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ABSTRACT
Many studies have linked cigarette smoke (CS) exposure and tuberculosis (TB) infection and 
disease although much fewer have studied second-hand smoke (SHS) exposure. Our goal is 
to review the epidemiologic link between SHS and TB as well as to summarize the effects SHS 
and direct CS on various immune cells relevant for TB. PubMed searches were performed 
using the key words “tuberculosis” with “cigarette,” “tobacco,” or “second-hand smoke.” The 
bibliography of relevant papers were examined for additional relevant publications. Relatively 
few studies associate SHS exposure with TB infection and active disease. Both SHS and 
direct CS can alter various components of host immunity resulting in increased vulnerability 
to TB. While the epidemiologic link of these 2 health maladies is robust, more definitive, 
mechanistic studies are required to prove that SHS and direct CS actually cause increased 
susceptibility to TB.

Keywords: Tobacco smoke pollution; Cigarette smoking; Mycobacterium tuberculosis;  
Latent tuberculous infection

INTRODUCTION

Cigarette smoking is increasing worldwide and by reasonable inference, second-hand smoke 
(SHS) exposure is likely increasing in parallel (1). SHS, also called environmental tobacco 
smoke, involuntary smoke, and passive smoke, is comprised mainly, by up to 85%, of 
“sidestream” smoke (the smoke given off by a burning cigarette or another tobacco product) 
and to a lesser extent (up to 15%) of “mainstream” smoke (the smoke inhaled and exhaled by a 
smoker). Not surprisingly, sidestream smoke and hence SHS contains >7,000 distinct chemical 
compounds including nicotine. Indeed, nicotine has been found in the exhaled breath, oral 
fluids, and blood of individuals exposed to SHS and second-hand vapors from electronic 
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cigarettes (2,3). SHS exposure has been shown to cause many of the same diseases caused by 
direct smoking (4). In fact, sidestream smoke — the major component of SHS — may be more 
harmful, in the context of toxicity and tumorogenicity, than mainstream smoke (5).

Tuberculosis (TB) is an ongoing global public health crisis (6). The geographic overlap of 
the prevalence of cigarette smoking and the number of latent and active TB cases is striking 
(7). Mathematical models project that cigarette smoke (CS) exposure contributes to millions 
of TB cases and deaths worldwide and is a significant driver of the TB pandemic (8,9). 
SHS exposure is likely more common in TB endemic countries than in the U.S. because of 
greater smoking prevalences and less stringent public smoking bans in those countries. 
There appears to be no safe levels of SHS exposure (10). Indeed, small airway epithelial cells 
exposed in vivo to the lowest detectable level of CS — as that seen with SHS — displayed 
abnormal gene expression (11). Our goals are to review the epidemiological studies that 
examined the relationship between SHS exposure and TB as well as summarize the effects 
SHS/direct CS exposure have on immune cells that play a role in host defense and/or the 
pathogenesis of TB.

METHODS

We reviewed the literature — using PubMed searches — on SHS exposure and its association 
with various clinical forms of TB including latent tuberculosis infection (LTBI) and active 
TB (12). We also searched for the effects of SHS/direct CS on the functions of macrophages, 
neutrophils, T effector cells, CD8+ mucosal associated invariant T (MAIT) cells, B cells, and T 
regulatory cells (Tregs).

