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ABSTRACT Improving fruit quality is an important but challenging breeding goal in winter squash. Squash
breeding in general is resource-intensive, especially in terms of space, and the biology of squash makes it
difficult to practice selection on both parents. These restrictions translate to smaller breeding populations
and limited use of greenhouse generations, which in turn, limit genetic gain per breeding cycle and increases
cycle length. Genomic selection is a promising technology for improving breeding efficiency; yet, few studies
have explored its use in horticultural crops. We present results demonstrating the predictive ability of whole-
genomemodels for fruit quality traits. Predictive abilities for quality traits were low tomoderate, but sufficient
for implementation. To test the use of genomic selection for improving fruit quality, we conducted three
rounds of genomic recurrent selection in a butternut squash (Cucurbita moschata) population. Selections
were based on a fruit quality index derived from a multi-trait genomic selection model. Remnant seed from
selected populations was used to assess realized gain from selection. Analysis revealed significant improve-
ment in fruit quality index value and changes in correlated traits. This study is one of the first empirical studies
to evaluate gain from a multi-trait genomic selection model in a resource-limited horticultural crop.
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All squash belong to the Cucurbitaceae family, which contains a
number of small-genome, vining crops primarily grown for their fruit
and seed (Ferriol and Picó 2008; Sun et al. 2017). Five squash species
are recognized as domesticated: Cucurbita moschata, Curcurbita
pepo, Cucurbita maxima, Cucurbita argyrosperma, and Cucurbita
ficifolia (Ferriol and Picó 2008). Squash can be classified as either
winter or summer squash depending on the stage of maturity at
which they are consumed; summer squash are consumed immature,
whereas winter squash are consumed at physiological maturity or

later (Loy 2004). Improving fruit quality is a major breeding goal in
winter squash (Paris 1994; Loy 2012). Butternut squash is a popular
winter squash market class from the species C. moschata, known for
its high fruit quality (Loy 2012). The C. moschata genome has been
published and quantitative trait loci (QTL) have been identified for a
number of important fruit quality traits including carotenoid and free
sugar content (Montero-Pau et al. 2017; Zhong et al. 2017). QTL
mapping has led to a better understanding of fruit quality genetic
variation in squash; however, using only markers associated with
mapped QTL does not provide a practical means of improving
quantitative traits in breeding programs (Bernardo and Yu 2007).
Methods that can leverage all available marker data will likely be more
effective at improving complex traits in squash.

According to the infintesimal model, quantitative traits are con-
ditioned by many loci of small effect (Falconer and Mackay 1996).
Small-effect QTL are difficult and expensive to map, are usually
population-specific, and the effects of QTL that manage to pass
significance thresholds are often overestimated (Beavis effect)
(Bernardo 2016; Xu 2003). Advances in DNA sequencing technol-
ogies make high-density, affordable marker data a reality and have
spurred innovation in marker-assisted breeding (Buckler et al. 2016).
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Genomic selection (GS) has emerged as a promising method for
leveraging these data for the improvement of quantitative traits. In
GS, whole-genome markers are used to capture the effects of all
QTL (Meuwissen et al. 2001). Marker effects are estimated using
statistical modeling in a training population, i.e., a population that
is phenotyped, genotyped and closely related to breeding material.
After model training, the breeding value (BV) of selection can-
didates can be estimated from marker data alone (Meuwissen et al.
2013). BVs estimated from genomic selection models are referred
to as genomic estimated breeding values (GEBVs) to distinguish
them from BVs estimated using other methods. Unlike earlier
marker-based approaches, GS need not employ significance test-
ing or trait mapping.

Genomic Best Linear Unbiased Prediction (GBLUP) is one of the
most widely-used statistical modeling approaches for GS (Heslot et al.
2015). GBLUP utilizes a mixed linear model (MLM), commonly
represented in matrix notation as y ¼ Xbþ Zmþ e, to obtain
GEBVs. In this framework, GEBVs are modeled as random effects
(m) that are multivariate normally distributed m � Nð0;Ks2

mÞ
(Endelman 2011). The matrix K is a marker-based relationship
matrix, which provides an estimate of the relationship between all
individuals included in the analysis and enables prediction through
information sharing among relatives (Habier et al. 2007). There are
many advantages to GBLUP including computational efficiency and
its compatibility with existing MLM methodology and software
(Wang et al. 2018; Mrode 2014). Notably, GBLUP models are easily
extended from using information from single traits (univariate) to
integrating multiple traits (multivariate) (Jia and Jannink 2012). This
is appealing because improving multiple traits is usually necessary to
meet breeding goals (Hallauer and Miranda 1981).

Multi-trait selection is complicated by the fact that traits are rarely
independent and frequently differ in economic importance (Smith
1936). One of the most efficient methods for multi-trait selection is
index selection (Hazel and Lush 1942). In index selection, an equation
is used to combine information from multiple traits, yielding a single
value for selection (Baker 1986). Many different indices have been
suggested including indices based on economic value, genetic cor-
relations, phenotypic correlations, and improving some traits while
restricting movement in other traits (Baker 1986). The Smith-Hazel
index draws on all major sources of information: economic, pheno-
typic, and genetic (Hazel 1943). Multi-trait GBLUP (MT-GBLUP)
simplifies the use of comprehensive indices, such as the Smith-Hazel
index, as the optimal weights for the GEBVs obtained from
MT-GBLUP are breeding program-defined economic weights
(Mrode 2014; Okeke et al. 2017; Jia and Jannink 2012).

