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Abstract
The process of aging includes changes in cellular biology that affect local interac-
tions between cells and their environments and eventually propagate to systemic lev-
els. In the brain, where neurons critically depend on an efficient and dynamic supply 
of oxygen and glucose, age-related changes in the complex interaction between the 
brain parenchyma and the cerebrovasculature have effects on health and functioning 
that negatively impact cognition and play a role in pathology. Thus, cerebrovascular 
health is considered one of the main mechanisms by which a healthy lifestyle, such as 
habitual cardiorespiratory exercise and a healthful diet, could lead to improved cog-
nitive outcomes with aging. This review aims at detailing how the physiology of the 
cerebral vascular system changes with age and how these changes lead to differential 
trajectories of cognitive maintenance or decline. This provides a framework for gen-
erating specific mechanistic hypotheses about the efficacy of proposed interventions 
and lifestyle covariates that contribute to enhanced cognitive well-being. Finally, we 
discuss the methodological implications of age-related changes in the cerebral vas-
culature for human cognitive neuroscience research and propose directions for future 
experiments aimed at investigating age-related changes in the relationship between 
physiology and cognitive mechanisms.
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1  |   INTRODUCTION

A healthy vascular system is a crucial component by which 
a healthy lifestyle leads to improved cognitive outcomes 
in aging. A substantial body of evidence documents the 
existence of associations between measures of vascular 

functioning and cognition. Within this literature, an intuitive 
narrative is typically provided, stating that the brain relies 
on adequate blood flow for proper functioning, and thus a 
healthy cerebrovasculature is important for cognition because 
it is responsible for that blood flow.
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In this review, we attempt to move beyond this intuitive 
argument and discuss how the physiology of the cerebro-
vasculature changes with age and how these changes lead to 
differences in cognitive outcomes. Importantly, despite many 
overlapping mechanisms, distinct changes to vascular health 
follow diverging trajectories over the life span and respond dif-
ferently to interventions. By discussing specific physiological 
mechanisms, we aim to provide a framework for generating hy-
potheses about the efficacy of proposed factors that contribute 
to enhanced well-being in aging. Furthermore, we highlight 
how age-related changes in physiology may affect common 
measurements of neural function, and particularly those that 
depend on vascular correlates of neural function for inferences 
regarding changes in brain function across the life span.

2  |   HOW DOES THE 
CEREBROVASCULATURE AFFECT 
NEURAL FUNCTION?

Before discussing age-related changes to the cerebrovas-
culature, it is important to understand how physiological 

factors may influence cognition (Figure  1). Ideally, re-
search could inform interventions on vascular physiology 
that would maximize the potential benefits for cognition. 
Importantly, optimal interventions may differ between 
different ages and starting health status. For example, in 
healthy young participants, an intervention may prioritize 
the prevention of future cell death, whereas in older, un-
healthy adults, an intervention may prioritize increased 
brain plasticity. We begin our discussion by identifying the 
mechanisms by which vascular dysfunction leads to im-
paired cognition, which can be viewed as the end targets 
for cerebrovascular interventions.

2.1  |  Impaired vasculature leads to cellular 
dysfunction

The main mechanism by which vascular impairments 
lead to cellular damage, and eventually cellular death, is 
through ischemia, a condition in which restricted blood 
flow limits oxygen delivery to tissue. However, differ-
ent brain regions vary in their vulnerability to ischemia. 

F I G U R E  1   Cerebrovascular damage progresses from loss of elasticity in the larger arteries to distal downstream damage to the 
microvasculature. Impaired cerebrovascular function leads to reduced efficiency in neural processing through damaged myelination and impaired 
neurovascular coupling mechanisms. Eventually, cerebrovascular dysfunction leads to ischemia, causing cellular impairment or cell death. 
Together, these effects manifest as reductions in cognitive function
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Impaired vasculature may also lead to exposure to inflam-
matory factors or toxicity, as well as disordered signaling 
at the neurovascular unit, a functional complex of neurons, 
cellular, and extracellular components that mediate local 
interactions with vasculature, all of which can impair cellu-
lar function. In addition to these factors, aging also results 
in cellular dysfunction through non-vascular mechanisms, 
which may exacerbate and interact with the damage caused 
by vascular dysfunction.

2.1.1  |  Exhausted ATP in ischemia leads to 
cellular dysfunction and cell death

The human brain is particularly susceptible to ischemia-
induced damage. First, when cells die in the adult brain, 
they are rarely replaced (Kumar et  al.,  2019), with long-
lasting effects that accumulate over time. Second, ischemia 
wreaks havoc on the brain due to unique metabolic factors. 
The cellular components of the neurovascular unit domi-
nate brain metabolic function. This unit operates within 
a narrow metabolic window, in that it has a relatively 
high metabolic demand but low metabolic reserve. High 
metabolic demands are needed mainly to operate energy-
guzzling ion-pumps required for high-frequency firing 
rates and neural communication. At the same time, brain 
cells store much less glycogen than those in other bodily 
organs (Duran & Guinovart,  2015). Thus, with disrup-
tion of a continuous supply of oxygen and glucose, there 
is rapid exhaustion of the available adenosine triphosphate 
(ATP) in the cells (Fricker et al., 2018), leading to cellular 
dysfunction.

Extreme ischemia in the brain can elicit local spurts of 
depolarization and hyperpolarization that can propagate to 
neighboring regions in a wave-like manner called “spread-
ing depolarization” or “spreading depression,” exacerbat-
ing perturbations to homeostasis over progressively larger 
areas (Cozzolino et  al.,  2018; Xing et  al.,  2012). When 
there is a shortage of ATP, energy-intensive ion pumps are 
unable to maintain the polarization of neurons necessary 
for homeostasis (Hayashi & Abe, 2004; Xing et al., 2012). 
The resulting depolarization leads to the release of neu-
rotransmitters (especially glutamate) and inhibits reuptake 
(Xing et  al.,  2012). Glutamate binds to membrane recep-
tors that promote an influx of calcium, sodium, and water 
into the cell (Xing et al., 2012). Calcium has a wide range 
of signaling effects (Brini et al., 2014). Under normal cir-
cumstances, calcium is involved in synaptic signaling and 
neurotransmission, but excess calcium initiates apoptotic 
mechanisms and causes damage within the internal cel-
lular environment (Brini et al., 2014; Fricker et al., 2018; 
Lipton,  1999; Xing et  al.,  2012). Calcium dysfunction is 
often implicated in cellular damage and death following 

ischemia (Fricker et  al.,  2018). However, neuronal cell 
death can also occur via different ischemia-mediated sig-
naling cascades (see Fricker et  al., 2018, for an excellent 
review on the mechanisms of neuronal cell death and isch-
emia). In addition, reperfusion of tissue often induces a 
surge in the generation of reactive oxygen species (ROS), 
which promotes the neutrophil activity that can further ex-
acerbate injury (Kalogeris et al., 2012).

Most of these mechanisms are studied in events of pro-
found acute ischemia, such as stroke or transient ischemic 
attacks (TIAs). However, many of these mechanisms may 
have different effects in chronic or subacute low levels of 
ischemia (Fricker et al., 2018). In fact, paradoxically, some of 
these mechanisms seem to be designed to prevent cell death 
in the long term (Fricker et al., 2018; Hwang et al., 2017). 
That said, metabolic instability between neurons and the as-
trocytes that mediate neural-vascular communication leads to 
chronic low-level hypoxia or brief acute hypoxic events. Such 
events are hypothesized to lead to an increased probability 
(or frequency) of cellular damage and dysfunction even in 
the absence of a full-fledged stroke (Li et  al.,  2019; Peers 
et al., 2007; Peers et al., 2009).

2.1.2  |  Ischemic susceptibility

The whole brain is prone to ischemic damage but some re-
gions are more prone than others. Among these are the so-
called “watershed”1 or border-zone areas—a term used to 
indicate regions wherein blood supply is more labile owing 
to their location along distal ends of non-anastomosing 
major arterial systems (Figure  2) (Momjian-Mayor & 
Baron, 2005). Watershed regions are classically described 
in two distinct categories: (a) cortical areas between the 
major arterial territories (the anterior [ACA], middle 
[MCA], and posterior cerebral arteries [PCA]) or (b) inter-
nally, in the periventricular white matter between the deep 
and superficial parts of the MCA or between the superficial 
parts of the MCA and ACA; Mangla et al., 2011; Momjian-
Mayor & Baron, 2005). The vulnerability of these areas is 
thought to be related to ischemia due to episodes of low 
perfusion pressure, caused by accumulating damage to the 
upstream arteries (Torvik,  1984). Substantial individual 
variability exists in the territorial distribution of major ar-
teries, leading to comparable variability in watershed areas 
(van der Zwan & Hillen, 1991).

In addition to the watershed phenomenon, several other 
characteristics make certain areas more susceptible to 

 1The term “watershed” comes originally from a German analogy of an 
irrigation system. “Die letzten wiesen” (“the last field”) was translated to 
“watershed,” with the disadvantage of incorrectly implying a description of 
drainage rather than perfusion (Bladin et al., 1993).
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vascular damage than others. For example, susceptibility 
varies depending on (a) proximity to the root of feeding ar-
teries; (b) intrinsic differences in tissue characteristics, with 
white matter being more vulnerable to ischemia than gray 
matter, and oligodendroglial injury preceding neuronal in-
jury (Pantoni et al., 1996); and (c) location in the caudal-
to-rostral axis. That is, there is a broad caudal-to-rostral 
(inferior-to-superior in humans) increase in susceptibility 
to neuronal injury during ischemia (Brisson et  al.,  2013; 
Centonze et al., 2001; Wytrzes et al., 1989; Young, 2009). 
This gradient has been elaborated within the gray matter, 
with neurons in the neocortex, hippocampus, striatum, and 
thalamus more vulnerable than neurons in the hypothala-
mus, cerebellum, or brainstem (Brisson et al., 2013). Even 
within the rostral portion, there is heterogeneity, with CA1 
in the hippocampus, caudate, putamen, insula, precentral 
gyrus, inferior frontal gyrus, and middle frontal gyrus ap-
pearing to be the most susceptible (Payabvash et al., 2011). 
There is also striking regional variation, with distinct 

boundaries, in anoxic depolarization and its spreading 
depression in hypoxia (Brisson et  al., 2013, 2014; Spong 
et al., 2016).

The mechanisms that determine these regional dif-
ferences in ischemic susceptibility are not yet well un-
derstood. However, in CA1 one mechanism underlying 
vulnerability to ischemia has been established. CA1 cells 
have remarkable Ca2+ mobilization potential, which in-
creases calpain activation in response to ischemia and 
thus increases calpain-mediated lysosomal rupture (Liang 
et al., 2016). Finally, it is worth noting that regional dif-
ferences in metabolic demand are sometimes presented as 
an explanatory factor for ischemic susceptibility (Luigetti 
et  al.,  2012; Payabvash et  al.,  2011). This explanation, 
however, does not satisfactorily account for the specific re-
gional differences within rostral brain regions because the 
regions with the highest resting metabolic rates (Horwitz 
et al., 1984) do not overlap with those displaying the high-
est vulnerability. 

F I G U R E  2   Watershed regions in the brain exist in areas between the ends of major feeding arterial systems. Classically, these regions 
are described in two categories. Regions on the cortex between the major arterial systems feeding the cortex (purple), or internal regions in the 
periventricular white matter (red) between the superficial and deep branches of the middle cerebral artery or the middle cerebral and anterior 
cerebral arteries. The cortical watershed regions (purple) usually encompass a thin fronto-parasagittal wedge from the anterior horn of the lateral 
ventricle to the frontal cortex, a parieto-temporo-occipital wedge from the occipital horn of the lateral ventricle to the parieto-occipital cortex, or a 
strip on the superior cortex. The internal watershed areas are usually found in white matter, corona radiata, or the centrum semiovale
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Critical future work will need to explore the replicability 
and exact mechanisms behind specific differences in isch-
emic vulnerability.

2.1.3  |  Exposure to inflammatory or 
toxic factors

Inflammation or damage to the vasculature can expose 
brain parenchyma to molecules that have signaling (or 
other) effects that impair cellular function. Sustained in-
flammation contributes to the pathology of many nerv-
ous system diseases, including those common in aging 
(Calcia et  al.,  2016; Freeman & Ting,  2016; Iadecola & 
Anrather,  2011; Martini & Willison,  2016; McGeer & 
McGeer,  2013; Najjar et  al.,  2013; Ransohoff,  2016; 
Skaper et  al.,  2018). Inflammatory mechanisms are ex-
tremely important for protecting against microbes (Klein 
et al., 2017). However, chronic or disproportionate inflam-
matory responses cause collateral damage to otherwise 
healthy tissue, such as through the production of ROS 
(Rock & Kono, 2008).