EPIDEMIOLOGIC STUDIES LINKING SHS EXPOSURE 
WITH TB INFECTION AND DISEASE
TB infection
As part of a larger analysis, we previously reported 5 studies that examined the association 
between LTBI and SHS exposure (13-17). In a cross-sectional study of nearly 8,000 high 
school students, those with larger tuberculin skin test (TST) reactivity (mode up to 16 mm 
induration) were twice as likely to have 2 smoking parents than to have one or no smoking 
parents (16). In 2 separate studies from South Africa of up to 1,500 children, those who were 
contacts of smokers with active TB or who lived with 2 or more smokers with active TB were 
more likely to have a positive TST than contacts of non-smokers with active TB (13,14). In over 
7,000 Spaniards, those in contact with smokers diagnosed with active TB were more likely to 
have a positive TST than subjects in contact with non-smokers with TB (15). In 95 children 
from the Indian subcontinent who were contacts of adults with active TB, the determining 
risk factors for transmission of infection were younger age, severe malnutrition, absence 
of Bacillus Calmette-Guérin (BCG) vaccination, contact with a sputum-positive adult, and 
exposure to SHS (17). More recently, 2 studies reported meta-analyses on the association of 
SHS exposure and LTBI or active TB (18,19). Patra and colleagues analyzed 18 studies and 
found a significant association between SHS and LTBI with a pooled relative risk (RR) of 1.64 
(95% confidence interval [CI], 1.00–2.83) but observed great heterogeneity in the studies 
(18). Dogar and co-workers (19) performed a meta-analysis on 12 studies and found that 
SHS exposure was associated with LTBI although this did not reach statistical significance 
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(RR, 1.19; 95% CI, 0.90–1.57); marked variability in the results were also found, which was 
attributed to differences in the diagnostic criteria used among the studies analyzed.

Primary progressive TB
In infants and young children, active TB cases are almost always due to progression of 
primary infection, since they are unlikely old enough to have LTBI (20). Four studies in 
children found a significant association between SHS and primary progressive TB (21-24). 
Altet et al. (21) also showed a greater association between primary progressive TB in children 
and the amount smoked in the household. In 1 study from Thailand and 2 from India, 
children with active TB were more likely to have had SHS exposure (22-24). Patra et al. (18) 
performed a meta-analysis of the studies that examined the association between SHS and 
active TB in children and found a 3-fold greater association than those without SHS exposure.

Active TB in adults
We previously summarized the numerous studies that investigated the association between 
cigarette smoking and active TB with the vast majority noting a significant link (12). That 
report included four case-control studies which examined both direct and SHS exposure; all 
found that active TB patients were more likely to be smokers (present or past) and/or have 
SHS exposure (25-28). In the one study that only examined SHS and active TB in adults, over 
15,000 elderly, never-smoking, married Chinese women were followed prospectively; 117 
cases of active TB were identified (29). The women with TB were more likely to have had SHS 
exposure than those without TB (29). While no studies have examined the frequency and 
amount of SHS exposure and its association with active TB, it appears that the intensity of CS 
exposure — as measured by number of cigarettes smoked per day, number of years smoked, 
or number of pack-years smoked — is significantly associated with active TB (25-27,30-37). 
In 2 recent meta-analysis investigations, SHS was also significantly associated with active TB 
(18,19) although the association with adults was not as great as that seen with children (18).

Limitations of epidemiologic studies linking SHS/direct CS exposure and TB
Epidemiologic studies can at best show an association between SHS/direct CS exposure and 
LTBI or active TB but cannot show any direct causal link. A potential confounder that may 
perhaps lead to increased TB transmission among those exposed to SHS and/or direct CS is 
congregation among smokers — leading to potential increase in TB transmission if there 
was a person with active TB in the group (12). Since cigarette smoking is generally associated 
with a lower socioeconomic status, with secondary link to malnutrition and crowded 
living conditions, these are additional confounders for acquiring TB (12). In studies of SHS 
exposure and TB contact investigation, it is not always clear whether SHS refers to the index 
TB case or the contacts. In either case, the active TB patient would be exposed to direct CS, 
SHS, or both and thus the increased association between SHS exposure and active TB/LTBI 
may be due to exacerbation of cough in the active TB subject from the SHS and/or direct CS 
exposure, resulting in greater transmission of Mycobacterium tuberculosis (MTB). Similarly, if 
indeed direct CS exposure is a risk factor for TB, those with SHS exposure may simply be at 
greater risk for TB because, by definition of having SHS exposure, they may be exposed more 
frequently to individuals (smokers) with active TB.