Winter squash are amenable to many breeding methods, but most
are difficult to implement due to space restrictions (Loy 2012).
Individual squash plants can reach several meters in radius, making
large populations infeasible. On top of this, fruit quality traits cannot
be accurately phenotyped until long after flowering—limiting selec-
tion to the female parent in most scenarios (Loy 2004). Further, it can
be difficult to both obtain accurate fruit quality estimates and perform
controlled pollination, as fruit culling is practiced until a successful
pollination is achieved. This reduces the number of fruit that can be
used for fruit quality estimation and distorts yield data. These
restrictions limit breeding population size, the use of greenhouse
generations, the accuracy of selection, and, ultimately, genetic gain.
GS could potentially disburden the improvement of fruit quality in
squash by enabling selection prior to flowering, and thus, selection on
both parents. With GS it would also be possible to screen hundreds of
seedlings for fruit quality traits in a greenhouse, which is impossible

with traditional methods. This would allow two cycles of selection per
year: one in the field and one in the greenhouse. Simulation and
empirical selection studies have demonstrated the superiority of GS
over other methods for short-term gain in quantitative traits in cereal
crop species (Bernardo and Yu 2007; Beyene et al. 2015; Massman
et al. 2013; Combs and Bernardo 2013; Rutkoski et al. 2015).
However, few studies have explored the use of GS for improving
resource-limited horticultural crops, such as winter squash.

GS presents an attractive alternative for improving squash fruit
quality. Few studies have explored the use of whole-genome pre-
diction in horticultural systems (Wu et al. 2019; Würschum et al.
2013; Muranty et al. 2015; Iwata et al. 2013); even fewer have
considered the impact of selecting on multiple traits simultaneously
(Yamamoto et al. 2016; Covarrubias-Pazaran et al. 2018), and, to our
knowledge, there have been no published GS studies involving
multiple cycles of selection in horticultural crops. In this study we
set out to evaluate whole genome models for an array of fruit traits,
estimate important genetic and phenotypic parameters, and deter-
mine the impact of several rounds of GS on key fruit quality traits in a
breeding population.

MATERIALS AND METHODS

Genetic material
The base population was formed by crossing two Cornell pureline
cultivars, Honeynut and Bugle (Hultengren et al. 2016). The resulting
F1 was self pollinated to form the F2 generation. A population of
around 60 F2 plants was grown in a greenhouse during the winter of
2014 and plants were randomly mated using at least three randomly
selected male flowers to pollinate each fruit. Resulting seed was
bulked, taking equal amounts from each half-sib family, and used
to form the base population (see Figure 1). The base population will
be referred to as the cycle 0 population (C0), and selection popula-
tions are numbered sequentially (C1, C2, C3 etc.). A genotyped and
phenotyped population derived from the same cross as the base
population, referred to as the test population (T1), was also used. The
T1 population was originally developed for use in a separate breeding
experiment that was not conducted, and data from this population
were included in this study solely for cross validation and parameter
estimation as described in subsequent sections.

Genotypic data
Genomic DNA was extracted from young leaf tissue of selection
candidates at first true leaf stage using the Qiagen DNeasy 96 Plant
Kit (Qiagen, Valencia, CA, USA). Genotyping-by-sequencing (GBS)
libraries were prepared with ApeKI, following a GBS protocol
optimized for the squash genome (Holdsworth et al. 2016). The base
population was genotyped in 2014 by preparing two 96-plex libraries
and sequencing on two lanes of the Illumina HiSeq 2500 at the Weill
Cornell Medical College Genomics Facility. In subsequent genera-
tions, 192-plex libraries were prepared by the University ofWisconsin
Madison Biotechnology Center DNA Sequencing Facility and se-
quenced in one lane of the NextSeq 500 at the Cornell University
Genomics Facility. Raw sequencing data were processed using the
TASSEL-GBS pipeline (Glaubitz et al. 2014). SNP calling and filtering
procedures varied depending on available resources and purpose, as
described below.

SNP calling for selection was facilitated by a draft, pre-publication
version of the C. moschata genome (Sun et al. 2017). A custom
Python script was used to concatenate small scaffolds together to
form a psuedomolecule for alignment. The first 19 largest scaffolds in
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the draft genome were kept as is and remaining scaffolds were
concatenated with a padding of 80 “N”s to prevent read alignments
to artificially adjacent segments. SNPs were then filtered using
TASSEL (Bradbury et al. 2007) and VCFtools (Danecek et al.
2011) according to the following criteria: minor allele frequency
(MAF) over 0.05, biallelic, and present in 80% or more of the selection
candidates. Genotypes that were not supported by a read depth of at
least two were set to missing. Individuals missing more than 40% of
the markers were discarded. Marker data were transformed to a
dosage matrix using either the ”–012” argument in VCFtools or using
the atcg1234() function in the ”Sommer” R package (Covarrubias-
Pazaran 2016). The ”rrBLUP” R package (Endelman 2011) function
A.mat() was used with the ”EM” method for marker imputation and
to convert the dosage matrix to an additive genetic relationship
matrix.

