
diagnosed by psychological autopsy. We believe this
demonstrates how cases without psychological autopsy
can bias, obscure or otherwise influence the outcome of
an analysis to the point of affecting the conclusion
reached.
In vivo PET imaging studies report higher 5-HT1A

binding in depressed MDD subjects and remitted MDD;55

others find less binding56–58. The different results may be
due to the method of estimating binding55. We observed

more 5-HT1A binding associated with childhood adversity
in nonsuicides, and a rodent study of stress in infants
finds increased gene expression59.
We find more 5-HT1A binding with AUD, as did

Thompson et al.42 who found higher 5-HT1A mRNA in
BA9 in AUD but not AUD-suicides and not in BA24.
Martinez and colleagues did not find any differences in 5-
HT1A density in humans with alcohol dependence45.
Taken together, the findings suggest brain region is
important as is the potential for the presence of alcohol
status to obscure effects of suicide. Genomic studies may
be helpful for understanding 5HT1A regulation in suicide,
MDD and AUD.

5-HT2A receptors
We found higher 5-HT2A binding in suicide, but only in

cases with psychological autopsy. Other studies report
higher28,60,61, lower62 and no difference52 in 5-HT2A

binding in suicide. Both higher and lower binding are also
reported in MDD in vivo (see ref. 15 for review). We
detected more 5-HT2A binding in AUD in the present
study but not previously31. No difference in 5-HT2A

binding was reported in AUD by others63. Most studies
did not separate effects of depression or alcoholism from
suicide. Therefore, we extend previous observations by
finding that 5-HT2A binding is greater in suicide alco-
holics and in suicides with ELA but is not increased with
MDD. Another possible explanation for the discrepancies
is the use of an agonist versus antagonist ligand; higher
binding in suicide was detected using the agonist LSD28,64,
while the antagonist Ketanserin detected lower or no
change in suicide. Another possible explanation for the
discrepancy is the ligand specificity. It is known that
ketanserin has affinity for tetrabenazine receptors, alpha1
adrenergic receptors and histamine receptors. We
blocked for these receptors during the incubations. Some
of the findings in the literature, including our own, were
obtained by incubation of tissue using 125I-LSD28. A
problem with 125I-labeled ligands is that differences in
tissue thickness result in a darker image and higher
measured receptor density. While this may pose less of a
problem for small pieces of tissue, when sectioning entire
hemispheres, inevitably there will be parts of the tissue
that are thicker producing a darker image. We found a
positive correlation between 5-HT2A binding and
aggression raising the possibility that increased 5-HT2A

binding in suicide is associated with the increased
aggression commonly associated with suicide behavior30.
Alternatively, the discrepant findings may be due to
childhood adversity exposure. This not only implies a
relationship between the 5-HT2A receptor and brain
development and/or the development of AUD, but also
demonstrates the importance of the diagnostic composi-
tion of the sample under study.
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Early life adversity (ELA)
We found that reported ELA was associated with more

SERT, 5-HT1A and 5-HT2A receptor binding. Reported
ELA was associated with lower SERT in vivo in MDD65.
Childhood adversity was not associated with 5-HT1A

receptor density16, and early maternal separation, an
animal model of childhood adversity in humans, was not
associated with difference in 5-HT1A mRNA gene
expression in rats66. In peer-reared rhesus monkeys,
another animal model of childhood adversity, 5-HT1A

receptor binding was less in father-reared compared with
mother-reared animals, but greater in peer-reared
females67.
Gene-environment interactions are increasingly found

between early life stress and risk for psychiatric illness,
including MDD (see ref. 68 for review) and suicide risk
(see ref. 69). An interaction is widely reported between
lower expressing alleles of the SERT gene promotor var-
iant (5-HTTLPR), stressful early life events and increased
risk for MDD70,71 and suicide72. Interestingly, it has been
found that the S allele and the early adversity effects can
be additive suggesting persistent changes in SERT
expression may relate to altered serotonergic neuro-
transmission levels which could bring about increased
disease risk73. No gene-environment interaction is
reported between the 5-HT1A

74 or 5-HT2A
75 receptor

gene polymorphisms and MDD and childhood stress.
Alternatively, innate receptor binding level may mitigate
the effects of gene x environment interactions.

Sex
We found females have less SERT and 5-HT2A binding

than males. In contrast, sex was not a significant deter-
minant in most of the models in which we examined the
5-HT1A receptor. Males and females differ in their pre-
valence in psychiatric illnesses (see refs. 68,76–78) and in
serotonergic receptor densities79,80. We previously
reported sex differences in SERT and 5-HT1A

26. In vivo
receptor binding studies as measured by PET, report that
women have more 5-HT1A receptors81 and fewer SERT80

and 5-HT2A receptors82 compared with men. Others do
not find sex differences49,83,84.