In summary, epidemiological studies show SHS exposure is associated with active TB 
and LTBI but such links are compromised by the great variability in the results (12,18,19). 
Moreover, these studies do not show a cause-and-effect relationship and there is the 
issue of potential confounders such as malnutrition, crowded living conditions, and 
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HIV co-infection. Even if there is a causal link between SHS/direct CS exposure and TB, 
epidemiologic studies cannot elucidate the mechanism(s). Thus, in the next 2 sections, we 
are going to: 1) tabulate the murine studies which investigated the effects of CS exposure 
(direct CS + SHS) on MTB infection and 2) summarize the main functions of key immune 
cells in control of MTB and the effects of SHS/direct CS on their functions.

MURINE STUDIES ON SHS/DIRECT CS AND TB

To the best of our knowledge, there have been three in vivo murine studies examining the 
effects of CS on control of MTB infection (38-40). Each used CS exposure levels — based on 
total suspended particulate — that were comprised of both SHS and direct CS exposure. Each 
revealed that CS exposure impaired the ability of mice to control MTB infection (38-40). We 
summarized the key findings of these mouse studies by immune cell types (Table 1).

THE EFFECTS OF SHS/DIRECT CS EXPOSURE ON 
IMMUNE CELLS RELEVANT FOR TB
CS significantly increases the number of innate and adaptive immune cells into the lungs 
(41) and yet epidemiologic evidence and experimental models indicate CS leads to a 
predisposition to TB (38-40,42-44). This paradox supports the notion that the host-protective 
anti-MTB cell types are compromised and/or there is activation of immunosuppressive 
cells by SHS/direct CS. While CS extract impairs human macrophages in controlling MTB 
infection, the mechanisms remain unknown (40,45). Hence, we highlight below some of 
the key immune cells relevant in host immune response to MTB and how SHS/direct CS may 
affect their functions.

Macrophage function against TB and potential effects of SHS/direct CS
M1 macrophage phenotype is characterized by production of pro-inflammatory cytokines 
(tumor necrosis factor [TNF] α, IL-12), chemokines IL-8 and monocyte chemoattractant 
protein-1, and nitric oxide as well as biasing T cells toward the TH1 phenotype and 
interferon (IFN) γ-producing CD8+ T cells (46-48). M1 effector functions against MTB 
include phagosome-lysosome fusion, autophagy, apoptosis, efferocytosis, and granuloma 
formation (49,50). Generally, M2 macrophages, the alternatively-activated or “deactivated” 
macrophage phenotype (in the context of host-defense against pathogens), are characterized 
by increased activity of arginase, matrix metalloproteinase (MMP), transforming growth 
factor (TGF) β, IL-10, and prostaglandin E2, and would not be expected to be host-protective 
during active MTB replication/infection (51,52). Efferocytosis of MTB-infected neutrophils 
leads to macrophage activation through the actions of TNFα and heat shock proteins (53). 
Efferocytosis may assist in clearing MTB infection, enhance antigen presentation to T cells, 
limit potentially injurious inflammation, and increase phagosome-lysosome fusion through 

4/19https://doi.org/10.4110/in.2018.18.e22

Link between Second-Hand Smoke and TB

https://immunenetwork.org

Table 1. Effects of CS exposure on murine models of MTB infection
Murine cell type Findings in CS-exposed mice compared to air-exposed mice
Macrophages Reduced number of IL-12 and TNFα-positive splenic and lung macrophages; increased number of IL-10-positive splenic macrophages (40).
Dendritic cells Reduced number of IL-12 and TNFα-positive splenic and lung dendritic cells; increased number of IL-10-positive splenic dendritic cells (40).
T effector cells Reduced number of TH1 cells with reduced IFNγ production per cell (38-40); also reduced influx of IFNγ and TNFα-positive CD4+ and CD8+ T 

cells into the lungs and spleens (38,40); increased influx of IL-4-positive TH2 cells in the lungs (39); CS also impaired (DNA) vaccinated mice to 
MTB-specific antigen by reducing the number of antigen-specific TH1 cells (38).

https://immunenetwork.org


uptake of neutrophil azurophilic granules (54,55). Table 2 lists the potential effects of SHS, 
direct CS, or nicotine on anti-TB macrophage function; whether murine cells (M), human 
cells (H), or both (M/H) were studied are noted for each of the studies cited.