SNP calling for genetic parameter estimation and cross-validation
was achieved using all available data from the selection experi-
ment, the latest version of the published C. moschata genome (Sun
et al. 2017), and available sequencing information from the
parents of the population. SNPs were filtered using similar criteria
as those used for the selection experiment, except minimium read
depth was set to seven, the depth at which TASSEL requires two
reads to call a heterozygote, and sequencing information from the
parents was incorporated. Only SNPs that were homozygous
within parents but different between the parents, had 50% missing
data or less, maximum heterozygousity less then 90%, and MAF
$ 0:05 were retained. SNP sets were merged on common markers
for each cross validation scenario/parameter estimation and Link-
Impute (Money et al. 2015), as implemented by the TASSEL
”LDKNNiImputationHetV2Plugin” plugin, was used to impute
missing data after removing indels. After imputation, data were
re-filtered for less than 20% missing data, $ 0:05 MAF, and
individuals missing more than 40% of data were removed. Any
missing data left after this process were mean imputed. The
relationship matrix was obtained using the same method used for
selection.

Phenotypic data
Plants were hand-harvested by placing all fruit from a plant into a
labeled mesh bag. Fruit were then cured under standard conditions.
Barcodes were used to keep track of single-fruit data. Each fruit was

weighed and then sliced lengthwise to facilitate measurement of
length, width, and flesh color. Length (Len) and width (Wd) were
measured using a barcoded ruler (Mazourek 2017). Color of fruit
flesh was determined using a Konica Minolta CR-400 Chromo Meter
colorimeter with standard illuminant set to D65 and a 2∘standard
observer. The instrument was calibrated at the start of each day using
a white point calibration tile, and raw XYZ colorspace values resulting
from the average of three measurements were converted to CIE L� a�

b� color space values. Slices of tissue were sampled from the neck
portion of the fruit for percent dry matter (%DM) determination and
Brix (∘Bx) measurement. For %DM, approximately fifteen to thirty
grams of tissue was weighed and then re-weighed after drying for
about 24 hr in an Excalibur 9-tray food dehydrator set to 155∘F.
Another slice was frozen in a plastic bag at -20 ∘C overnight, thawed
the next day, and then squeeze-juiced for ∘Bx determination using an
ATAGO PAL-1 pocket refractometer. Plant yield was measured in
three different ways: number of fruit per plant (FrtCt), total weight of
all fruit per plant (TotalWt), and total weight adjusted for average
percent dry matter (TotalDM).

Breeding scheme and evaluation
Four sequential rounds of selection were practiced from C0: one
round of phenotypic selection, followed by three rounds of GS using
an index derived from an MT-GBLUP model. The various field sites
are described in Table 1. Population size was around 200 plants in
each generation. The breeding scheme is shown in Figure 1, and each
round of selection is described below. GS models were trained at two
different points. C0 was used to train the initial model for selection
(M1), and data from C2 was used to train a new model (M2) for the
last round of selection.

Selection from Cycle 0 Selections from Cycle 0 were based on
single-plant phenotypes using criteria commonly employed in our
squash breeding field program. Briefly, twenty plants, corresponding
to 10% of the population, were picked such that they were in the top
20% for ∘Bx, % DM, and a� color value but not in the bottom 50% for
yield.

Selection in Cycle 1 Equal amounts of seed from plants pheno-
typically selected from C0 were planted in 72-cell trays in the
greenhouse and genotyped with GBS at the first true leaf stage,these
plants constituted the C1 population. The top 10% of the C1
population was then selected based on an index value calculated
from the MT-GBLUP model. Selected seedlings were transplanted to
larger pots and were randomly mated to produce the C2 seed. To
achieve random mating in the greenhouse, all male flowers were
picked on the mornings that female flowers were open. Each female
flower was then pollinated by 4-5 random male flowers by dabbing
pollen from males on different sectors of the stigma.

Selection in Cycles 2 & 3 As in selection in C1, equal amounts of
seed were sampled from each half-sib family and planted in 72-cell
trays to create the C3 population. In contrast to C1, all seedlings were
planted in the field after tissue sampling to facilitate retraining of the
initial GS model, and the intention was to obtain GEBVs prior to the
flowering using M1, so that genomic selection could be conducted
before flowering. However, a lag in genotyping prevented selections
from being made in time for flowering. To allow selection on both
parents, as was initially planned, cuttings were taken from selected
plants and randomly mated in the greenhouse.

Selection in C3 proceeded in the greenhouse in a similar fashion as
C1. Unlike the previous two generations of GS, M2 was used for
prediction.