Microglia have a principal role in the propagation and 
consequences of inflammatory signaling in the brain. These 
cells are classified as pro-inflammatory (“M1 microglia”) 
or neuroprotective (“M2 microglia”) (Tang & Le,  2016). 
Chronic systemic inflammation can lead to non-resolving 
neuroinflammation, with activated microglia releasing in-
flammatory cytokines, mediating synaptic loss, and phago-
cytic cells (Hong et al., 2016; Skaper et al., 2018). Mast brain 
cells amplify neuroinflammation through chemical interac-
tions with activated glia (Skaper et al., 2018).

Damage to the blood–brain barrier (BBB), a term used 
to describe properties of the cerebrovasculature that allow 
for tight regulation of molecule transport in and out of the 
brain, introduces even more damaging inflammatory cells 
and toxins that are normally excluded from the neuronal 
environment. These circulating immune cells infiltrate the 
brain parenchyma and produce additional ROS and inflam-
matory cytokines (Wang et al., 2007), which may create a 
vicious cycle of BBB lesions creating inflammation, which 
in turn create further damage to the BBB. An associated 
cause of damage to the parenchyma resulting from im-
paired cerebral vasculature can come from the increased 
presence of toxins, either through their reduced clearance 
or by allowing toxic agents to enter the brain through a 
weakened BBB (Zhao et al., 2015). Although research on 
age-related BBB dysfunction is usually focused on the in-
creased exposure of the brain parenchyma to inflammation 
and toxicity, it is also likely that BBB dysfunction would 
increase exposure to pathogens, since microbial invasion of 
the central nervous system (CNS) typically involves some 
induction of BBB dysfunction (Kim,  2008; Shoemark & 

Allen, 2015). Even in the absence of full CNS infections, 
increased microbial load would also increase inflamma-
tory collateral damage as immune cells fight the infection. 
It should be noted that chronic hypertension, because of 
associated vasoconstriction, may also lead to impaired 
blood flow in some watershed areas, which may in turn 
create local inflammation, endothelial lesions, and damage 
to the BBB, triggering the vicious circle described above 
(Jennings et al., 2021).

2.1.4  |  Disordered signaling at the 
neurovascular unit

Ischemic and inflammatory processes can disrupt the neu-
rovascular unit responsible for the homeostatic signaling 
mechanisms promoting normal brain function. Disordered 
signaling between endothelial cells, support glia, and neu-
rons leads to impaired neuronal function, even in the absence 
of explicit exposure to inflammatory factors or external tox-
ins (Guo & Lo, 2009). Astrocytes play a central role in the 
homeostasis of glutamate concentrations (Guo & Lo, 2009). 
The dysfunction of this homeostatic mechanism is hypoth-
esized to contribute to augmented excitotoxicity, which plays 
a role in both vascular and non-vascular pathologies (Guo & 
Lo, 2009).

2.2  |  Impaired vasculature leads to reduced 
efficiency in neural processing

Beyond direct neuronal damage caused by failing vascular 
mechanisms, there are also impairments to neural process-
ing driven by dysfunction of mechanisms that support the 
coordination of neurons at the circuit-level. These vascular 
impairments can be broadly categorized as reductions in (a) 
the finely controlled cerebrovascular reactivity that supports 
the dynamic metabolic needs of brain parenchyma, result-
ing in loss of neural efficiency; and (b) the insulating effects 
of myelin, which support fast and well-timed axonal signal 
transduction (saltatory conduction).

2.2.1  |  Impaired cerebrovascular reactivity

During neural activity, local vasodilation ensures that an 
increase in the flow of oxygenated blood sufficiently meets 
the metabolic demands of local tissue in a dynamic process 
known as functional hyperemia (Chen et al., 2014; Nippert 
et  al.,  2018). This neurovascular coupling, resulting in 
rapid increases in ATP synthesis, is thought to be necessary 
for efficient neural processing (Abdelkarim et  al.,  2019). 
The mechanisms controlling the vasomotility at the core 
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of the vascular response are complex and multi-faceted, 
and the role of changes in cerebrovascular reactivity in 
cognitive aging is a subject of intense study and debate, in 
part due to the profound implications for the interpretation 
of human neuroimaging in aging research (Abdelkarim 
et  al.,  2019). Mounting evidence points to a role for re-
duced cerebrovascular reactivity in age-related cogni-
tive decline (Abdelkarim et  al.,  2019; Fabiani, Gordon, 
et al., 2014; Hutchison et al., 2013; Tarantini et al., 2015; 
Tarantini, Yabluchanksiy, et  al.,  2017; Toth et  al.,  2017; 
Yabluchanskiy et al., 2021).

How could age-related reductions in cerebrovascular reac-
tivity disrupt cognition in aging? Reduced neural efficiency 
results from disruption of the ratio of perfusion change that 
accompanies changes in neural metabolism (Abdelkarim 
et al., 2019). This ratio is known to be maintained at ~2:1 in 
the young healthy system. Age-related disruption of this ratio 
would result in a lack of blood-derived resources (such as 
oxygen, lactate, and glucose) that could cause bottlenecks in 
ATP synthesis and impair the finely tuned timing of signal-
ing in neuronal circuits. There is evidence of such disrupted 
neurovascular coupling in both normal and pathologically 
aging humans (Hutchison, Lu, et al., 2013; Toth et al., 2017) 
as well as experimental evidence of impaired cognition in 
animals after inhibiting neurovascular coupling (Tarantini 
et al., 2015; Tarantini, Yabluchanksiy, et al., 2017).

2.2.2  |  Impaired myelination

Oligodendrocytes play a critical role in signal transduction 
through their role in axon myelination. The myelin sheath, 
formed by oligodendrocytes, acts as an important electric in-
sulator. Oligodendrocytes also form functional connections 
between glial cells and neuronal axons, wherein oligoden-
drocytes support the function and integrity of the axons by 
active glucose transport processes (Lee et  al.,  2012; Saab 
et al., 2013; Simons & Nave, 2016).

Oligodendrocytes are susceptible to ischemia, and result-
ing damage may lead to denuded axonal regions with slower 
conduction velocity (Pantoni et al., 1996). Note that the loss 
of the myelin sheath (and, therefore, of saltatory conduc-
tion) may also result in increased metabolic demands due 
to an increase in the axonal area. An increase in the move-
ment of ions, and therefore additional activation of the ATP-
dependent ion pumps, would be required for maintaining 
local ionic homeostasis. For this reason, demyelination is 
more likely to occur in watershed regions of the white mat-
ter. In addition, vascular damage may directly lead to oxida-
tive damage and a microenvironment that causes gliosis and 
prevents the integration of oligodendrocyte progenitor cells 
(Kohama et al., 2012). These factors may suggest that white 

matter lesions in watershed areas could represent early indi-
cators of vascular-related brain damage.

In humans, diffusion tensor imaging (DTI) is used to non-
invasively study the white matter microstructure by assessing 
measures of diffusion anisotropy (Pierpaoli & Basser, 1996). 
Using DTI, age-related degradation in white matter integ-
rity regionally influences neural activity, as measured with 
fMRI (Bennett & Rypma, 2013), and cognitive performance 
(Conley et  al.,  2020; Jolly et  al.,  2017; Tan et  al.,  2019). 
Evidence is accumulating regarding the role of myelination 
in learning-related plasticity to support the precise tim-
ing needed for signal integration and oscillatory coupling 
(Fields,  2015). Overall reduced conduction velocities may 
globally impair speed of processing. This line of research 
also implies that new learning and the precise timing of es-
tablished circuits would be impaired by focal myelin damage. 
Age-related degradation in anterior white matter is associated 
with decreased processing speed and poorer working mem-
ory (Gratton et al., 2009). Age-related degradation in the cen-
tral white matter is associated with poorer episodic memory 
(Walker et al., 2017). Finally, age-related degradation in the 
posterior white matter is associated with poorer inhibition 
and greater task switching costs (Kennedy & Raz,  2009a). 
Some evidence for causality has been found, with preced-
ing changes in fractional anisotropy in certain white matter 
tracts, predicting subsequent changes in processing speed 
2 years later (Oschwald et al., 2019). Vascular risk factors are 
known to modify the age differences in white matter integrity 
and their effects on cognition (Jacobs et al., 2011; Kennedy 
& Raz, 2009b). Thus, it is likely that at least some of the age-
related degeneration in myelination is driven by changes to 
vascular health (Tan et al., 2019).

3  |   HOW DOES THE 
CEREBROVASCULATURE CHANGE 
WITH AGE?

In the previous section, we discussed mechanisms by which 
impaired vascular health leads to impaired neural function 
and cognitive performance in aging. The vascular system 
changes greatly over the life span. Here, we survey major 
categories of age-related changes to the cerebrovasculature, 
and review the mechanisms leading to those changes and 
how they propagate to the impairments in cellular health and 
signaling discussed in the previous section.

3.1  |  Arterial inflammation

Arterial inflammation is intimately related to the onset and 
progression of arterial stiffening and is involved in all of the 



      |  7 of 39ZIMMERMAN et al.

vascular changes discussed in this review (Jain et al., 2014; 
Mozos et al., 2017). The mechanisms involved in vascular in-
flammation are complex, multi-faceted, and often lead to “vi-
cious cycles” wherein the result of inflammatory processes 
leads to more inflammation (Dai et  al.,  2012; de Almeida 
et al., 2020; Jain et al., 2014; Mills & Bhatt, 2004; Mozos 
et al., 2017; Raz & Daugherty, 2018).

Inflammation encompasses many signaling cascades at the 
immune system's disposal to respond to injury or infection. 
These signals can result in altered cellular behavior, which 
are useful or harmful depending on the size of the reaction 
and the circumstances leading to the inflammation. Chronic, 
low-grade inflammation has been increasingly implicated in 
contributing to a number of diseases (Minihane et al., 2015). 
Typically, in discussions of age-related decline in vascular 
health, there are two major manifestations of inflammatory 
contributions: Plaque formation (atherosclerosis) and other 
contributions grouped under the umbrella of oxidative stress.

Atherosclerosis is now considered to be a specific chronic 
inflammatory disease (Cecelja & Chowienczyk,  2012; 
Libby, 2012; Libby et al., 2002; Mills & Bhatt, 2004; Mozos 
et al., 2017). Atherosclerosis begins in adolescence as fatty 
streaks of cholesterol begin to deposit in the walls of the 
large arteries (McGill et al., 2000). Inflammatory cells ac-
cumulate in early plaque formation (Libby,  2012; Mozos 
et  al.,  2017). Monocytes mature into macrophages within 
the plaque and form foam cells as they take up lipoproteins 
in the plaque (Libby, 2012; Mozos et al., 2017). Eventually 
these macrophages die and form a necrotic core in the 
plaque. Pro-inflammatory signaling additionally contributes 
to fibrosis, smooth muscle cell proliferation, and additional 
inflammation at the site of the plaque (Libby, 2012; Mozos 
et al., 2017).

There is also an intimate connection between inflam-
mation and oxidative stress, thought to be the root cause 
of biological aging (Chelombitko,  2018; Ferrucci & 
Fabbri,  2018). The oxidative stress hypothesis of aging is 
that ROS are produced as a by-product of aerobic metab-
olism, that, over time, inflicts mounting oxidative damage 
to a variety of macromolecules and lead to over-oxidation 
of redox-sensitive protein thiols, dramatically impair-
ing redox-regulated signaling (Harman,  1956; Sohal & 
Orr, 2012). Raz and Daugherty (2018) introduced a model 
that applies these ideas specifically to the brain and reviews 
the tools available to study oxidative stress in the human 
brain non-invasively. ROS are now known to act as signal-
ing molecules and participate in the initiation, progression, 
and resolution of inflammation (Chelombitko, 2018). At the 
same time, many inflammatory responses trigger the prolif-
eration of more ROS (Chelombitko, 2018). Thus, the ROS 
overproduction that accumulates in aging may promote age-
related inflammation underlying a wide range of degenera-
tive processes.