Neutrophil function against TB and potential effects of SHS/direct CS
Lung neutrophils are one of the most commonly MTB-infected cells in TB patients and 
smokers have 3- to 4-fold more lung neutrophils than non-smokers (71,72). Thus, whatever 
impact CS may have on neutrophils is likely relevant with MTB infection. Some studies show 
neutrophils restrict the growth or kill MTB whereas others show neutrophils contribute to 
excessive lung inflammation and may enhance mycobacterial dissemination (73-75). Such 
discrepancies may be due to phenotypic differences in neutrophils as the CD16hiCD62Llo 
neutrophil subtype is considered immunosuppressive (76). Table 3 lists the potential effects 
of SHS or direct CS on anti-TB neutrophil function.

T effector cell and B lymphocyte function against TB and potential effects of 
SHS/direct CS
Increasing evidence indicates that a TH1/TH2/TH17 balance is vital to establish control of active 
TB disease (81-84). MTB-specific TH1 cells (IL-12+, IFNγ+, TNFα+) stimulate inflammation, help 
skew macrophages to the M1 phenotype, and initiate antibacterial effector functions in infected 
macrophages (85,86). Early expansion of TH2 cells (IL-4+, IL-13+) antagonizes protective cellular 
immunity, resulting in a partial or complete loss of TB control (46,87,88). TH17 cells (IL-17+, 
IL-22+) recruit neutrophils through the chemoattractant actions of IL-17, resulting in improved 
early granuloma formation and increased cooperation between neutrophils and macrophages 
in killing MTB (89). However, sustained exposure of neutrophils to IL-17 can polarize their 
phenotype to one that is less effective in controlling MTB, causing more immunopathology 
(89). While increased programmed cell death protein 1 (PD-1) expression on T cells have been 
shown to impair human host immunity to MTB (90-93), several groups have shown that PD-1 
knockout mice were paradoxically more susceptible to MTB, perhaps related to excessive 
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Table 2. Potential effects of SHS/direct CS/direct or secondary nicotine on macrophage function against TB
Macrophage phenotype and function Effects of SHS/direct CS/direct or secondary nicotine
M1 phenotype Skewed macrophages to the M2 phenotype (52)(H). Induced PD-L1/2, resulting in a deactivated phenotype (56-58)(M/H,H,H).
Cell surface markers Smoker AM had less expression of CD11a, CD71, and CD54; smoker AM have greater density of CD11c (but not percentage 

of AM positive for CD11c) (59)(H).
Phagocytosis Effect of SHS/direct CS on phagocytosis is conflicting, from no effect to inhibition of phagocytosis (40,45,60,61)(M,H,H,H).
Efferocytosis Inhibited efferocytosis (55,62,63)(M/H,H,H)

Phagosome-lysosome fusion Inhibited phagosome-lysosome fusion (64-66)(R,H,M/H)

Autophagy Inhibited autophagy by CS (51,67)(M/H,H) and nicotine (68)(M/H).
Apoptosis Inhibited apoptosis (69,70)(H,M/H).
M, murine; H, human; M/H, murine and human; AM, alveolar macrophage.

Table 3. Potential effects of SHS/direct CS on neutrophil function against TB
Neutrophil phenotype and function Effects of SHS/direct CS
Migration of neutrophils Smokers have three- to four-fold more neutrophils in the lungs than non-smokers, likely due to CS induction of IL-8 and 

IL-17, the latter through CS differentiation of TH17 cells (71,77)(H,M).
Neutrophil activation PD-L1 is increased on neutrophils of active TB patients (78)(H) and CS, nicotine, and lipopolysaccharide (a common 

contaminant of cigarettes) are known to induce PD-L1/2 expression (57,58)(M,H), theoretically deactivating neutrophils, 
leading to formation of non-protective, necrotic granulomas (75)(M/H).

Oxidative burst CS inhibited endogenous oxidative burst (79)(H).
Induction of (N2) neutrophils Lipopolysaccharide found in cigarettes induced the expression of immunosuppressive N2 (CD16hiCD62LloCD11bhiCD54hi) 

neutrophils, which inhibit T cell proliferation (76)(H).
NETs CS inhibited endogenous oxidative burst — which is required for NETs formation; thus, CS could inhibit formation of 

NETs (79,80)(H,M/H)

M, murine; H, human; M/H, murine and human; NET, neutrophil extracellular trap.
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inflammation and tissue injury (including neutrophil-mediated necrosis) in the complete 
absence of PD-1 (90,94-96).