Figure 1 The base population (C0) was created from a randomly mated
F2 population and was subjected to one cycle of phenotypic selection
(PS) followed by three cycles of genomic selection. Two different geno-
mic selection models, which are referred to as M1 andM2, were used for
selection. Model training was accomplished during field generations (C0
and C2) when both phenotypic and genomic data were available and is
designatedwith circular arrows in the schema. Remnant seedwas used to
evaluate gain from selection in genetic gain trials.
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Genetic Gain Trials Field trials were conducted in the summers of
2017 and 2018 to evaluate gain from selection. In 2017, trials were
held at three different sites (Field-EI1, Field-Fr1, and Field-Fr2), one
of which was the same site used to train the initial GS model. A
randomized complete block design (RCBD) with two intra-block
replicates was used at all locations in 2017. Plot size and number of
replications differed depending on field dimensions and available
seed. Four reps were grown at Field-EI1 and three at Field-Fr1 and
Field-Fr2. Two plots per block each consisting of eight, nine, and
ten plants were used at Field-EI1, Field-Fr2, and Field-Fr1 respec-
tively. Only one site, Field-F3, was used in 2018 and a standard RCBD
without intra-block reps was used. This site included three reps of
20-plant plots. The population C2 was only included in two sites in
2017 and was not included in 2018 due to seed yield. For the same
reason, the C3 population was excluded from gain trials. Thus, all
sites included at least the base population (C0), the population
resulting from the initial round of phenotypic selection (C1), and
the final population resulting from three rounds of GS (C4). Two sites
included an intermediate population resulting from one round of GS
(C2). The two parents of the population and the F1 were included in
each block as checks in both years.

Statistical methods
Estimation of Parameters All available data were pooled to estimate
phenotypic correlations (rp), trait repeatabilities (t), genetic correlations
(rg), and trait narrow-sense heritabilities (h2). Unless otherwise noted,
all calculations were done in the statistical computing environment R
(R Core Team 2019) and mixed models were fit with “ASRemlR v3”
(Butler et al. 2009) for selection and parameter estimation.

As data were from three different environments, phenotypic
records were regressed against environment and the residuals were
used for calculating the Pearson correlation between traits. Estimates
of rp were assessed for significance using a t-test, as implemented in
the R lm() function.

Since multiple fruit per plant were measured for each trait, except
for yield-related traits, it was possible to calculate t and h2 using a
genetic repeatability model:

y ¼ Xbþ Zmþ Zpþ e (1)

The parameters m and p are random genotype and permanent envi-
ronment effects respectively, and it is assumed that m � Nð0;s2

uKÞ and
p � Nð0;s2

pIÞ. A so-called permanent environment effect is fit when
repeated measures are obtained on the same individual (i.e., multiple
fruit on the same plant) and allows for partitioning of variation within
and between genotype (Mrode 2014). The matrix X is the design
matrix for b, which included a fixed effect for environment. Variance
components estimated from this model were then used to calculate t
and h2 as follows (Falconer and Mackay 1996):

t ¼ s2
u þ s2

p

s2
u þ s2

p þ s2
e
; h2 ¼ s2

u

s2
u þ s2

p þ s2
e

(2)

In these equations s2
u is an estimate of additive genetic variation,

s2
p is a permanent environment effect related to variation within a

genotype, and s2
e is residual error. The gain in accuracy (Dr) from

repeated measures given t was calculated as (Mrode 2014):

Dr ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

t þ ð12 tÞ
n

s
(3)

The heritabilty of the index used for selection was calculated using the
formula for the variance of a linear combination of random variables
(Lynch and Walsh 1998):

h2I ¼
bTGb
bTPb

(4)

The matricesG and P are genetic and phenotypic covariance matrices
for component traits of the index, and b is a vector of index weights.

Heritability estimates were used to calculate the expected accuracy
of phenotypic mass selection. From theory, a regression of true
breeding value on phenotype yields a correlation equal to the square
root of h2 (Falconer and Mackay 1996). Thus, for a given trait, the
maximum predictive ability (PA) expected from phenotypic selection
would be the square root of the trait’s true narrow sense heritability
(PAmax ¼ h). This value was used as a benchmark for our whole-
genome regression models.

Genetic correlations were calculated for each trait pair using
variance components estimated with a bivariate model. The mean
of single-fruit measurements was used as the phenotypic value for each
genotype. As with the repeatability model, a fixed effect was included in
the bivariate model for environment, fitting a separate fixed environ-
ment effect for each trait. To test the significance of genetic covariances,
a reducedmodel was fit specifying a diagonalmatrix for the trait genetic
covariance matrix (G) and compared to the full model, which was fit
with an unstructured G, using a log-likelihood test.

Many pair-wise significance tests were conducted when testing
phenotypic correlations and genetic covariances. In order to reduce
false positives, p-values were adjusted with the Bonferroni method
using the R function p.adjust().

Cross-validation Marker sets for cross-validation (CV) were
created by independently filtering each data set as previously de-
scribed. Data sets were then joined on common markers to produce
CV sets, which are shown in Table 2. For traits measured on a single-
fruit basis, the truth-value used for CV was the mean of multiple fruit
per plant. Since plants differed in number of fruit sampled, we tested
the use of weights to account for heterogeneous error variance.
Suitable weights for a model using the mean of repeated records
can be obtained as:

w ¼ 12 h2

ch2 þ 1þðn2 1Þt
n 2 h2

(5)

where t is trait repeatability, h2 is heritability, n refers to number of
measurements, and c is the proportion of variance explained by

n■ Table 1 A description of field sites

Site Code Site Name Location Year Management

Field-EI1 East Ithaca 42.4413493,-76.4733234 2014, 2017 Transitional Organic
Field-EI2 East Ithaca 42.440784,-76.4713935 2015, 2016 Transitional Organic
Field-Fr1 Homer C. Thompson Vegetable Research Farm 42.521724,-76.3347793 2017 Conventional
Field-Fr2 Freeville Organic Research Farm 42.523819,-76.327854 2017 Certified Organic
Field-Fr3 Homer C. Thompson Vegetable Research Farm 42.517705,-76.3346863 2018 Conventional
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marker data (Garrick et al. 2009). Several values of c were tested from
0.1 to 0.9. The use of weights was found to have a negligible effect on
cross-validation results, so only results from unweighted analysis are
given. The Pearson correlation between GEBVs for individuals with
masked trait values and their corresponding truth-value was used as
an estimate of model PA. Three distinct scenarios were tested: within-
set CV, across-set CV, and a stratified CV approach.