3.2  |  Arterial stiffening

One of the earliest measurable changes in vascular function, 
after arterial inflammation, is arterial stiffening, or arterio-
sclerosis (see Figure  1). In the elderly, arterial stiffness is 
associated with cognitive decline and age-related pathology 
including Alzheimer's Disease and other dementias (Hanon 
et al., 2005). In addition, it is related to cerebral small vessel 
disease (CSVD) and related infarctions in the brain includ-
ing white matter hyperintensities, lacunar infarcts, cerebral 
microbleeds, and volumetric decline (Henskens et al., 2008; 
Singer et  al.,  2014). This relationship to CSVD, usually 
through models of increasing pulse pressure (the difference 
between systolic and diastolic blood pressure and velocity), 
is thought to be the primary mechanism by which gradual 
arterial stiffening throughout the life span manifests as dam-
age and disease later in life (Tarumi et al., 2014; Tarumi & 
Zhang,  2018). Arterial stiffening appears to precede many 
negative changes to the rest of the cerebrovasculature, brain 
health, and cognition. Since it is measurable by non-invasive 
methods, it is a prime candidate to target for prevention and/
or early interventions.

Elastic fibers, collagen, and smooth muscle cells support 
the arterial wall (Wagenseil & Mecham, 2012). The elastic 
components of the arterial wall deteriorate over the life span, 
due to a number of mechanisms that are pervasive in aging. 
Arterial stiffness appears to follow an exponential trajectory, 
with the rate increasing with age (AlGhatrif et  al.,  2013). 
Starting around age 30, carotid artery distensibility and 
compliance begin to decrease (Reneman et  al.,  1986). In 
adults, once damaged, elastic fibers are generally not re-
placed (Wagenseil & Mecham,  2012). Instead, collagen, 
rather than elastin, is produced, which increases stiffness 
(Todorovich-Hunter et  al.,  1988; Wolinsky, 1970). In addi-
tion, throughout the life span, elastic layers can calcify (Dao 
et al., 2005), and elastic fibers may also form protein–protein 
crosslinks (Dao et al., 2005; Konova et al., 2004; Wagenseil 
& Mecham, 2012).

A common additional contributor to arteriosclerosis in 
aging is atherosclerosis, where plaques develop in the walls of 
arteries and cause their lumen to narrow (Falk, 2006; Kattoor 
et  al.,  2017; Libby,  2012; Ross,  1995). Atherosclerosis is 
dangerous because rupturing plaques can cause clotting or 
embolisms. In addition, atherosclerotic plaques weaken the 
vascular wall, which can lead to aneurysms. The onset of ath-
erosclerosis appears as reversible fatty streaks in the arterial 
walls as early as adolescence (Kunz, 2000; Stary et al., 1994). 
However, the degree to which early stages of atherosclerosis 
contribute to the arterial stiffening is still a matter of debate 
(Cecelja & Chowienczyk, 2012; Farrar et al., 1991).

Arteries remodel to withstand repetitive hemodynamic 
stresses to the arterial wall (Lasheras, 2006). This remodeling 
is responsible for some of the stiffening. In some cases, this 
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process fails, and the arterial wall weakens and distends form-
ing an aneurysm. The most serious potential consequence of 
a cerebral aneurysm is that it may rupture and cause a hem-
orrhagic stroke. Aneurysms may also interact with arterial 
flow in complex ways and affect flow pulsatility, which has 
downstream consequences on microvasculature (Hussein 
et al., 2018). In the brain, this process most commonly occurs 
in the intracranial arteries surrounding the Circle of Willis 
(Lasheras,  2006). Cerebral aneurysms are relatively rare 
(about 0.4%–3.7%), and usually do not occur until middle-age 
or later (Keedy, 2006; Weir, 2002). Most cerebral aneurysms 
are asymptomatic (Keedy, 2006). Symptomatic cerebral an-
eurysms are known to leak blood and contribute to ischemic 
cerebrovascular disease (Wagner & Stenger, 2005), but the 
degree to which smaller, unruptured cerebral aneurysms lead 
to sub-clinical impairments that could contribute to normal 
age-related cognitive impairment remains unclear.

Cerebral blood flow (CBF) pulsatility has been directly 
correlated to carotid pulse pressure, and predictive of white 
matter hyperintensities (Tarumi et  al.,  2014). Increases in 
central pulse pressure following arterial stiffening are trans-
mitted into the brain via higher flow and lower resistance 
vascular beds (Mitchell, 2008; Mitchell et al., 2011; Tarumi 
et al., 2014; Webb et al., 2012). Although there is evidence 
for functional dampening of pulsatility through the structure 
of the carotid arteries (Schubert et  al.,  2011), microvascu-
lature must also remodel with ramifications to downstream 
function and reactivity (Mitchell et al., 2005). Cerebral arte-
rial pulsatility appears to increase according to an exponen-
tial function (Tarumi & Zhang, 2018).

A large component of pulsatility of pulse pressure wave-
forms is the arterial wave reflection returning primarily 
from bifurcations in peripheral vessels (van de Vosse & 
Stergiopulos, 2011; Westerhof et al., 1972). It has been hy-
pothesized that pulsatility in CBF is primarily from wave re-
flections from peripheral vascular beds with high resistance, 
rather than the vascular bed of the brain itself (O’Rourke & 
Safar, 2005; Tarumi et al., 2014). In aging, the reflected wave 
becomes larger in amplitude and arrives earlier, leading to a 
pronounced systolic peak in the pulse wave, increase in sys-
tolic pressure, and increased pulse pressure (van de Vosse 
& Stergiopulos,  2011). Interestingly, there appears to be a 
relationship between the reflected wave component of the 
pulse pressure wave and an individual's height, where smaller 
heights predict earlier returns of the reflected wave (London 
et al., 1995), which may augment central pressure and con-
tribute to sex differences in CBF, pressure, and pulsatility 
(Tarumi et al., 2014).

Until recently, most of the methods used to assess arte-
rial stiffness in humans focused on measurements taken from 
areas outside of the brain or using transcranial Doppler ultra-
sound to make a single measurement of cerebral arterial stiff-
ness from the middle cerebral artery. These measurements 

would then be correlated to brain health and cognition. These 
types of measurements have been reviewed extensively 
elsewhere (Badji, Sabra, et  al.,  2019; Laurent et  al.,  2006; 
Townsend et al., 2015).

The gray matter of the thalamus, as well as the white matter 
of the corpus callosum, internal capsule, corona radiata, and 
the superior longitudinal fasciculus appear to be particularly 
vulnerable to arterial stiffening (Badji, Sabra, et  al.,  2019; 
Pauline et  al.,  2016; Tarumi et  al.,  2015). Using DTI and 
magnetization transfer imaging together, it is possible to sep-
arate axonal integrity from myelination (Badji, Noriega de 
la Colina, et al., 2019). Interestingly, arterial stiffness seems 
to be associated with axon degeneration as opposed to de-
myelination (Badji, Noriega de la Colina, et al., 2019). Both 
arterial stiffening and the subsequent brain damage have been 
related to cognitive abilities, including speed-of-processing, 
executive skills, memory, verbal learning, and visuo-spatial 
function (Badji, Sabra, et al., 2019).

More recently methods have been introduced, using dif-
fusive optical tomography to measure the amplitude, tim-
ing, and shape parameters of the pulse wave (pulse-DOT; 
Fabiani, Low, et al., 2014; Tan et al., 2017) and MRI (Furby 
et al., 2019; Warnert et al., 2016; Yan et al., 2016), that allow 
researchers to non-invasively measure arterial stiffness in the 
brain of healthy, normally aging humans. These methods in-
crease the precision with which the effects of cerebral arterial 
stiffness on brain health and cognition can be assessed, al-
lowing for the examination of regional variability in vascular 
health (Figure 3).

Tan and colleagues (2019) found that optical measures 
of cerebral arterial stiffness predicted white matter signal 
abnormalities and cognitive performance in a sample of 
normal aging adults. Furthermore, they observed regional 
specificity in these effects. Specifically, the arterial ter-
ritory perfused by the middle cerebral artery showed the 
largest correlation between stiffness measures and white 
matter abnormalities. Chiarelli, Fletcher and colleagues 
(2017) found an association between individual differences 
in regional cortical volumes and local optical measures of 
cerebral arterial stiffness. Such observations of regional 
specificity highlight one of the major advantages of mea-
suring arterial stiffness directly from the cerebral arteries 
rather than from the periphery. Other studies, using the 
same techniques, have demonstrated local specificity for 
predicting cognitive performance. In the article that in-
troduced this technique, Fabiani, Low, et al. (2014) found 
evidence for a double dissociation wherein measures of ar-
terial compliance in the left middle cerebral artery territory 
(supplying Broca's area) were related to performance on 
a verbal fluency task but not on a working memory task. 
Conversely, arterial compliance in the precentral arteries 
(supplying bilateral dorsolateral prefrontal cortices) was 
related to performance on the working memory task, but 
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not on the verbal fluency task. In a separate study, Tan 
et al. (2017) showed a regional effect in which performance 
on a working memory task was related to arterial compli-
ance localized to the frontoparietal cortex, but not with the 
global measures of compliance. At present, optical imaging 
techniques are more mature in their ability to investigate 
these local differences than the emerging work in MRI, 
but the MRI work is evolving quickly (Furby et al., 2019; 
Warnert et al., 2016; Yan et al., 2016).

Although the mechanisms that cause arterial stiffening 
begin early in life, there is growing evidence to support the 
possibility of prevention and even its reversibility. In terms 
of lifestyle, increased aerobic exercise, caloric restriction, di-
etary content, and weight loss are known to attenuate, and 
sometimes reverse, the progression of arterial stiffening (Dai 
et  al., 2012; Oh, 2018). Ongoing work to develop pharma-
ceutical interventions specifically targets repairing damage 
(e.g., through elastin synthesis / breaking collagen cross-
links) or preventing the signaling cascades involved in the 
causes of subsequent arterial stiffening (e.g., arterial wall 

inflammation) or the arterial stiffening itself (Dai et al., 2012; 
Najjar et al., 2005).

3.3  |  Decreased cerebrovascular reactivity

Vascular reactivity refers to the ability of a blood vessel 
to dynamically dilate or constrict after exposure to some 
stimulus. In the brain, cerebrovascular reactivity (CVR) is 
critically important in maintaining cerebral autoregulation, 
the phenomenon of stable CBF over a large range of arte-
rial pressures (Armstead,  2016). CVR underlies neurovas-
cular coupling (the dynamic control of local blood flow in 
response to increased metabolic needs due to neural activity; 
Filosa, 2010; Hosford & Gourine, 2019; Iadecola, 2017).

Vascular regulation is mainly controlled by the dilation 
and constriction of the vascular smooth muscle surrounding 
arteries and arterioles, and possibly by actin-containing peri-
cytes surrounding the capillaries, although there is an ongoing 
debate regarding the classification of these actin-containing 

F I G U R E  3   Arterial stiffness can be measured using diffuse optical tomography, which is sensitive to different properties of the pulse flow 
wave propagating through local arteries (pulse-DOT). These properties include amplitude of the flow wave, reflecting local pulse pressure, transit 
time, reflecting upstream arterial compliance, and shape, which is a complex combination of both downstream and upstream vascular properties 
and reflects flow pulsatility. These properties change with age and correlate to other measures of brain health and cognition
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cells near arteriole-capillary borders (Fernández-Klett 
et  al.,  2010; Hall et  al.,  2014; Hill et  al.,  2015; Kornfield 
& Newman, 2014; Peppiatt et al., 2006; Vates et al., 2010; 
Yemisci et al., 2009). This vascular regulation is critical for 
maintaining appropriate blood flow throughout the brain, as 
vessel walls relax to dilate when pressure drops and constrict 
when pressure increases (Cipolla, 2009; Greene & Lee, 2012). 
The vasomotor function of cerebral vessels can be stimulated 
extrinsically by hypo/hyperoxia, hypo/hypercapnia, or by in-
troducing chemical vasodilators or vasoconstrictors (Chiarelli 
et  al.,  2007; Lu et  al.,  2014; Sicard & Duong,  2005). The 
ability to stimulate vasodilation in the cerebral vessels, par-
ticularly through the inhalation of CO2-enriched gases, gives 
researchers an opportunity to harmlessly measure differences 
in vascular reactivity across groups, treatments, or even re-
gions of the brain.