CD8+ T cells are also required for optimal host defense against human MTB disease (46,97). 
CD8+ T cells recognize protein and lipid antigens that are either class I MHC or CD1 
restricted, respectively (98,99). CD8+ T cells have the capability to recognize and kill MTB-
infected macrophages (100,101). Humans infected with MTB have expansion of cytotoxic 
CD8+ T cells capable of producing various cytokines (97). CD8+ T cells have also been 
identified in granulomas and pleural fluid of TB patients (102-104) and cloning these cells 
demonstrated TB antigen specificity (105). Additional reports demonstrated MTB-specific 
CD8+ T cells in BCG vaccinated individuals, and both active and latent TB patients (106,107).

MAIT cells are a subset of CD8+ T cells that recognize bacteria-derived metabolites of 
riboflavin (vitamin B2) biosynthesis pathway that are presented on major histocompatibility 
complex-related protein-1 (MR1) located on the cell surface of antigen-presenting cells; 
interestingly, cell surface expression of MR1 is dependent on the presence of an exogenous, 
bacterial metabolite ligand (108). In contrast to conventional T cells, MAIT cells are 
functional prior to exposure to antigens although exposure to MR1-restricted microbial 
antigens induce MAIT cell expansion. The semi-invariant T cell receptors (TRAV1-2/TRAJ33) 
of MAIT cells that recognized MR1-restricted antigens are comprised of α and β subunits. 
When activated, MAIT cells are host-protective through the expression of IFNγ and TNFα, 
and may induce lysis of target cells through granulysin and perforin (109). In healthy 
humans, MAIT cells are already enriched in the respiratory tract but with active TB, the 
MAIT cell population is further increased in the lungs but decreased in the peripheral blood 
(108,110,111). But the MAIT cells in patients with active TB may be compromised as they 
exhibit increased expression of PD-1 and blockade of PD-1 signaling resulted in a significantly 
higher number of IFNγ-producing MAIT cells upon ex vivo stimulation with BCG (93).

There is increasingly convincing evidence that B cells — through production of antibodies 
but also by biasing specific CD4+ T cell phenotypic activation through cytokine production 
and antigen presentation to T cells — are an important component in an effective host 
immune response against MTB (112-116). While MTB is traditionally considered an 
intracellular pathogen, extracellular bacilli are a significant component of the total bacterial 
population. In this regard, there are at least 2 circumstances in which binding of specific 
antibodies to mycobacterial antigens optimizes antigen presentation; such optimization is 
perhaps required since many MTB cell wall components contain lipids and carbohydrates 
that are not typically recognized by MHC molecules. In 1 instance, mycobacterial antigens 
bind to cell surface antibodies on B cells, the immune complexes are internalized, and the 
antigens are processed and presented on class II MHC on B cells to T cells. Alternatively and/
or concomitantly, free mycobacterial antigen-antibody complexes are able to bind to FcγR 
on the surfaces of professional antigen presenting cells (dendritic cells and macrophages) 
and be internalized. The antigens are then processed and presented to T cells. In turn, T cells 
are able to reciprocate and help B cells produce antibodies (117). In addition to enhancing 
antigen presentation, IgG can increase phagocytosis of MTB through increased binding 
of IgG-opsonized bacteria to FcγR or complement receptors present on macrophage cell 
surface, the latter occurring when C3 or C4 are bound directly to the mycobacteria or to IgG 
(114). Another potential antibody-mediated effector mechanism is opsonization of infected 
macrophages that express mycobacterial antigens on their cell surfaces with subsequent Fc 
binding to FcγRIII on cytolytic lymphocytes (114). In contrast to the active roles of B cells 
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in anti-MTB immunity upon binding to stimulatory FcγR, binding of immune complexes 
to inhibitory Fc receptors such as FcγRIIB inhibits dendritic cell maturation, resulting in 
impaired T cell activation. Thus, antibodies produced by B cells may have both stimulatory 
and inhibitory effect on host immunity against MTB.