Within-set PAs are commonly reported as an indication of model
performance (Heffner et al. 2010). For within-set validation, a train-
test approach was used. The data were randomly partitioned so that
80% of the data were used to train the prediction model and the
remaining 20%were used to test the model. This process was repeated
fifty times for each trait in each set (CVC0, CVC2, CVT1). The same
random subsets were used across traits to enable comparison of PA
for different traits.

Across-set CV represents a more realistic scenario than within-set
CV; the model is used to predict either progeny derived from the
training set (Prog) or individuals closely related to the training set, not
just individuals that are a subset of the training set (Test). Both cases
were tested by using a model trained in C0 to predict progeny in C2
(Prog) and to predict close relatives in T1 (Test).

The effect of training population size on model PA was in-
vestigated using a stratified CV approach (CVStrat). Briefly, data
from C0, C2, and T1 were combined and different-sized training
sets were formed by drawing an equal number of individuals from
each of the three sets. The resulting composite set was used for
training and then to predict a test set created by randomly sampling
twenty-five of the remaining individuals from each set. CV was
carried out fifty times for each population size-trait combination.
Using a stratified scheme prevented any imbalance in the training
or testing set that may have otherwise led to bias in assessing how
PA changes with training population size, e.g., if only individuals
from C0 were used for training and only individuals in C2 were
used for testing.

Model for Genome-wide Selection A multi-trait GBLUP model
with three traits, ∘Bx, %DM, and a�, was used to calculate GEBVs for
selection candidates. The multi-trait GBLUP model has the form:

y ¼ Xbþ Zmþ e (6)

where y, m, and e represent vectors
�
y19; y29; y39

�
9, ðm1;m2;m3 Þ9,

and
�
e19; e29; e39

�
9 respectively. The values in y correspond to indi-

vidual fruit measurements from each plant. A repeatability model was
not used. It is assumed that m � Nð0;K5GÞ and e � Nð0; I5RÞ.
The matrices G and R are unstructured and specify the genetic and
error covariances between traits.

Equal economic weights were used in the selection index. With
equal weights, the selection index value I for each selection candidate
is given by:

I ¼ GEBV∘Bx þ GEBV%DM þ GEBVa� (7)

Gain from Selection Realized gain from selection in the index and for
other traits was determined using the following mixed-model fit with
the ASReml standalone program (Gilmour et al. 2015):

yijklm ¼ mþ si þ bjðiÞ þ pkðjÞ þ cl þ eijklm (8)

In this model, m is an overall mean, si refers to a random effect for site
(unique location x year), bjðiÞ is a random block effect nested in site i, p
is a random effect for plot nested within block, c is a fixed effect
covariate for cycle of selection, and e is a random error term. b (block)
and p (plot) were modeled as heterogeneous random effects allowing
different variances at each site. Plots within blocks (intra-block reps)
were only included in 2017 and so p was only fit at the levels for those
sites. c was coded as covariate 1,2,3 or 5, where 1 is the base
population and the last cycle of selection is 5. The estimate of c is
a slope corresponding to the average gain per cycle of selection. The
significance of this slope (test for non-zero) was assessed using the
p-value from the Wald F statistic calculated by the default method in
ASReml.

As we did not genotype entries in the gain from selection trials we
could not fit a MT-GBLUP model to calculate the index as we did
during selection, which was the sum of BLUPs from the multi-trait
model. Instead, we calculated the index value by applying weights to
the phenotypes according to the Smith-Hazel index (Baker 1986):

b ¼ P21Ga (9)

where P and G refer to phenotypic and genetic covariance matrices
calculated as described in the section on parameter estimation, a is a
vector of ones to signify a equal economic weights, and b is the
vector of weights applied to the phenotypic values to get the index
value.

Harvesting practices differed somewhat across sites depending on
whether vines could be separated before harvest. Either all fruit were
harvested from a plot or all plants within a plot were harvested
keeping track of single plants. In the former case, ys are means of all
fruit in a plot, and in the latter ys are means of plant values for a plot,
which are taken as the mean of all fruit from a plant. To account for
this difference, the error variance was modeled as heterogeneous with
sections corresponding to each case. Site and year are confounded in
this design as there was no site used in both years.