Interestingly, cerebral reactivity does appear to differ 
across the brain. Gray matter has more vascular reactivity 
than the white matter (Rostrup et  al.,  2000; van der Zande 
et al., 2005). Although extant research is not completely con-
sistent, there seems to be a general pattern wherein the pos-
terior brain (occipital, parietal, and cerebellum) has greater 
reactivity than more anterior regions (frontal, temporal, and 
insular regions; Last et  al.,  2007; Novak,  2012). However, 
Zhao et al. (2009) found that, while reactivity was lower in 
the MCA compared to the PCA vascular territory, the ACA 
territory had reactivity more similar to the PCA territory. This 
result suggests that differences in reactivity may depend on 
arterial territory distributions, or on localized regional stiff-
ening. More research is needed to determine whether resting 
differences in reactivity are driven by regional tissue differ-
ences or by differences in the arterial territories. One critical 
outstanding question is the extent that regional differences 
in vascular reactivity could interact with age-related decline. 
For example, Catchlove, Macpherson et al. (2018) hypothe-
sized that regions with initial lower CVR would be more af-
fected by declines in perfusion than areas with greater initial 
reactivity. This is in line with current conceptions of cere-
brovascular reserve, where cerebrovascular autoregulatory 
capacity is thought to dampen and control other age-related 
vascular dysfunction up to some critical point, where auto-
regulatory functions can no longer compensate (Davenport 
et al., 2012; Novak, 2012).

In addition to flow regulation, the cerebrovasculature also 
responds to local metabolic needs of tissue through neuro-
vascular coupling and functional hyperemia. In functional 
hyperemia, blood flow is coupled to metabolism at a ratio 
of ~2:1 in healthy adults and supports neuronal activity and 
processing efficiency (Abdelkarim et  al.,  2019). This pro-
cess is facilitated by the neurovascular unit (Iadecola, 2017). 
Generally, this process is maintained through changes in 
a group of metabolite concentrations resulting from neu-
ronal metabolism. Increased potassium ions, ATP, and 

adenosine in the extracellular space all act as signaling mol-
ecules to induce vasodilation through smooth muscle relax-
ation (Abdelkarim et al., 2019; Girouard & Iadecola, 2006; 
Iadecola,  2017). Additionally, nitric oxide (NO) released 
from the active neurons also relaxes the vascular smooth 
muscle cells (Abdelkarim et  al.,  2019; Iadecola,  2017). In 
fact, blockade of neuronal NO synthase (nNOS) seems to 
have the greatest effect on the neurovascular response, reduc-
ing it by an average of 65% across 11 studies (Hosford & 
Gourine, 2019). Finally, astrocytes, which detect glutamate 
in the synapse, release signaling prostaglandins (prostaglan-
din E2) and epoxyeicosatetraenoic acids (EETs) that cause 
the vascular smooth muscle cells to vasodilate (Abdelkarim 
et al., 2019; Iadecola, 2017).

Unfortunately, these signaling pathways can become di-
rectly impaired with aging (Tarantini et al., 2017), although 
nutritional interventions may help prevent deficiencies 
(Gratton et  al.,  2020). Even beyond that, other age-related 
changes in molecular processes, often related to inflam-
mation, can increase the presence of other vasodilators and 
vasoconstrictors that may impair neurovascular coupling. 
Normally, astrocytes maintain non-overlapping domains of 
interaction with the blood vessels (Abdelkarim et al., 2019; 
Bushong et al., 2002). This distribution is critical for the co-
ordination of signaling on the vessel, as astrocytes propagate 
signals to other astrocytes through endfoot-endfoot Ca2+ sig-
naling (Abdelkarim et al., 2019; Attwell et al., 2010; Cauli & 
Hamel, 2018; Chen et al., 2014; Tian et al., 2010). In aging, 
inflammation causes cell hypertrophy in the astrocytes, which 
disrupts this spreading Ca2+ signaling by impairing the he-
michannel contacts between astrocytic endfeet (Abdelkarim 
et  al.,  2019; Sofroniew,  2009). In addition, inflammatory 
cytokines and ROS activate inducible nitric oxide synthase 
(iNOS), which has the effect of upregulating NO, and glial re-
activity causes higher intracellular Ca2+ levels in astrocytes, 
both of which increase vasodilatory signaling (Abdelkarim 
et  al.,  2019; Jiang & Cadenas,  2014; Sofroniew,  2009). 
However, aging also increases the presence of potent vaso-
constrictors, including thromboxane, angiotensin II, and en-
dothelin-1 (Abdelkarim et al., 2019; Brandes et al., 2005; Jia 
et  al.,  2019; Scioli et  al.,  2014). Thus, how the balance of 
vasodilation and vasoconstriction changes with age, and the 
subsequent degree of neurovascular coupling dysfunction, is 
difficult to predict, and probably differs across the brain. The 
extent of regional variation in neurovascular coupling with 
aging is not yet known but increased inflammatory signaling 
might be the root cause of age-related changes in vasomo-
tor signaling, suggesting that areas with greater inflamma-
tion would also suffer the most impairment in neurovascular 
coupling.

Clearly, the control of CVR is multi-faceted and complex. 
This complexity has made it difficult to reach a clear consensus 
regarding how much CVR changes with age, a topic covered 
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in depth by Yabluchanskiy et al. (2021). Some age-related 
changes induce more vasodilation, while others induce vaso-
constriction, while still others disrupt signaling over space 
(Figure 4). These opposing forces may make it complicated 
to study age-related disruptions to vascular reactivity. The 
literature reflects this difficulty, with some articles report-
ing age-related decreases in hypercapnic vascular reactivity 
(De Vis et al., 2015; Gauthier et al., 2013; Ito et al., 2002; 
Kastrup et al., 1998; Lu et al., 2011; Peng et al., 2018; Reich 
& Rusinek, 1989; Schieve & Wilson, 1953), others report-
ing age-related increases (Zhu et  al.,  2013), and still oth-
ers reporting relatively stable reactivity over the life span 
(Barnes et al., 2012; Carey et al., 2000; Catchlove, Parrish, 
et  al.,  2018; Coverdale et  al.,  2017; Galvin et  al.,  2010; 
Murrell et  al.,  2012; Rosengarten et  al.,  2003; Yam 
et al., 2005). Complicating matters further, some studies have 
reported differences between hypocapnic reactivity and hy-
percapnic reactivity as a function of age (Galvin et al., 2010; 
Murrell et al., 2012; Zhu et al., 2013). Within these studies, 
both decreases (Yamaguchi et al., 1979; Zhu et al., 2013) and 

increases (Galvin et al., 2010; Murrell et al., 2012) in hypo-
capnic responses have been observed.

Considering this mixed body of evidence, it is important 
to note that the “normal” aging population is rarely free 
of cardiovascular risk factors or of some degree of vas-
cular impairment, and that cardiorespiratory health itself 
is largely dependent on age (Laurent,  2012; Lloyd-Jones 
et  al.,  2005). If CVR changes as a downstream conse-
quence of other forms of vascular impairment, it would be 
expected that these CVR changes would vary depending 
on the health of the sample. Owing to the complexity of 
the mechanisms underlying CVR, it is possible that sam-
ples will have differently weighted impairments promoting 
increased vasodilation, increased vasoconstriction, or oth-
erwise disrupted neurovascular signaling mechanisms. A 
study by Coverdale et al. (2017) found that while there was 
no difference in CVR between older and younger adults 
in their sample, mean arterial pressure increased more 
during hypercapnia for older than younger adults, suggest-
ing that a central hemodynamic response may compensate 

F I G U R E  4   This simplified view shows how some of the signaling mechanisms involved in neurovascular coupling are disrupted in aging. 
Increases in NO resulting from mitochondrial dysfunction and inflammatory signaling at the neurovascular junction promote vasodilation. In 
contrast, inflammatory signaling in endothelial cells promote potent vasoconstriction. Overall, inflammatory signaling, from mitochondrial 
dysfunction or from exposure to external toxins coming through an impaired BBB, may lead to impairments in the coordinated neurovascular 
coupling mechanisms that dilate local vasculature in response to neural activity
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for a diminished vasomotor capacity. This intriguing find-
ing highlights that there are both local and central hemo-
dynamic mechanisms at play in controlling CVR, which 
further increases the complexity of age effects. Finally, it 
is possible that sex-related differences play a substantial 
role in age-related changes in CVR. In one study a sig-
nificant change was observed in women but not in men 
(Kastrup et al., 1998). Matteis et al. (1998) suggested that 
age differences in CVR in women may be explainable by 
pre-menopausal versus post-menopausal status. Together, 
these results demonstrate the care needed to investigate 
such a complex system.

In some cross-sectional and longitudinal studies showing 
differences in CVR with age, the onset of changes in CVR 
varied between 35 and 60  years (Peng et  al.,  2018; Reich 
& Rusinek,  1989), which roughly corresponds to the age 
range in which changes in pulse pressure become evident 
(Pinto,  2007). However, most CVR studies to date look at 
simple splits between younger and older groups, so future 
work with larger samples is needed to clarify the onset of 
changes. Some intriguing evidence suggests that the trajec-
tory of age-related changes is sigmoidal, with the fastest ac-
celeration of decline between 40 and 60 (Peng et al., 2018). 
This pattern would be unexpected if dysfunction of CVR is 
mainly rooted in inflammatory processes but would be ex-
pected if hormonal changes due to menopause are responsible 
for a large proportion of the age-related variance. However, 
the study demonstrating this sigmoidal relationship collapsed 
their analysis across sexes. Future research should consider 
the potential effect of menopause in affecting CVR as a co-
variate deserving of further investigation.

Failure of autoregulatory vascular mechanisms could re-
flect either signaling deficits or a breaching of the limits of 
cerebrovascular reserve. Either way, dysfunctional autoreg-
ulatory mechanisms could lead to insufficient blood flow at 
low perfusion pressures or damaging amounts of blood flow 
at high perfusion pressures, which could result in subsequent 
ischemia (O’Rourke & Safar, 2005). Similarly, dysfunctional 
neurovascular coupling could cause transient bouts of isch-
emia locked to neural activation, which could impair the effi-
ciency of neural communication in the short term and cause 
damage to the cells in the long term (Abdelkarim et al., 2019; 
De Silva & Faraci, 2017; Iadecola, 2017). There is a paucity 
of research assessing the degree to which changes in CVR are 
preventable or reversible in humans. However, if age-related 
CVR changes are strongly determined by prior vascular dys-
function, it would be expected that CVR dysfunction would 
also be preventable and reversible to the same degree that 
arterial inflammation and stiffness are, and according to the 
same mechanisms. There is evidence to support this hypoth-
esis in animals, where neurovascular uncoupling is reversible 
through interventions that improve endothelial health (Park 
et al., 2007; Toth et al., 2014).

Studies that address how age-related CVR changes cor-
respond to cognition are still sparse. In a 4-year longitudinal 
study, Peng and colleagues (2018) found that longitudinal CVR 
changes were associated with changes in processing speed 
and episodic memory, but not working memory or reasoning, 
with the fastest declines in CVR in the temporal lobe. Similar 
results were published by Catchlove, Parrish, et  al.  (2018), 
finding that age-related CVR reductions were most promi-
nent in temporal lobe, and that temporal lobe CVR correlated 
with memory performance and attention tasks with speed-
of-processing components, independently of age, gender, and 
education level. These findings are supported by research in 
animals. In mice, age-dependent impairment of neurovascu-
lar coupling in the hippocampus correlated with reduced per-
formance on a spatial memory task (Lourenço et al., 2018). 
There is also a wealth of research relating CVR impairment 
to age-related cerebral pathologies, including mild cognitive 
impairment and Alzheimer's Disease (Alwatban et al., 2019; 
Bär et  al.,  2007; Cantin et  al.,  2011; Chen,  2018; Glodzik 
et al., 2013; Gongora-Rivera et al., 2018; Heun et al., 1994; 
Kalaria, 2010; Kelleher & Soiza, 2013; Richiardi et al., 2015; 
Sánchez-Catasús et al., 2017; Silvestrini et al., 2006; Viticchi 
et  al.,  2012; Yezhuvath et  al.,  2012). Overall, this research 
suggests that age-related declines in CVR are mostly present 
in the temporal lobe, although future work will help to con-
firm and clarify the details of the effects of age on regional 
CVR and cognition.