B and T cells are also able to reciprocally skew the differentiation of each other into specific 
phenotypes through the production of cytokines (112,118). Remarkably, the specific subsets 
of B and T cells involved in this interaction are similar; i.e., B effector-1 cells (Be-1) produce 
IFNγ, IL-12, TNFα, IL-10, and IL-6 to skew naïve CD4+ T cells to the TH1 IFNγ+ phenotype and, 
in a reciprocal fashion, TH1 cells induce Be-1 differentiation. Similarly, Be-2 cells produce IL-2, 
lymphotoxin, IL-4, IL-13, IL-10, and IL-6 to induce TH2 IL-4+ differentiation and vice versa (112). 
Furthermore, B cell-derived TNFα serves to not only induce antibody production but also 
promote expansion of CD4+ T cell subsets, depending on the prevailing cytokine millieu.

Mice deficient in B cells or the common γ chain of FcγR are compromised in controlling 
an MTB infection, which may be due, in part, to increased IL-10 production (119,120). 
Conversely, mice with genetic disruption of the inhibitory FcγRIIB have greater capacity to 
control MTB and have increased TH1 response, in part through increased IL-12 expression 
(120). In addition to the aforementioned host-protective mechanisms of B cells against MTB, 
they also contribute to the formation of acute and chronic granulomas in response to MTB 
(112,121-123). In MTB infection of non-human primates, depletion of B cells with rituximab 
resulted in altered local T cell responses in granulomas (increased number of IL-2+, IL-10+, 
and IL-17+ T cells), decreased inflammation, and increased bacterial burden in individual 
granulomas although there was significant heterogeneity seen between the granulomas even 
in the same animal (124).

While B cells appear to play a lesser role than T cells in a respiratory mucosal vaccine against 
MTB (125), the humoral response also attenuates the potentially tissue damaging neutrophilic 
response, in part, by reducing the neutrophil chemokine IL-17 and the TH17 response 
(126). Indeed, B cell deficient mice have increased neutrophilia at the site of experimental 
immunization, with reduced dendritic cell migration to regional lymph nodes and decreased 
vaccine-induced TH1 response (126). As a promising therapeutic, monoclonal antibodies directed 
against various MTB cell wall components protected mice against MTB, as evinced by reduced 
bacterial load, containment from disseminated disease, and attenuated inflammation (127). 
Table 4 lists the potential effects of SHS or direct CS on anti-TB effector lymphocyte function.

Treg function against TB and potential effects of SHS/direct CS
Tregs secrete immunosuppressive cytokines such as IL-9, IL-10, IL-35, and TGFβ, increase 
consumption of IL-2, suppress Foxp3-negative TH1, TH2, and TH17 cells, and quell antigen-
presenting cells (145,146). Early in TB infection, excess Treg activity is associated with 
production anti-inflammatory of mediators (IL-10+, TGFβ+) that may promote MTB growth 
and persistence. In experimental animals, the influx of Tregs to the lungs with MTB infection 
worsens disease (147). Numerous studies have demonstrated that CD25+ and Foxp3+ Tregs are 
elevated in the circulation and at the site of infection in patients with active pulmonary TB 
(148,149) and suppress the proliferation of and IFNγ production by CD4+CD25− T cells in an 
in vitro co-culture system (150). Conversely, in vitro depletion of CD25hi Tregs from peripheral 
blood mononuclear cells obtained from active TB patients resulted in further increase in IFNγ 
levels induced by specific antigens (151,152). Other studies have confirmed these findings and 
determined that CD4+CD25+ Tregs in active TB co-expressed Foxp3, cytotoxic T-lymphocyte-
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associated antigen (CTLA)-4, glucocorticoid-induced tumor necrosis factor receptor (GITR), 
PD-1 and CD39 at the protein level (150,153,154) and also higher levels of CD45RO and human 
leukocyte antigen-antigen D related (HLA-DR) together with lower levels of CD127 (155) and 
CD45RA compared to CD4+CD25− T cells (154,156-158). Patients with active TB have increased 
Tregs in their peripheral blood and bronchoalveolar lavage compared to subjects with latent 
TB infection or healthy controls (159). As would be predicted, co-culture of these isolated 
Tregs with T effector cells and MTB-infected monocyte-derived macrophages or alveolar 
macrophages significantly decreased mycobacterial killing (159). However, Treg function 
is also essential to control tissue damaging inflammation. Tregs express Foxp3+ CTLA-4 
that have been linked to reduce TH17 cytokines such as IL-17 and IL-23 in subjects with LTBI 
(160,161). Table 5 lists the potential effects of SHS, direct CS, or nicotine on Treg function.