Data availability
Raw sequencing data from each population are available on the NCBI
SRA. The BioProject reference ID is PRJNA611090. Phenotype data
used to train selection models, the data from the realized gain trials,
and all other data and code used in this study are available on GitHub

n■ Table 2 Cross-validation scenarios

Set Name Schema Training Size Validation Size Marker Number

CVC0 C0↻ 122 31 130
CVC2 C2↻ 132 34 1951
CVT1 T1↻ 136 35 3307
CVStrat (C0,C2,T1) / (C0,C2,T1) 48-402 75 535
Prog C0 / C2 179 168 535
Test C0 /T1 179 172 535

Summary of different cross-validation (CV) methods used in this study. Within-population schemes were tested in C0 (CVC0), C2 (CVC2), and in the test population (CVT1).
Across population testing included predicting progeny from C0 (Prog) and T1 from C0 (Test). A stratified approach (CVStrat) was used to determine the role of population
size on prediction accuracy.
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(https://github.com/ch728/squash-gs). Supplemental material avail-
able at figshare: https://doi.org/10.25387/g3.11955216.

RESULTS

Phenotypic and genetic parameters
All repeatability (t) estimates were moderate to high (see Table 3).
Based on equation 3, measuring around 4-6 fruit per genotype is
sufficient to realize most of the benefit from repeated measures for the
range of repeatabilities observed in this experiment (see Figure S1).
Repeatability sets the theoretical upper limit for h2 (Falconer and
Mackay 1996). Fitting within this constraint, estimates of h2 were less
than corresponding repeatability estimates. In most cases, h2 esti-
mates were substantially lower than repeatability estimates; fruit are
relatively uniform within plants, but environment is a main driver of
between-plant variation. The low to moderate heritabilities observed
across traits underscores the quantitative nature of fruit traits in
squash. Fruit morphology traits had the highest heritability estimates
(0.27 - 0.38), while those for fruit quality and yield traits were the
lowest (0.10-0.23). Color-related traits had the highest heritability
among the quality traits, and total fruit count was twice as heritable as
the other two yield measurements. The last column of Table 3 shows
the maximum predictive ability (PA) expected for phenotypic mass
selection. In the best-case scenario, it is expected that GS model
PAs—if they can achieve at least the accuracy of phenotypic mass
selection—should be moderate for quality and yield traits, and higher
for morphology traits.

As shown in Table 4, all traits were significantly phenotypically
or genetically correlated with at least one other trait. Traits were
more strongly correlated within class than between classes, i.e.,
quality traits had higher association with other quality traits than
with yield or morphology traits. High association at the phenotypic
level almost always translated to being highly associated at the
genetic level as well.

Within quality traits, ∘Bx and %DM had the highest phenotypic
and genetic correlation. All quality traits were either correlated in a
favorable direction or not significantly correlated. However, there
were trade offs between quality traits and traits from other categories.
For example, almost all of the fruit quality traits had a unfavorable
genetic correlation with total fruit weight per plant. Most of the
correlations between quality and morphology traits were antagonis-
tic, which reflects a tendency for smaller fruit to have more favorable
quality characteristics.

Model predictive ability
Whole-genome models were evaluated for all traits. As shown in
Figure 2, within-set PAs (CVC0, CVC2, and CVT1) were low to
moderate for most traits, mirroring heritabilites. Yield component
traits such as FrtCt and TotalWt were the most difficult to predict,
whereas, models for morphology traits tended to have higher PA.
There was a high variance observed for predictive abilities. This is
likely due to the small size of the sets being subsampled to estimate
predictive ability.

PAs from the Across-set CV schemes (Prog and Test) are given in
Table 5. In general, the PAs in either set were within the range of PAs
observed in the within CV sets, typically close to the mean.Within-set
PAs were often more optimistic than the PAs observed across sets.
There was not a clear pattern as to whether a trait would be better
predicted in the Prog or Test set. As both sets are highly related to C0,
some of these differences may be due to genotypic x environment
(G x E) interactions.

Figure 3 shows results from the stratified CV scheme. Increasing
training population size increased the PA for all traits, but the gain
was not substantial for most traits. There was little benefit to having a
training population size beyond 200 plants. This has been observed in
other studies examining PA in biparental populations (Heffner et al.
2011).

Gain from selection
Results from the selection experiment indicate significant change
(p, 0:001) in all traits under selection. The index value and all
component fruit quality traits were increased in the desired direction.
The traits a�, ∘Bx, %DM, and I increased by 0.76, 0.40, 0.82, and 0.50
units per cycle on average. Along with a�, there was a significant
correlated response in the other two color traits, b� and L�, indicating
that flesh of selected fruit were darker orange than unselected fruit.
Morphology traits exhibited a slight, but significant, correlated re-
sponse from selection; selection for increased fruit quality lead to a
slight enrichment for smaller-sized fruit. A summary of gain from
selection is given in Table S1. A representative sample of fruit from
different cycles of selection are pictured in Figure 4.

DISCUSSION
In this paper, we present estimates for several important quantitative
genetics parameters including heritability and genetic correlations for
fruit traits in butternut squash, an important market class of C.
moschata. Traits encompassed quality-related traits, such as ∘Brix and
percent dry matter, morphological characteristics, and several dif-
ferent components of yield. Along with estimating these parameters,
we tested the predictive ability of genome-wide models (GBLUP) for
each trait across several different testing scenarios. Additionally,
results are presented from a selection experiment that was conducted
using an index estimated from a multi-trait GBLUP model aimed at
improving Brix, % dry matter, and a�.