3.4  |  Leaky BBB

A functional BBB plays a critical role in maintaining CNS 
function (Erdő et  al.,  2017). Disruption of the BBB has a 
devastating impact on brain function and is associated with 
age-related brain pathologies including Alzheimer's Disease 
(Iadecola, 2013; Montagne et al., 2015; Snyder et al., 2015; 
Sweeney et al., 2015, 2018, 2019). The causal direction be-
tween vascular dysfunction and these diseases is a topic of 
ongoing research (Erdő et  al.,  2017). A recent theoretical 
model proposed a “two-hit” process, wherein cerebrovascu-
lar damage modulated by genetic, environmental, and life-
style factors disrupt the BBB (hit 1), which directly causes 
neuronal injury, but can also accelerate amyloid β-peptide 
(Aβ) pathology (hit 2) through impaired clearance of Aβ and 
increased Aβ production (Cockerill et  al.,  2018; Sweeney 
et  al.,  2015; Zhao, Nelson, et  al.,  2015; Zhao, Sagare, 
et  al.,  2015). Accumulation of Aβ would then exacerbate 
BBB impairment through increased inflammation.

Permeability of the BBB increases with age (Farrall & 
Wardlaw, 2009). Since the BBB is a functional term that en-
compasses endothelial cells, astrocytes, microglia, pericytes, 
and neurons, as well as tight junctions and structural attributes 
of the capillaries, there is a vast literature on age-related BBB 
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dysfunction that spans all of these functional components 
(Erdő et  al.,  2017; Mooradian,  1988; Popescu et  al.,  2009; 
Profaci et  al.,  2020; Zhao, Nelson, et  al.,  2015). Here, we 
focus on age-related decline in the ability of the BBB to pre-
vent neurotoxic and inflammatory proteins from entering the 
brain and to efficiently remove neurotoxic metabolic waste 
products.

BBB breakdown leads to accumulation of toxins that 
damage neurons either directly or indirectly. Hemoglobin 
and free iron cause the production of ROS and oxidant stress 
to neurons (Bell et  al.,  2010; Zhao, Nelson, et  al.,  2015). 
Blood-derived proteins such as fibrinogen, thrombin, and 
plasminogen degrade the neuronal extracellular matrix and 
increase ROS and inflammation (Bell et al., 2010; Halliday 
et al., 2016; Hultman et al., 2013; Zhao, Nelson, et al., 2015; 
Zipser et  al.,  2007; Ryu & McLarnon,  2009). Albumin, 
another blood-derived protein, causes vasogenic edema 
(Blennow et  al.,  1990; Montagne et  al.,  2015; Sweeney 
et al., 2015; Zhao et al., 2009). Finally, the loss of immune 
privilege can result in the entry of autoantibodies and im-
mune cells that damage neurons (Erickson & Banks, 2019; 
Hammer et  al.,  2014; Sweeney et  al.,  2015; Zhao, Nelson, 
et al., 2015).

In humans, the degree of accumulated toxicity in normal 
aging in the absence of pathology and its impact on normal 
age-related cognitive decline is still unknown. Interestingly, 
BBB disruption does not always lead to brain damage, sug-
gesting that BBB function and its relation to neuronal dam-
age may depend on its etiology (Erickson & Banks, 2019). 
For instance, some therapeutic strategies depend on transient 
disruptions of the BBB, which are well tolerated (Doolittle 
et al., 2014; Lipsman et al., 2018). Future research will need 
to elucidate the circumstances in which BBB disruption is 
tolerated or detrimental.

In animal models, the extent of BBB damage appears 
to be lessened or preventable through exercise (Małkiewicz 
et al., 2019; Souza et al., 2017). Furthermore, exercise ame-
liorates damage from BBB disruption after hypoperfusion 
(Lee et al., 2017). A high-fat diet also seems to increase BBB 
permeability in mice, particularly in models of induced insu-
lin resistance (de Aquino et al., 2018; Salameh et al., 2019; 
Yamamoto et  al.,  2019). Thus, there is a strong prediction 
that exercise and diet could modulate BBB permeability in 
humans, although research is currently lacking. According 
to the two-hit model of BBB dysfunction, BBB perme-
ability is probably modifiable at the level of the first “hit” 
through modulation of initial upstream vascular damage and 
inflammation. After the second “hit,” with the introduction 
of pathological processes, a vicious cycle may be initiated 
whereby dysfunction causes more dysfunction, which may be 
more difficult to reverse.

Recently, Senatorov et  al.  (2019) investigated a mecha-
nism of BBB impairment on cognition in normal aging in 

both mice and humans. In this landmark study, they found ev-
idence of BBB dysfunction beginning in middle-age in mice, 
which they replicated with dynamic contrast-enhanced imag-
ing in humans, showing a linear increase in BBB permeability 
after age 40. This article highlights potentially early changes 
in BBB function with age, even in the absence of disease. The 
most widely used method to measure BBB permeability is 
dynamic contrast-enhanced MRI (Tofts & Kermode, 1991). 
This method is effective at quantifying major disruptions of 
the BBB because it is sensitive to the permeability of the very 
large molecules used as contrast agents, such as gadolinium 
diethylenetriamine pentaacetic acid (Gd-DTPA) (Barbier 
et  al.,  2002; Starr et  al.,  2009; van de Haar et  al.,  2016). 
However, minor disruptions due to aging and indicative of 
the early stages of pathology are more difficult to measure. In 
addition, the injection of a potentially toxic tracer, whose risk 
increases in cases of BBB dysfunction, is not an ideal tool 
(Kanda et  al.,  2016; Olchowy et  al.,  2017). The recent de-
velopment of non-contrast MRI techniques to measure BBB 
permeability will contribute to the growing research on BBB 
dysfunction in humans in the future (Evans et al., 2020; Lin 
et al., 2018; Shao et al., 2019).

3.5  |  Loss of microvasculature

Aging is related to rarefaction of the microvasculature, al-
though there is variability across brain areas, microvascula-
ture components, and in findings across studies. The most 
substantial loss of microvasculature appears to occur in 
cortical arterioles (Sonntag et  al., 1997, 2007). In contrast, 
the density of arterioles extending from the pia to the white 
matter remain similar across age (Knox & Oliveira, 1980), 
and arteriole density in some areas, such as the subiculum 
of the hippocampus, has even been shown to increase with 
age (Bell & Ball, 1981). There also appears to be some age-
related change in the capillary density in the cortex and hip-
pocampus, but this evidence is more equivocal (Brown & 
Thore, 2011; Riddle et al., 2003; Sonntag et al., 2007). When 
observed, declines in capillary density are lower, 10%–30%, 
compared to those in cortical arterioles (~40%) (Sonntag 
et al., 2007). Capillary density also does not seem to decline 
linearly with age. Some studies suggest that capillary den-
sity actually increases during middle-age, but declines in 
late senescence (Hunziker et al., 1979; Sonntag et al., 2007; 
Wilkinson et al., 1981). The mechanism underlying this tra-
jectory might be related to vascular responses to hypoxia. 
Under normal circumstances, vascular density increases dur-
ing periods of hypoxia or inflammation (Boero et al., 1999; 
Pober & Sessa, 2015). This responsiveness to hypoxia seems 
to decline with age (Chavez & LaManna,  2003; Rivard 
et al., 1999). Thus, if brain hypoxic episodes increase due to 
other vascular dysfunctions related to aging, the body may 
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respond by increasing microvascular density until the ability 
to compensate effectively is impaired. Studies of these pro-
cesses have not separately investigated declines in arteriole 
and capillary density, and future work will need to investi-
gate the reason for the differences between these microvas-
cular components.

Intuitively, in a well-functioning vascular tree, capillary 
density should not change, since it represents the distances 
between cells and the point of oxygen and nutrient exchange. 
Decreasing density would increase this distance, impairing 
tissue function. This reasoning is less clear when it comes 
to arterioles. Rarefaction of arterioles on the cortical surface 
could reflect vascular dysfunction, leading to hypoperfusion 
and ultimately neuronal damage. However, it is also possible 
that this is an active mechanism used to efficiently control 
blood flow and blood supply. A reduction in brain metabo-
lism could precede arteriole rarefaction.

Currently, there is evidence that supports both hypothe-
ses, which are not mutually exclusive. Research in microvas-
cular plasticity has revealed that the microvasculature does 
indeed adapt to the metabolic needs of tissue, both increasing 
and decreasing in response to metabolic need (Argandoña & 
Lafuente, 1996, 2000; Black et al., 1987; Sirevaag et al., 1988; 
Sonntag et al., 2007). It should be noted that experiments on 
the effects of reduced metabolism have shown decreases in 
capillary density, which would not be predicted by the “in-
tuitive” view discussed above. This suggests that microvas-
culature at all levels may respond to neuronal activity. The 
extent of microvascular plasticity to learning is reduced in 
age (Black et al., 1989). Despite these age-related reductions, 
the causal direction of the relationship between neural met-
abolic needs and microvasculature plasticity is still unclear. 
Decreases in neuronal plasticity would predict decreases in 
microvascular plasticity, and insufficient vascular plasticity 
would predict insufficient resources to generate and maintain 
new synapses and other neuronal growth. Therefore, the di-
rection of causality is plausible in either direction (Sonntag 
et  al.,  2007). It is possible that declining metabolic needs 
reflective of neuronal senescence could drive the observed 
microvascular loss.

There is evidence to suggest that age-related decreases 
in circulating hormones affect the density of surface arteri-
oles (Norling et al., 2020; Sonntag et al., 1997). Particularly, 
circulating plasma insulin-like growth factor 1 (IGF-1) cor-
relates strongly with arteriole density (Norling et al., 2020; 
Sonntag et al., 1997). Injections of growth hormone in old an-
imals increase IGF-1 and cortical arteriole density (Sonntag 
et al., 2000). Similarly, fibroblast growth factor (bFGF) and 
vascular endothelial growth factor (VEGF) are known to in-
fluence angiogenesis and microvascular plasticity (Kräling & 
Bischoff, 1998; Moens et al., 2014; Rosenstein et al., 1998) 
and be involved in exercise-induced angiogenesis (Ding, Li, 
Zhou, et al., 2006; Gao et al., 2014; Tang et al., 2010; Voss 

et al., 2013). However, it remains unclear whether these fac-
tors mediate age-related vascular changes. After injury, how-
ever, VEGF-enhanced angiogenesis results in increased BBB 
leakage. Thus, it is not clear whether these factors are solely 
beneficial to the microvasculature (Argaw et al., 2009, 2012; 
Nag, 2002; Zhang et al., 2000; Zhang & Chopp, 2002).

Evidence of age-related CBF changes, partially regu-
lated by the density of cerebral arterioles and capillaries, 
faces similar problems of interpretation. For instance, CBF 
also decreases with age in regionally distinct ways (Aanerud 
et  al.,  2012; Ainslie et  al.,  2008; Lu et  al.,  2011; Martin 
et  al.,  1991; Stoquart-ElSankari et  al.,  2007; Zimmerman 
et  al.,  2014). Like arteriole rarefaction, CBF begins to de-
cline in middle age (Lu et  al.,  2011; Schultz et  al.,  1999). 
Like CVR, CBF is also tightly coupled to cellular metabolism 
(Kuschinsky,  1990). In fact, this coupling is so strong that 
imaging researchers continue to debate the extent that age-
related decreases in CBF reflect more than just decreases in 
the partial gray matter volume within the voxels they quantify 
(Chen et  al.,  2011; Meltzer et  al.,  2000). Therefore, future 
research is needed to determine the direction of causality be-
tween CBF decline and metabolic decline in aging.

CBF does increase after aerobic exercise interventions 
(Chapman et  al.,  2013; Espeland et  al.,  2018; Kleinloog 
et al., 2019). In fact, Zimmerman et al. (2014) found that the 
decline in cardiorespiratory fitness, strongly dependent on 
physical activity level, mediated the effect of aging on CBF, 
suggesting that age-related decreases in perfusion are related 
to decreases in fitness and are substantially offset by exercise.