CAN CS ENHANCE MTB VIRULENCE?

To the best of our knowledge, there has been no investigations to determine if CS influences 
the virulence of MTB. However, MTB is exposed to endogenous and exogenous reactive oxygen 
species — abundantly present in CS — and it is known that oxidative as well as reductive 
stressors may affect several physiologic functions of MTB, including intracellular signaling, 
synthesis of nucleic acids and proteins, and drug resistance (166). As in other host-pathogen 
interactions, MTB and host cells are likely altering its own redox balance to gain advantage 
over the other. McEachern and co-workers (167) showed in Staphylococcus aureus (S. aureus) that 
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Table 4. Potential effects of SHS/direct CS on effector lymphocyte function against TB
Lymphocyte subtype Effects of SHS/direct CS
TH1 cells Reduced number of TH1 cells and decreased production of IFNγ per cell (128,129)(H,H). Potential mechanisms include CS-derived 

reactive oxygen species-induced necrosis of T cells (130)(H), T cell exhaustion as CS increases PD-L1 on antigen presenting cells, 
leading to engagement of programmed death (PD-1) receptors on T cells (58,91,92,131)(H,H,H,M/H), downregulation of CD28, and 
upregulation of CTLA-4 (132)(M). In adolescents exposed to SHS, the percentages of blood memory CD4+ and CD3+ T cells (CD45RO+) 
were inversely related to the degree of SHS exposure although there was a direct relationship between the percentages of naïve CD3+ 
and CD4+ T cells (CD45RA+) and degree of SHS exposure (133)(H). In contrast, T cells from both CS-exposed mice and human smokers 
fluxed calcium, proliferated and produced IFNγ at levels comparable to T cells from control mice and non-smokers (134)(M/H).

TH2 cells Increased influx of IL-4-positive TH2 cells in the lungs (39)(M).
TH17 cells In mice, CS increased TH17 cells but only after relatively long-term exposure (135)(M). The percentage of TH17 cells is increased in the 

blood of healthy cigarette smokers (136)(H) and CS exposure of human lung explants increased IL-17 expression (137)(H).
CD8+ cells Smokers have increased CD8+ cells in their airways than non-smokers (138)(H). CS increased the proliferation and inhibited the 

apoptosis of CD8+ T effector cells but increased both the proliferation and apoptosis of CD8+ Tregs (139)(H). CS exposure of mice 
increased CD8+ (and CD4+) T cells (140)(M).

MAIT cells Human subjects exposed to CS had reduced circulating levels of CD26hiCD161hi MAIT cells (141)(H).
B cells Chronic smoking is known to cause a polyclonal B cell lymphocytosis (142)(H). In adolescents exposed to SHS, there was no difference 

in the percentages of blood B lymphocytes and the degree of SHS exposure (133)(H). B cells from CS-exposed mice and human smokers 
fluxed calcium, proliferated and produced immunoglobulins at levels comparable to control mice and non-smokers (134)(M/H). In 
contrast, others have shown that CS-exposed or nicotine-exposed rodents have reduced number of B cells as well as reduced calcium 
flux and decreased proliferative capacity in response to antigenic stimulation although the amount of experimental CS exposure in 
these studies were greater than that typically seen in human smokers (143,144)(M,M).

M, murine; H, human; M/H, murine and human.