Repeatability estimates were found to be moderate across traits.
Narrow-sense heritability estimates were considerably lower. As
squash plants can yield many fruit, there is a labor trade-off between
the number of fruit sampled per genotype and replication of the
genotype itself. The discrepancy between repeatability and narrow
sense heritability suggests that more resources should be allocated
to replicating a genotype rather than sampling more fruit per
genotype. The range of repeatabilities observed for fruit traits
suggest little benefit to measuring more than 4-6 fruit per plant.
Genetic and phenotypic correlations were high between many of
the traits measured in this study. Quality traits were found to be

n■ Table 3 Parameter estimates from pooled data

Trait h2 t PAmax

a� 0.23 0.62 0.48
b� 0.18 0.55 0.42
∘Bx 0.10 0.45 0.31
%DM 0.13 0.51 0.36
L� 0.18 0.55 0.42
Len 0.38 0.61 0.62
Wd 0.27 0.42 0.52
Wt 0.27 0.45 0.52
Shp 0.37 0.58 0.61
FrtCta 0.20 — 0.45
TotalWta 0.12 — 0.35
TotalDMa 0.11 — 0.33
I 0.35 — 0.59
a
t is not reported for traits based on single measurements.
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favorably associated with other quality traits—an ideal situation
from a breeding perspective. However, quality traits were un-
favorably correlated with some morphology and yield compo-
nents. Most of these correlations were low, which means quality
need not come at the expense of yield. It is important to consider
that genetic correlations are not permanent, but are driven by
pleiotropy and linkage, both of which can be manipulated either
directly or indirectly by the breeder (Falconer and Mackay 1996).

Genetic correlations mirrored phenotypic correlations for many
traits, but there were some instances where this was not the case. For
example, a� and Brix had a strong and significant phenotypic
correlation (0.51), but they had a weak and non-significant genetic
correlation (0.24). Phenotypic correlations are a product of both
genetic and error correlation; two characteristics can have high
association at the phenotypic level due to common effect of the
environment without being highly related at the genetic level (Baker
1986). This is likely the case for Brix and a�. In contrast, Brix and %
dry matter were highly correlated at both levels. Brix is used in
programs as a proxy for sweetness, and % dry matter is related to

starchiness (Corrigan et al. 2001; Loy 2004). As the starch and sugar
pathways are known to be interrelated, it is not suprising that Brix
and % dry matter would have high estimated genetic correlations
(Wyatt et al. 2016).

Parameters estimated in this study are not likely to generalize to all
winter squash populations. All parameters are specific to a popula-
tion, the way in which traits are measured, the environments sampled,
and are also subject to error in estimation (Hallauer and Miranda
1981). This being said, they still give a general sense of trait com-
plexity. For example, the low estimates of h2 for quality traits suggests
a highly quantitative nature for these traits which is likely to be the
case in many other squash populations.

The PA of GBLUP was explored for a wide assortment of fruit
traits across several different CV schemes. For the most part, model
PA for each trait was correlated with trait narrow-sense heritability.
Some traits, such as %DM, exhibited higher than expected PAs. This
does not indicate a problem with the model, but rather, suggests some
imprecision in the estimate of h2. This can occur when GBLUP is used
to estimate narrow-sense heritability (de Los Campos et al. 2015). The

n■ Table 4 Phenotypic and genetic correlations; genetic correlations are shown above the diagonal and phenotypic correlations belowa

Fruit Quality Morphological Yield

Trait a� b� L� ∘Bx %DM Len Wd Wt Shp FrtCt TotalWt TotalDM

a� 0.48� 20.63�� 0.24 0.32 20.066 20.12 20.23 0.016 0.21 20.17 20.056
b� 0.35�� 20.34 0.58� 0.64� 0.024 0.032 20.069 0.014 0.067 0.011 0.36
L� 20.69�� 20.26�� 20.16 20.12 0.29 0.3 0.41� 0.082 20.035 0.26 0.15
�Bx 0.51�� 0.31�� 20.36�� 0.93�� 20.22 0.18 0.21 20.28 20.26 20.4 0.11
%DM 0.37�� 0.48�� 20.16�� 0.76�� 20.04 0.042 0.067 20.046 20.035 20.24 0.23
Len 0.0094 0.0069 20.02 20.051 20.015 0.36� 0.52�� 0.77�� 20.3 0.13 20.049
Wd 20.079 0.09� 0.071 20.013 20.038 0.33�� 0.91�� 20.32� 20.59� 0.34 0.29
Wt 20.033 0.19�� 0.037 0.065 0.07 0.51�� 0.83�� 20.11 20.69�� 0.25 0.21
Shp 0.065 20.058 20.073 20.034 0.014 0.73�� 20.39�� 20.1� 0.16 20.1 20.22
FrtCt 20.11� 20.069 0.14� 20.16�� 20.14�� 20.053 20.14� 20.2�� 0.04 0.45 0.42
TotalWt 20.11� 0.03 0.12� 20.11� 20.098� 0.18�� 0.25�� 0.27�� 20.017 0.84�� 0.88�

TotalDM 0.036 0.22�� 0.04 0.19�� 0.28�� 0.17�� 0.24�� 0.3�� 20.014 0.74�� 0.91��

a
Two levels of significance are reported: significance at a p value of 0.05 (�) and significance at a p value of 0.05 after Bonferroni multiple test correction (��). Significance
of genetic correlations were not tested directly; the significance designation indicates that allowing genetic covariance between the two traits significantly improved
the fit of the bivariate model.