Conclusions
Reduced serotonergic neurotransmission has been a

long-standing hypothesis in the etiology of suicide and
mood disorders. The SERT is located on axons and axon
terminals and are an indication of serotonergic innerva-
tion and intrasynaptic serotonin levels85. Less SERT in
depressed suicides therefore suggests less innervation or
greater SERT internalization secondary to less intra-
synaptic 5-HT. 5-HT1A and 5-HT2A receptors in the PFC
are located predominantly on cortical interneurons. We
previously reported more 5-HT1A and 5-HT2A receptor

binding in the PFC of depressed suicides, but only when
we corrected for the density of cortical interneurons86. 5-
HT1A receptor activation results in hyperpolarization and
a decrease in neuronal activity in PFC87 on pyramidal
neurons and cortical interneurons.
The causes of receptor differences in suicide is unclear.

Evidence for receptor up- and down- regulation comes
from several sources. Serotonin receptor down regulation
has long been suggested as a mechanism of action for
antidepressant drugs (see refs. 88–90). By the converse, in
classic theories of receptor regulation, reduced 5-HT
agonism or long term receptor blockade may lead to up-
regulation of postsynaptic receptors, but the mechanisms
of receptor regulation are complicated, differ by receptor
and even by brain region for the same receptor and are
not addressed in the current study (for reviews see
refs. 90–94).
An increase in 5-HT1A receptors in PFC suggests an

inhibition of excitatory output from cortical regions that
mediate executive function and behavioral restraint. We
hypothesize that reduced cortical activity may be a top-
down cause of a reduction in restraint and increase in the
risk for suicide behavior. Cognitive testing has been used
to find that suicide attempters have worse inhibitory
control in executive functioning skills;95 see ref. 96 for
review). Neuroimaging studies of brain structure report
prefrontal deficits in suicide behavior including impaired
decision making and social assessment97,98. We now
report altered 5-HT receptors in the same prefrontal
cortex regions. Multimodal imaging studies of structure
and connectivity in suicide attempters1, such as those
used in connectomic studies99,100, support this model.

Strengths and limitations
In the present study we could compare effects across

brain regions related to MDD, suicide, AUD, and child-
hood adversity and consider the impact of age and sex
because we were able to draw upon the largest known
collection of human postmortem cases with quantitative
receptor autoradiography and psychological autopsy data.
Our findings demonstrate the importance of clinical
characterization of all cases, including the “controls”. We
and others have shown how lack of reproducible findings
in postmortem studies of suicide can be attributed to
effects of antemortem factors, PMI, toxicology, neuro-
pathology, clinical diagnosis, brain region identification
and even freezer storage time13,101–103. The larger group
size studied here, not only provided more statistical power
for detecting differences, it accounted for potential
receptor binding effects associated with comorbid diag-
noses by using psychological autopsy to identify the pre-
sence of any comorbid illnesses and then including the
diagnosis in the statistical model of the outcome measure.
Effects detected in the sensitivity analysis, that were not
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detected in the analysis of the larger sample, which
included cases that had not undergone psychological
autopsy, further illustrates that undetected diagnoses can
introduce bias in results that can obscure detection of
differences between groups. The inclusion of alcoholics
and subjects with other comorbid diagnoses provided the
opportunity to begin to understand how additional illness
burden can change the associated brain receptors, but a
more clinically homogeneous sample increased the
detectability of receptor differences. Regardless of the
reliability and validity of the psychological autopsy pro-
cedure, it is not infallible, and the possibility remains that
there are cases, for example suffering from an MDD
episode at the time of death, that were not diagnosed or
detected whether or not the psychological autopsy was
performed, and these types of cases could affect the out-
come. Postmortem studies have the inherent limitation of
being cross-sectional and cannot address cause and effect
relationships. Another limitation is not knowing the cel-
lular sources giving rise to the receptors being measured
as is coming through laser capture microdissection and
cellular fractionation. Receptor binding is an endpoint
measure and does nothing to address whether differences
reflect changes in transcription, translation or post-
translational modification. Likewise, receptor expression
is under genetic and epigenetic control and none of this is
examined here, nor can it be.
Future work should examine SERT, 5HT1A, and 5HT2A

binding in nonfatal suicide attempts in mood disorders
and other diagnoses, and consider the effects of reported
childhood adversity to determine the extent that any
differences are part of these diagnostic entities or the
diathesis for suicidal behavior. Indeed, there are several
reports in the literature examining clinical similarities and
differences between suicide attempters and com-
pleters104–106, and neurochemical similarities and differ-
ences107–109. The presence of differences in attempters to
completers will suggest the differences are not only pre-
sent antemortem, but will also be informative as to
whether there is a continuum of differences in the brain in
suicide and completers represent the most extreme form
of the behavior. Future potential therapeutic approaches
to the prevention of suicide, the treatment of MDD or
AUD and reversing effects of childhood adversity, could
then be developed to target these molecules.
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