Aerobic exercise is known to increase circulating growth 
factors including VEGF, brain-derived neurotrophic factor 
(BDNF), and IGF-1 (Bowie et al., 2021). Thus, it seems pos-
sible that exercise effects on CBF are mediated by the ef-
fect of these increased circulating growth factors on arteriole 
or capillary density. CBF can be increased through exercise 
intervention (Stillman et  al.,  2021), and greater cardiore-
spiratory fitness predicts increased volume in certain brain 
regions, which has been hypothesized to be partially due to 
angiogenesis (Fletcher et al., 2016). There is some existing 
evidence in animals that exercise increases capillary density 
within regions of the brain related to motor functions (Black 
et  al.,  1990; Ding et  al.,  2004; Ding, Li, Yao, et  al.,  2006; 
Isaacs et  al.,  1992; Kleim et  al.,  2002; Rhyu et  al.,  2010; 
Swain et al., 2003) and the hippocampus (Borght et al., 2009; 
Kerr et  al.,  2010). However, evidence from in vivo two-
photon imaging in the motor cortex of young-adult mice 
failed to find any changes in vascular structure after a period 
of long-term exercise (Cudmore et al., 2017). Interestingly, in 
a study by Rhyu et al. (2010), no change in vascular density 
as a result of exercise was observed in middle-aged monkeys, 
but an effect was observed in older monkeys, suggesting 
that exercise-related increases in vascular density might de-
pend on some prior age-related decline. Because the areas 
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examined in many of these studies were restricted and the 
findings not always replicable, it is still unclear what the full 
extent of angiogenesis is in response to exercise and under 
what circumstances it occurs. Specifically, it remains unclear 
whether exercise-induced angiogenesis is a reflection of in-
creased metabolic activity in the brain during exercise, or 
instead, an effect of increases in circulating growth factors 
and hormones produced elsewhere in the body (e.g., muscles) 
(Delezie & Handschin, 2018; Gardner et al., 2020). The fact 
that most studies specifically examine angiogenesis in motor 
areas makes interpretation particularly difficult, since these 
areas are the locations where exercise would be expected to 
primarily increase neuronal metabolic activity and plasticity.

Given this evidence, it seems likely that some microvascu-
lar loss and CBF decline is related to declining metabolism, 
and some is related solely to the impairment of mechanisms 
that promote angiogenesis. Future research with longitudinal 
designs will be needed to clarify whether loss of cerebral 
microvasculature precedes neural damage, and whether this 
microvascular rarefaction directly contributes to age-related 
cognitive decline.

3.6  |  Changes in microvascular morphology

Coincident with general age-related reduction in microvascu-
lar density, the morphology of small vessels also changes. 
These changes include increased small vessel tortuosity2 and 
thickening of the veins and venules (Fang, 1976). These phe-
nomena may also exert deleterious effects on brain 
parenchyma.

Arterioles that supply the deep white matter begin to be-
come more tortuous at around age 50 (Akima et  al.,  1986; 
Brown & Thore,  2011; Hassler,  1967; Thore et  al.,  2007). 
Tortuosity increases the amount of blood pressure needed to 
maintain sufficient flow in the vessels (Moody et al., 1991). 
Because of the watershed principle considered earlier, it is 
likely that tortuosity increases the vulnerability of specific 
areas, such as portions of the white matter, which may be 
particularly vulnerable to low blood flow. Indeed, increased 

tortuosity may be involved in leukoaraiosis (i.e., white mat-
ter abnormalities characterized by localized loss of myelin), 
which is thought to reflect ischemic hypoxia in the white 
matter (Brown & Thore,  2011; Marek et  al.,  2018; Thore 
et al., 2007).

A related cerebral vascular pathology is periventricu-
lar venous collagenosis. In this condition, vein and venule 
wall thickness increases, narrowing the lumen, and restrict-
ing flow (Brown & Thore,  2011). Some degree of venous 
thickening in periventricular white matter occurs in normal 
aging (Moody et al., 1995). In some cases, excessive collagen 
deposition causes more severe thickening, that exacerbates 
leukoaraiosis (Brown & Thore, 2011). This more severe ve-
nous collagenosis is relatively common, appearing in over 
half of autopsied patients over age 60 who did not die from 
degenerative brain diseases, although the sample included 
cardiovascular-disease patients, which might inflate the fre-
quency of occurrence (Moody et al., 1995). Within the pa-
tients who had periventricular venous pathology, over 75% 
also had advanced leukoaraiosis, suggesting a strong associa-
tion (Moody et al., 1995).

In samples of living older adults, it is most common to 
assess microvascular pathology by measuring white matter 
hyperintensities (WMHs) with T2-weighted MRI (Prins & 
Scheltens, 2015). However, this measurement may not be sen-
sitive to differences at the microvascular level. Periventricular 
WMHs may follow different patterns than other subcortical 
WMHs. In living older persons, large ranges (~25%–95%) 
in the prevalence of WMHs have been observed, suggest-
ing that differences in sample characteristics and measure-
ment methods play a large role (Breteler et al., 1994; Habes 
et  al.,  2016; Leeuw et  al.,  2001; Longstreth et  al.,  1996; 
Prins & Scheltens,  2015; Söderlund et  al.,  2003; Zhuang 
et al., 2018).

In leukoaraiosis lesions, there is preferential loss of oligo-
dendrocytes and increased apoptosis within the lesion (Brown 
et al., 2000, 2002a). The loss of these cells may reduce struc-
tural support for arterioles, increasing their propensity to twist 
into tortuous configurations (Brown et al., 2002b). White mat-
ter lesions are associated with impaired cognitive function and 
age-related neurodegenerative diseases. Declining cognitive 
ability in areas of processing speed, executive function, and 
memory are all related to white matter lesion load (Debette 
& Markus, 2010; Prins et al., 2005; Prins & Scheltens, 2015; 
Vermeer et al., 2003). In addition, white matter lesions also are 
involved in the etiology and pathogenesis of age-related de-
mentias, including Alzheimer's disease (Brickman et al., 2015; 
Debette & Markus,  2010; Kalaria & Ihara,  2013; Prins & 
Scheltens, 2015; Sudre et al., 2017; Wardlaw et al., 2015).

Like other age-related changes corresponding to mi-
crovascular damage discussed above, controlling arterial 
stiffness and inflammation can help to prevent the appear-
ance and progression of WMHs (Prins & Scheltens, 2015). 

 2The phenomenon of increased small vessel tortuosity can potentially lead 
to confusion in the language between interacting methodologies for 
assessing cerebrovascular health. Particularly, methods that focus on 
measuring blood flow in only the arterial compartment will typically refer 
to arterial transit time as the time that blood takes to move from one point 
in the arterial tree to another point in a large or small artery. This process is 
very fast (a few hundred milliseconds or less) and may become faster in 
aging as the flow velocity increases due to arterial stiffening (Fabiani, Low, 
et al., 2014). However, methods that focus on tissue perfusion as their 
measurement of blood flow are designed to be sensitive to blood movement 
through the arterioles and capillaries. This process is much slower (on the 
order of 1–2s) and typically becomes slower in aging because of decreased 
velocities through the microvasculature (W. Dai et al., 2017).
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Hypertension and high diastolic blood pressure have been 
identified as risk factors predicting the presence of WMHs 
and their progression (Goldstein et  al.,  2005; Gottesman 
et al., 2010). Additionally, optical measures of arterial com-
pliance have shown a strong relationship between arterial 
stiffness and white matter lesions (Tan et  al., 2019). There 
is some evidence that treating hypertension is effective in 
controlling WMHs' appearance and progression (Verhaaren 
et  al.,  2013), whereas the evidence is mixed regarding the 
effect of physical activity (Burzynska et al., 2014; Carmelli 
et al., 1999; Fleischman et al., 2015; Gow et al., 2012; Ho 
et al., 2011; Podewils et al., 2007; Rosano et al., 2010; Rovio 
et  al.,  2010; Sen et  al.,  2012; Torres et  al.,  2015; Tseng 
et al., 2013; Venkatraman et al., 2020; Willey et al., 2011). 
Thus, it is still unclear whether exercise interventions are 
likely to prevent and/or slow the progression of WMHs and 
under what circumstances exercise may be effective. These 
microvascular morphological changes and related white mat-
ter lesions are usually considered to be non-reversible and 
progressive, although there is some evidence that, under cer-
tain circumstances, white matter lesions may be at least par-
tially reversible (Yamada et al., 2010). Until more supports 
for reversibility emerges, interventions should be primarily 
focused on prevention and slowing.

3.7  |  Interactions with other factors

The changes specific to the cerebrovasculature outlined in 
this review occur in the larger context of other age-related 
physiological changes in the body, which together interact to 
influence brain and cognitive health. Most of these peripheral 
physiological changes interact in negative ways, either by ex-
acerbating changes in the cerebrovasculature or by increasing 
the likelihood of hypoperfusion.

One of the most important exacerbating factors is the 
presence of hypertension, a condition that exists in the ma-
jority of individuals over age 60 (Fryar et  al.,  2017). In 
this special issue, Jennings et al. (2021) present an ex-
tensive discussion of the interaction between hypertension 
and alterations to the cerebrovasculature. There is evidence 
that arterial stiffening precedes hypertension (Dernellis 
& Panaretou, 2005; Kaess et  al.,  2012; Liao et  al.,  1999; 
Najjar et  al.,  2008; Oh,  2018; Oh et  al.,  2017; Weisbrod 
et  al.,  2013). The presence of hypertension, once estab-
lished, predicts decreases in cerebral microvascular density 
and increases in microvascular tortuosity, leading to distal 
hypoperfusion despite the higher pressure in the arteries 
(Brown & Thore,  2011; Han,  2012). In addition, hyper-
tension may exacerbate arterial stiffening and lead to in-
creased pulsatility, which may directly damage endothelial 
cells downstream and contribute to increasing leakiness in 
the BBB (de Montgolfier et al., 2019; Mitchell, 2014).

In addition to the direct effects of arteriosclerosis on hy-
pertension, there are many associated factors that contribute 
to the onset of hypertension. Interacting systemic effects in-
clude sympathetic nervous system activation and increased 
levels of the circulating vasoconstrictor angiotensin, which 
are compounded by obesity, psychological stress, and ex-
isting vascular damage (Haspula & Clark, 2018; Villapol & 
Saavedra,  2015). The relationship between the aging brain 
and sympathetic/parasympathetic tone is further elaborated 
in this issue by Thayer et al. (2021). Because of its strong 
connection to arterial stiffness and cerebral vascular disease, 
it is difficult to separate hypertension effects from the effects 
of other vascular impairments. Hypertension has been linked 
to declining brain health, including decreased gray matter 
volume, decreased cortical thickness, decreased fractional 
anisotropy, and increased white matter lesions (Gonzalez 
et al., 2015; Jennings & Zanstra, 2009; Sabisz et al., 2019). 
It has also been linked to declining cognition across a num-
ber of domains, including memory, executive function, and 
processing speed (Iadecola et  al.,  2016). Ongoing research 
is working to resolve the ways in which hypertension exacer-
bates or causes other forms of vascular damage, and how it 
leads to cognitive decline.

Diagnosing hypertension can be difficult, since systemic 
blood pressure is continuously distributed in the population, 
and diagnostic criteria have changed over time (Brown & 
Haydock, 2000). Whereas systolic blood pressure tends to in-
crease throughout the life span, changes in diastolic pressure are 
more variable. On average, diastolic pressure increases up to the 
50s before gradually decreasing (Pinto, 2007). Pulse pressure is 
thought to reflect pulsatility and represent a greater cardiovas-
cular risk factor than mean pressure (Blacher et al., 2000).

Another major interacting factor is decreased estrogen and 
other ovarian hormones in women after menopause. Estrogens 
are neuroprotective, and their loss during aging is associated 
with increased neuroinflammation, mitochondrial dysfunc-
tion, and cognitive impairment (Gurvich et  al.,  2018; Zárate 
et al., 2017). Age-related loss of ovarian hormones at the time of 
menopause has been hypothesized to partially explain increased 
female susceptibility to Alzheimer's Disease (Li & Singh, 2014). 
Declining sex hormone levels in women, and their protective 
actions on the cerebral vasculature (Zárate et al., 2017) and pro-
motion of angiogenic activity (Yu et al., 2017), may represent 
the loss of a previously protective mechanism that interacts with 
other cerebrovascular risk factors.

There is evidence to suggest that the increased risk for 
developing late Alzheimer's Disease associated with the ε4 
allele of the apolipoprotein E gene (APOE4) is due to the 
role of this gene in the development of atherosclerosis within 
the cerebrovasculature (Tai et  al.,  2016). Thus, atheroscle-
rosis may occur through both direct and indirect signaling 
and interactions with other risk factors covered in this review 
(Sudre et al., 2017; Tai et al., 2016).
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A number of other age-related physiological changes in the 
periphery may have a direct impact on the amount of oxygen 
transported to the brain. Muscles that support breathing become 
weakened and modifications to the pulmonary air sacs may 
reduce air exchange (Lee et al., 2016). Death of natural pace-
maker cells in the sinoatrial node of the heart can result in slower 
heart rate (Steenman & Lande, 2017). In addition, the heart wall 
may thicken and reduce the amount of blood held in the cham-
ber (Steenman & Lande, 2017). Blood volume itself may de-
crease, and new red blood cells may be produced at a slower rate 
(Price, 2008). All of these changes can reduce oxygen and nutri-
ents flowing to the brain, contributing to reduced cognitive func-
tion. The brain has many adaptive compensatory mechanisms in 
place to control oxygen supply, but as cerebrovascular health is 
taxed, other physiological changes may contribute to exceeding 
the cerebrovascular reserve, resulting in hypoperfusion.