Figure 2 Cross-validation results. Boxplots
show the predictive ability for each trait
grouped by cross-validation set and trait type.
Cross-validation was conducted within the
base population (CVC0), the C2 population
(CVC2), and in the test population (CVT1).
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mean PA across different CV sets was similar for most traits. Some
traits including TotalWt, b�, and ∘Bx exhibited more variation in PA
across sets. This may be partially due to G x E, which has been noted
for ∘Bx and color-related traits in squash (Paris 1994; Harvey et al.
1997). The same filtering procedure was applied to all marker sets, but
marker number varied across sets due to differences in data quality
and sites sampled during sequencing—problems intrinsic to GBS.
Therefore, some of the differences in PA across sets may be due to
different regions of the genome being sampled; although, the high
levels of relatedness in an F2 likely reduces the impact of having
different marker numbers across sets (Habier et al. 2007). The Prog
and Test sets represent scenarios where models are used to predict the
progeny of the training population or a highly related set, which are
common use cases for GS (Heslot et al. 2015). PAs were similar to the
means of the PAs observed in the within sets.

Selecting for multiple traits is a challenge impacting all breeders.
There are three general methods for multi-trait selection: tandem
selection, independent culling, and index selection (Baker 1986).
Index selection requires all traits to be measured on all individuals,

which is not required by the other two methods. This gives other
multi-trait selection methods a potential economic advantage because
selection can begin with the least expensive trait and follow with culls
on progressively fewer individuals for more costly phenotypes. GS
can reduce this disadvantage by relaxing the need to phenotype all
individuals; expensive traits can be predicted frommarker data rather
than directly measured. Further, MT-GBLUP models can lead to
higher PAs in some scenarios and allow for the estimation of
parameters needed to implement an optimal index, such as a
Smith-Hazel index (Okeke et al. 2017; Rutkoski et al. 2016).

In this study we used MT-GBLUP to select on an index of three
fruit quality traits. Our index used equal economic weights. Signif-
icant gain was achieved in all quality traits and in the index value.
Significant changes were also observed in correlated traits. This
emphasizes the need to understand the relationship between traits,
as unintended consequences may result from selection on some
characteristics. We used equal economic weights, as we had no
way of readily establishing the worth of quality traits in our study.
A possible strategy for establishing relative weights for quality traits
may be to use a retrospective index (Bernardo 1991). By analyzing the
past selections of an experienced breeder or selections that a trained
panel of tasters/chefs make, one could derive retrospective weights
and use them as relative economic weights to create an index.

Simulation has demonstrated that one of the greatest advantages
of GS over phenotypic selection comes from the ability to decrease
cycle length with GS, even if this comes at the expense of accuracy
(Gaynor et al. 2017). We were able to achieve significant gain in spite
of the fact that our model had relatively low PAs for some traits
included in the index, and continued rapid recycling would likely
outperform the traditional phenotypic selection program; although,
we did not test our GS program head-to-head with the traditional
phenotypic selection program. Unlike cereal crops, squash and other
large-fruited crops are not limited by the need for seed increase at
early stages—sufficient seed can be obtained from fruit to allow
testing across multiple environments at an early stage in the breeding
program. However, large replicated trials are not feasible due to space
constraints. Markers can be used to enable unbalanced designs in
early testing stages and could potentially be used to evaluate more
material in small trials across multiple different environments
(Endelman et al. 2014). This sparse testing approach would likely
be beneficial to space-limited crops like squash. Further, this ap-
proach would be an easy entry point for programs that are new to
using whole-genome marker data, as no major changes would be
made to the breeding scheme. Additionally, it would allow programs
to build up large training sets, and work out the logistic and technical
aspects of genotyping many entries in a timely manner, before
transitioning to a rapid-cycling scheme.

n■ Table 5 Cross-validation results for Test and Prog schemes

Trait Prog Test

a� 0.33 0.29
b� 0.47 0.14
∘Bx 20.02 0.31
%DM 0.44 0.27
L� 0.48 0.25
Len 0.32 0.54
Wt 0.41 0.57
Wd 0.48 0.39
Shp 0.38 0.52
FrtCt 0.21 0.34
TotalWt 20.13 0.15
TotalDM 0.10 20.03

Figure 3 Effect of population size on predictive ability determined
using CVstrat scheme.

Figure 4 Fruit from selection cycles.
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CONCLUSION
We presented results demonstrating the successful implementation of
GS in a resource-limited crop for several fruit quality characteristics.
Further, prediction results were shown for many other traits and
several important quantitative genetic parameters were calculated.
These results were used to suggest different breeding strategies.

It can be argued that some traits can only be judged by the human
eye, especially in horticultural crops where there is more potential
overlap between art and science. GS need not subtract from this
aspect of breeding horticultural crops. GS can be used to enrich
populations for desirable characteristics and to improve breeding
efficiency at early stages in the breeding process where there is a glut
of inferior material. MT-GBLUP and indices provide a convenient
means of integrating information for the improvement of multiple
traits at these stages. This leaves the breeder with more time to focus
on subjective evaluations, like culinary testing, on only the best
material at advanced stages of variety testing.
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