Table 5. Potential effects of SHS/direct CS/direct or secondary nicotine on Treg function
Tregs Effects of SHS/direct CS/direct or secondary nicotine
Tregs In man, CS exposure enhanced the function of Tregs in the lungs (162-164)(H,H,M). A possible mechanism by which CS enhances Treg 

function is the ability of CS to induce PD-L1/2 on antigen-presenting cells, resulting in increased engagement to PD-1 on Tregs, 
enhancing the immunosuppressive function of Tregs (56,58,165)(M/H,H,H).
In mice, Tregs express the α7 nicotinic acetylcholine receptor and upon binding to nicotine, there is an upregulation of both the 
transcription factor Foxp3 and the cell surface molecule CTLA-4, proteins that characterize Tregs and dampen Foxp3-negative T 
effector cell activity, respectively (164)(M). By producing TGFβ and IL-10, CS-induced Tregs can further suppress M1 macrophage 
activation against MTB as well as induce macrophages to differentiate to the M2/deactivated phenotype (51)(M/H). Nicotine induced 
murine Tregs to produce TGFβ and nicotine-exposed Tregs impair macrophage activity against MTB in murine macrophages (68)(M/H).

M, murine; H, human; M/H, murine and human.
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CS extract induced the expression of the multiple peptide resistance factor (mprF) protein, 
which adds lysine residues to acidic phospholipids (which have relative negative charge 
prior to lysine adducts) on the bacterial cell surface, converting them to basic phospholipids 
(relatively positive charge after addition of lysine residues), creating an unfavorable charge 
environment for the cationic antimicrobial peptide (AMP) LL-37 to bind bacteria, thereby 
generating a more virulent S. aureus (Fig. 1, left-side). Thus, it is highly relevant that MTB 
possess the lysX gene — a fusion gene comprised of both an mprF-like gene and the lysU gene 
— that encodes a protein with both lysyl transferase and lysyl-tRNA synthetase activities 
(168). A catalytic product of this 2-domain protein is lysinylated phosphatidylglycerol, a basic 
and positively-charged phospholipid, which imparts MTB resistance to cationic AMPs. Hence, 
it would be very interesting to determine whether CS could induce lysX gene expression, 
provoking greater MTB virulence through addition of lysine-mediated positive charge on MTB 
cell surface (Fig. 1, right-side).

SUMMARY

Both SHS and direct CS exposure are associated with increased risk for LTBI and active TB. 
This susceptibility may be due to increased exposure to the tubercle bacilli from the increased 
cough seen in smokers and those exposed to SHS, suppressed anti-TB immunity, enhanced 
activity of immunosuppressive N2 neutrophils or Tregs, or a combination of any of these 
factors. These generalized statements are likely an oversimplification of what is actually 
occurring since each cell type is not always salutorious or deleterious to the host; i.e., the 
temporal and coordinated influx (or absence) of each cell type may be necessary not only 
during the initial phase of the host-protective inflammatory response but also the necessary 
resolution of inflammation once the infection is under control. In addition, the potential 
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Figure 1. A hypothesized mechanism by which CS may affect virulence of MTB. (A) With S. aureus, CS induces the expression of mprF, which adds positively 
charged lysine residues to the bacterial membrane phospholipids. With greater positive charge on its cell membrane, S. aureus is better able to repel cationic 
AMP+. (B) Similar to the mprF molecule in S. aureus, MTB possess the lysX gene, which encodes a 2-domain protein with lysyl transferase and lysyl-tRNA 
synthetase activities that also adds positively charged lysine residues to phosphatidylglycerol, converting the acidic, negatively-charged phospholipid to a basic, 
positively-charged phospholipid. While it is not known if CS can induce lysX gene, this may be another potential mechanism by which CS increases susceptibility 
to TB by inducing a more virulent MTB strain.
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effects of CS in inducing greater virulence in MTB remains to be determined but a plausibility 
given such findings in other bacteria. Finding stronger evidence of a causal link between 
SHS/direct CS exposure may provide greater impetus to implement public health policies 
to further reduce SHS/direct CS exposure in TB-endemic countries, potentially providing 
another important measure to help eradicate TB.
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