Finally, the recent global spread of the SARS-CoV-2 virus 
has led to questions about potential long-term health conse-
quences to cerebrovascular health in infected individuals. 
Early on in the pandemic, it was observed that older adults 
with cerebrovascular diseases or vascular risk factors were 
at the highest risk of infection with the poorest prognosis 
for outcomes (Fan et  al.,  2020). Although still speculative, 
there are fears that persistent neuroinflammatory effects from 
SARS-CoV-2 infection may trigger the onset or exacerbate 
the progression of psychiatric and neurodegenerative diseases 
in the long term and may represent a significant interacting 
risk factor in the future of cerebrovascular aging (Iadecola 
et al., 2020; Serrano-Castro et al., 2020).

4  |   SYNTHESIS: TRAJECTORIES 
OF CEREBROVASCULAR 
IMPAIRMENT

Age-related changes to the cerebrovascular system cause 
a loss of vascular function, which propagates to neuronal 
health and manifests as cognitive decline. However, the 

mechanisms leading to vascular-system changes are hetero-
geneous, and vary in their preventability, reversibility, and 
time course. Understanding this heterogeneity is critical for 
targeting specific aspects of cerebrovascular health and ap-
propriately treat different types and levels of dysfunction. 
We have discussed these points in the previous subsections, 
which are summarized in Table 1.

The onset of cerebrovascular dysfunction depends on a 
cascade of events and alterations. For example, in hyperten-
sion, arterial stiffening seems to occur first. Arterial stiffen-
ing, however, seems to depend on arterial inflammation, so 
it would be expected that preventive anti-inflammatory in-
terventions would reduce arterial stiffening and thus hyper-
tension. Somewhat surprisingly, many classes of medications 
for hypertension work well at reducing blood pressure, but do 
not treat the factors that caused the hypertension to appear in 
the first place. Strikingly, there is little evidence that hyper-
tension treatment improves cognitive performance (Iadecola 
et al., 2016; Jennings et al., 2021). A major theme of this 
review is that many types of age-related cerebrovascular dys-
function begin early in life, and are therefore partially prevent-
able or even reversible with appropriate lifestyle adjustments 
to diet/fasting and exercise (see Aghjayan et  al.,  2021; 
Stillman et al., 2021, in this issue; Dong et al., 2020).

We have reviewed evidence for a general pattern of age-
related cerebrovascular decline beginning with vascular 
inflammation, which precedes or co-occurs with declines 
in arterial elasticity. As arterial elasticity decreases, pulsa-
tility increases, which leads to a variety of interacting types 
of downstream damage to the cerebrovasculature, including 
BBB impairment, impaired CVR, and hypoperfusion through 
changes to microvascular density and morphology. This dam-
age at the microvascular level then impairs the function of the 
brain parenchyma, which manifests behaviorally as cognitive 
decline and is likely a causative factor in age-related brain 
pathology.

The trajectory of cerebrovascular pathology depends on 
the mathematical function that the causative mechanism 

T A B L E  1   A summary of age-related cerebrovascular decline

Onset Preventability Reversibility Time course

Arterial inflammation ~20 Partial Yes ~Likely exponential

Arterial stiffening ~30 Partial Yes, up to critical 
zone

~Likely exponential

Arterial weakening ~40 Partial No Not strongly related to age (in 
cerebral arteries)

Decreased vascular 
reactivity

~35–60 Likely Likely Possibly sigmoidal

Leaky blood–brain barrier ~40 Partial Likely Context dependent

Loss of microvasculature ~50 Likely Likely Microvascular density increases 
before decreasing to floor

Tortuosity of small vessels ~50 Unknown Unknown Unknown



18 of 39  |      ZIMMERMAN et al.

follows. At a simplified level, a distinguishing separation 
may be identified between processes that have positive feed-
back loops causing more dysfunction, and processes that 
do not. When a “vicious-cycle” arises, where a mechanism 
of dysfunction causes even more dysfunction, the resulting 
pathology often follows an exponential trajectory, whereas 
when a positive feedback loop does not exist, the process 
is expected to be more linear. In reality, the body has many 
homeostatic mechanisms in place, which serve to blunt run-
away damage from a positive feedback loop of dysfunction. 
In addition, multiple aspects of the system interact with each 
other, and so their dysfunction is not cleanly separable. Even 
so, this view may offer a simplified framework for making 
predictions, while more complex and accurate biophysical 
models are developed.

Through this lens, it is apparent that many types of cere-
brovascular damage are expected to follow vicious-cycle pat-
terns. At the cellular level, mitochondrial dysfunction, and 
the production of increased ROS, is an example of a vicious 
cycle that causes widespread dysfunction throughout the body 
and is thought to be one of the factors primarily responsible 
for the aging process (Kriete et al., 2010; Sohal & Orr, 2012). 
The damage from this vicious cycle impairs signaling and 
causes damage at a cellular level, which directly contributes 
to even greater mitochondrial dysfunction. Similarly, arte-
rial stiffening can cause higher pulse pressure, which fur-
ther exacerbates stiffening. The downstream damage to the 
microvasculature caused by increased pulsatility may also 
follow a vicious cycle pattern. Damage to the BBB would 
be expected to let in inflammatory factors that further con-
tribute to damage. The potential for these positive-feedback 
cycles highlight the importance of early intervention and pre-
dict that cerebrovascular dysfunction would grow slowly at 
first but accelerate rapidly toward the end of the life span. 
Although there may be many interacting systems that con-
tribute to eventual cognitive decline, this pattern may lead 
to the nonlinear longitudinal declines in cognitive ability ob-
served across many cognitive domains, with the most rapid 
acceleration of decline at the oldest ages (Schaie et al., 2004).

On a more positive note, there is ample evidence that most 
of these types of damage are somewhat preventable, or even 
reversible, and that their progression can be slowed. This fact 
highlights the resilience of the body and implies the presence 
of biological mechanisms that can be exploited to ameliorate 
cerebrovascular decline. This fact also makes the cerebrovas-
cular system a particularly appealing therapeutic target. If we 
intervene before too much neural damage has accumulated, 
it may be possible to diminish the impact of vicious cycle 
mechanisms by simply removing environmental factors that 
exacerbate damage, giving the body's natural healing mecha-
nisms an edge to stave off accumulating damage, or by add-
ing environmental factors that are known to improve vascular 
outcomes. In addition, the fact that behavioral interventions 

can have such an impact on cerebrovascular health presents 
opportunities for pharmaceutical interventions. As the mech-
anistic details behind how behavioral interventions lead to 
improved outcomes are fully elucidated, those same mech-
anisms can be targeted through pharmaceuticals. Recent 
promising pre-clinical studies have targeted age-related vas-
cular dysfunction through strategies of supplementing IGF-1 
(Quipildor et  al.,  2019), reducing mitochondrial oxidative 
stress (Csiszar et  al.,  2019), or boosting the activity of sir-
tuins (signaling proteins involved in regulating metabolism) 
(Tarantini et al., 2019).

Although this review does not focus on the structural, 
functional, and cognitive age-related changes that have been 
highlighted by their own vast literatures, it is important to 
examine the temporal relationship of how impaired cerebral 
vascular health might interact with these other age-related 
brain changes and cognition. Kong et  al.  (2019) have ad-
vanced a hierarchical model to link these factors. This model 
suggests that at least some of the variance accounting for age-
related changes in cognitive performance follows a cascade 
that begins with vascular impairments that lead to structural 
changes detectable with MRI. Structural changes lead to 
alteration in functional network dynamics that finally pre-
dict altered cognition (Figure 5). Although the correlational 
structure between measures in that study was consistent with 
such a framework, future longitudinal work should confirm 
or revise it. An important question for future directions in 
early diagnosis and intervention is whether large-scale ana-
tomical changes, such as the visible white matter abnormal-
ities and cortical atrophy measures reported in this article, 
are necessarily evident before changes in brain functional 
dynamics are visible.

5  |   METHODOLOGICAL 
CONSIDERATIONS IN 
NEUROCOGNITIVE AGING 
RESEARCH

Many of the age-related physiological changes discussed in 
this review affect the interpretation of measures from many 
of the commonly used tools in psychophysiological and cog-
nitive neuroscientific research. This is because many tools 
measure different parts of the neurovascular coupling re-
sponse that is often used to infer neural activity (Figure 6).

5.1  |  Measuring age-related 
metabolic changes

The cerebral metabolic rate of oxygen (CMRO2), measur-
ing how much oxygen is consumed by the brain during 
metabolism, is often considered a summary index of brain 
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metabolic activity. However, an interesting discrepancy ex-
ists regarding age-related changes in CMRO2 depending on 
whether it is measured using MRI (see Rodgers et al., 2016 
for a review of these methods) or positron emission to-
mography (PET). Studies using MRI-based methods have 
reported variable effects of age on resting CMRO2, includ-
ing increases (Lu et al., 2011; Peng et al., 2014), decreases 
(De Vis et al., 2015), or no change (Catchlove, Macpherson, 
et al., 2018). However, PET-based studies have mostly 
shown decreases in CMRO2 (as well as in glucose uptake) 
with aging (Aanerud et al., 2012; Eustache et al., 1995; Goyal 
et al., 2017; Ibaraki et al., 2010; Kuhl et al., 1982; Yamaguchi 
et al., 1986), although some studies found no age differences 
(Aanerud et al., 2017; Pantano et al., 1984).

These disparities across methods also extend to task-
evoked changes in metabolism, with the blood-oxygen-
level-dependent (BOLD) MRI signal showing increases 
with age in task-evoked activity, particularly in prefrontal 
and parietal regions involved in executive functions (Cabeza 
et  al.,  2004; Cappell et  al.,  2010; Daselaar et  al.,  2003; 
Hutchison et al., 2013; Park et al., 2003) and reductions in 
more posterior visual processing regions (Davis et al., 2008). 
Findings like these have been interpreted as functional com-
pensation, especially because task-evoked activity in sensory 
areas often decreases with age, which is often interpreted as 
an impairment in sensory processing (Cabeza et  al.,  2018; 
Park & Reuter-Lorenz, 2009; Schneider-Garces et al., 2010). 
Due to the lower temporal resolution, age-related changes in 
task-related metabolic changes are less well-studied using 
PET. However, in one study of dynamic changes assessing 
glucose metabolic rate using PET, researchers found smaller 
task-based metabolic increases as a function of age in me-
dial frontal and cingulate areas during a verbal memory task 
(Hazlett et al., 2010).

One possibility for this discrepancy is rooted in intrinsic 
limitations to the techniques that will push correlations with 
age in opposing directions. In PET, images are often lower 
resolution, which may increase the relative contribution of 
the CSF partial volume fraction in a cortical voxel due to 
brain atrophy with aging (Peng et al., 2014). Thus, it is possi-
ble that cortical CMRO2 decreases, not because of real meta-
bolic change in the existing tissue, but rather because there is 
less metabolically active tissue being measured. This poten-
tial effect of atrophy would explain why, in PET, decreases 
in CMRO2 are prominent in association areas, where age-
related atrophy is most evident, and unobserved in primary 
motor and sensory areas, where tissue volume is usually rel-
atively spared across the life span (Aanerud et al., 2012; Fjell 
et al., 2009; Kennedy & Raz, 2015; Raz et al., 2005).

MRI methods also face limitations that may bias measure-
ment. These limitations have to do with the somewhat less 
direct measurements of CMRO2, which depend on measure-
ments of blood flow. These blood flow measurements do not 
automatically take into account individual differences in he-
matocrit, which may differ by sex (Grau et al., 2018), change 
with age (Aanerud et al., 2012; Mahlknecht & Kaiser, 2010), 
and have a high correlation with CBF (Xu et  al.,  2018). 
They are also affected by scanning parameters, such as the 
choice of location that determines the flow measurement (Liu 
et al., 2013; Peng et al., 2014). If the capacity to carry ox-
ygen decreases with age and is not properly accounted for, 
it may be wrongly concluded that increases in blood flow 
correspond to greater increases in oxygen. This troubling 
possibility highlights the importance of building a better 
understanding of how properties and limitations of specific 
brain measurement techniques and samples affect results and 

F I G U R E  5   A framework for viewing the effects of 
cerebrovascular impairment on cognition as a hierarchical cascade 
of effects. Gray arrows represent the hypothesized cascade. Orange 
arrows represent pairwise relationships between the levels. The signs 
next to the arrows represent the direction of the pairwise relationships. 
WMSAs, white matter signal abnormalities. From Kong et al. (2020), 
reprinted with permission
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emphasizes the importance of multi-modal techniques and 
accruing complementary data across multiple modalities and 
experimental paradigms.

Another intriguing possibility is that declines in glucose 
and oxygen consumption are not perfectly coupled, and 
that the extent of their coupling varies by age. Recent ev-
idence that glucose consumption (CMRGlc) declines more 
with age than oxygen consumption (Goyal et al., 2017; Kuhl 
et al., 1982) supports this hypothesis. This finding has been 
interpreted as a reduction in glucose use that is not metab-
olized by oxidative phosphorylation, reasoning that a 1:6 
relationship between glucose and oxygen is used to supply 
oxidative phosphorylation, and the whole quantity of CMRO2 
is used for this purpose (Goyal et al., 2017). Excess glucose 
is hypothesized to be associated with intermediary metabo-
lism used for biosynthesis and neuroprotection through the 
pentose phosphate pathway, relevant especially to synaptic 
plasticity (Goyal et al., 2017). However, it is also possible to 
interpret the metabolic change, at least in part, as an excess 
of oxygen that is not efficiently used for oxidative phosphor-
ylation. It is known that mitochondria use more oxygen than 
is required for oxidative phosphorylation, resulting in a “pro-
ton leak” estimated to be ~20% (Engl & Attwell, 2015; Rolfe 
& Brown, 1997). Mitochondrial efficiency in oxidative me-
tabolism also decreases with age (Gόmez & Hagen, 2012). 
Therefore, it seems plausible that the greater reduction in 

CMRGlc compared to CMRO2 also represents some decrease 
in oxygen used for oxidative phosphorylation, which may 
contribute to increase ROS. The possibility of uncoupling 
between glucose and oxygen metabolism, mediated by either 
inefficient oxygen use or declining glucose metabolic pro-
cesses, suggests that, at the very least, CMRO2 results should 
be interpreted cautiously as a proxy for neural metabolism. 
Confusing interpretation even further, cerebral declines in 
metabolism differ by sex (Goyal et al., 2019), with females 
having less metabolic decline compared to men of the same 
age. Future research, possibly using PET/MRI simultaneous 
imaging, is needed to resolve these discrepancies and better 
understand how metabolic processes change in aging.

5.2  |  Considerations for BOLD imaging

Declines in neurovascular coupling mechanisms alone, in-
dependent from changes in metabolism, predict changes in 
BOLD signal with age (Fabiani, Gordon, et al., 2014). This 
result blurs the interpretation of age-related BOLD signal 
changes, a measurement often used experimentally to theo-
rize about the mechanisms of age-related cognitive change. 
The varying vascular phenomena that may specifically con-
tribute to BOLD signal changes are explicated in detail by  
Yabluchanskiy et al. (2021)

F I G U R E  6   Commonly used methods in cognitive neuroscience and psychophysiological research primarily measure different components of 
neurovascular coupling. In neurovascular coupling, cellular metabolism at the neurovascular unit signals local vasodilation. This increases blood 
flow to active areas, which interacts with metabolism to alter the nearby blood oxygenation. ASL, arterial spin labeling; BOLD fMRI,  
blood-oxygen-level-dependent functional magnetic resonance imaging; CMRO2, cerebral metabolic rate of oxygen; DSC, dynamic susceptibility 
contrast perfusion imaging; EEG, electroencephalogram; ERPs, event-related potentials; EROS, event-related optical signal; fNIRS, functional 
near-infrared spectroscopy; MEG, magnetoencephalography; 15O-PET, oxygen-15 positron emission tomography; Pulse-DOT, brain arterial pulse 
wave measured with diffuse optical tomography; VASO, vascular-space-occupancy magnetic resonance imaging
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Some changes in BOLD response that contribute to a 
decreased signal in older adults have been known for some 
time and are extensively discussed in the literature, including 
changes in signal timing (Zhao et  al.,  1998) and increased 
voxel-wise noise (D’Esposito et al., 1999). More recently, re-
searchers have become more concerned about changes in both 
neurovascular coupling and in neurovascular energetics, both 
discussed earlier in this review, and how they may confound 
interpretations of the BOLD signal in aging (Abdelkarim 
et al., 2019; Zhao et al., 2021; West et al., 2019; Wright & 
Wise, 2018). If there are age-related differences in neurovas-
cular coupling or neurovascular energetics, then a difference 
in BOLD signal between older and younger participants could 
be produced independently of a difference in neural activation 
(Figure 7; conceptually adapted from Wright & Wise, 2018). 
However, clarifying the details of how age-related changes in 
neurovascular coupling and metabolism interact is important 
for interpreting results of functional imaging studies in age-
related samples that depend on the BOLD signal, and may 
have non-intuitive consequences. This is because the BOLD 
signal comes about through complex, interacting physiologi-
cal mechanisms, which predicts, on the one hand, that greater 
oxidative metabolism during neural activity would reduce the 
oxygenation of the blood and reduce the BOLD signal but, on 
the other hand, that the typical functional hyperemia accom-
panying oxidative metabolism will overcompensate for that 

decreased oxygenation in the blood, and end up leading to 
greater oxygenation overall.

To give some illustrative examples, if CVR was completely 
impaired, but oxidative metabolism remained constant, there 
is an expectation of a negative BOLD signal in response to 
activation, as local deoxy-hemoglobin levels increased. If ox-
idative metabolism increased, but the amount of vasodilation 
from neurovascular coupling remained constant, the BOLD 
signal would decrease. If oxidative metabolism decreased, 
but the amount of vasodilation from neurovascular coupling 
remained constant, the BOLD signal would increase. These 
examples are meant to illustrate that a deeper understanding 
of both neurovascular energetics and neurovascular coupling 
is critical for the interpretation of BOLD experiments in the 
cognitive neuroscience of aging. In addition, evidence sug-
gests that even under normal, healthy conditions, neurovas-
cular coupling is not a linear function, with reduced increases 
in the hemodynamic response at higher levels of neuronal 
activity (Fabiani, Gordon, et al., 2014).

Similar reasoning has led Abdelkarim et  al.  (2019) to 
propose that age-related decreases in the BOLD signal 
in some paradigms could reflect increased metabolic ac-
tivity unmatched by CBF due to impaired neurovascular 
coupling, in contrast to an interpretation of decreased met-
abolic activity. This is particularly relevant to explaining a 
consistent discrepancy in functional aging studies, where 

F I G U R E  7   Changes in both neurovascular energetics and neurovascular coupling could mediate differences in the BOLD signal in aging. In 
younger adults, neural activity leads to an increase in oxygen extraction, which increases the ratio of deoxy/oxy-hemoglobin. However, this change 
is offset by a much larger increase in CBF from local vasodilation. Overall, there is a robust BOLD signal coupled to the neural activity. In older 
adults, both neurovascular energetics and neurovascular coupling mechanisms may change. In this example, the same task-related neural activity 
may lead to greater oxygen usage in older adults, due to lower metabolic efficiency. The increase in deoxy-hemoglobin in older adults compared to 
younger adults may lower the BOLD signal. In addition, impaired neurovascular coupling may reduce vasodilation, leading to smaller decreases in 
the ratio of deoxy/oxy-hemoglobin. Together, these lead to a reduced signal-to-noise in the BOLD signal of older adults



22 of 39  |      ZIMMERMAN et al.

older adults have greater activation than younger adults at 
low task demands, but younger adults have greater activa-
tion than older adults at high task demands (Abdelkarim 
et  al.,  2019; Schneider-Garces et  al.,  2010). An interpre-
tation of age-related changes in terms of increased meta-
bolic demands for similarly difficult tasks, representing 
reduced efficiency, may offer a complementary view to one 
based on an account of limited “neural resources” at the 
core of the compensatory scaffolding models of cognitive 
aging (Cappell et al., 2010; Reuter-Lorenz & Park, 2014; 
Schneider-Garces et al., 2010).

In addition to these neurovascular physiological contribu-
tions to differences in the BOLD response, there may also 
be differences in low-frequency oscillations in BOLD signal 
that are less well studied. Bright and colleagues (2020) re-
cently showed that vascular physiology may be organized in 
networks that mirror known neuronal networks. It remains 
unclear whether these vascular networks change with age, 
and how they relate to age-related changes in neural networks 
or whether they present a possible artifact when analyzing 
changes in functional network dynamics in aging.

Future work should strive to incorporate new methods 
or multiple modalities that can help to resolve changes in 
flow, blood volume, CMRO2, and oxygenated/deoxygenated 
hemoglobin. Non-BOLD fMRI, such as vascular space oc-
cupancy (VASO) in particular may be even more important 
for studying cognitive aging in the burgeoning research area 
of depth-dependent laminar-fMRI, since vascular physi-
ology can differ across depths (Goense et  al.,  2012; Huber 
et al., 2019), and layer-dependent functional signals may be 
easier to resolve using methods sensitive to blood volume 
rather than oxygenation (Huber et al., 2018, 2019, 2020).

5.3  |  Considerations in 
interpreting perfusion

In general, researchers must be careful not to overinterpret 
perfusion as a proxy for metabolism and vascular function. 
For example, we may be tempted to explain a region's vulner-
ability to vascular damage by pointing out a region's higher 
metabolic demand, using perfusion rate as a proxy for meta-
bolic activity to support the argument. However, in different 
circumstances, we may want to explain a region's vulnerabil-
ity to vascular damage because of its already poor vascular 
health, such as its low vascularization or capillary pressure. 
Here, we may be tempted to use the same measure of perfu-
sion rate as a proxy for vascular health. In the first example, 
higher perfusion rates predict vulnerability, while in the sec-
ond example, lower values predict vulnerability. We should 
always keep in mind that perfusion measures inherently re-
flect both metabolic and vascular information and be very 
careful of their interpretation.

6  |   CONCLUSIONS

In this review, we have shown that some aspects of age-
related changes in cerebrovascular health are well character-
ized, while others are still poorly understood. Future research 
should pay special attention to cerebrovascular health factors 
that are hypothesized to directly contribute to cognitive im-
pairment, but whose mechanisms are not fully known or ac-
cepted. How CVR changes with age, and the mechanisms 
behind those changes, present a good example of this type of 
research. The literature up to this point has not reached a con-
sensus, with studies pointing to unreliable age-related effects 
that sometimes go in opposite directions. At the same time, 
CVR is hypothesized to directly affect the efficiency and 
speed of cognitive operations. Intriguingly, Peng et al. (2018) 
showed a function of age-related decline in CVR that accel-
erated most in middle-age rather than old age, presenting a 
strong case for the possible importance of early intervention.

Another direction of future research should elucidate the 
impact of minor ischemia, and its potential relationship to 
chronic inflammation, on downstream damage. Most stud-
ies on the mechanisms responsible for cellular damage and 
impairment after ischemia come from studies where large 
ischemic insults are experimentally induced. A critical miss-
ing link in the literature is to formally connect these same 
mechanisms to the long term, chronic low-level ischemia or 
periodic, acute bouts of short-lived ischemia that likely occur 
in normal aging, and their respective effects on cognition.

There is still room for major innovation in both therapeu-
tic and basic research determining how normal age-related 
declines in vascular functioning can manifest as disease, and 
how interventions targeting vascular health can ameliorate 
both normal age-related cognitive decline and prevent or 
treat age-related neurodegenerative disease. Whether vascu-
lar dysfunction is the cause or consequence of many neurode-
generative diseases is still unknown, and very likely, vascular 
dysfunction and other pathogenic processes interact in com-
plex ways that differ across diseases. Exciting innovations 
in non-invasive methods should help promote this work and 
lead to advancements in therapeutic strategies. For example, 
there is mounting evidence of BBB dysfunction in a number 
of neurodegenerative diseases as well as evidence that BBB 
impairment can be treated in rodents (Senatorov et al., 2019). 
However, there is currently no direct evidence for reversing 
BBB damage through an intervention in humans. New meth-
ods may allow the investigation of this research question in 
the near future.

Finally, a major implication of the research presented 
here, which has shown that cerebrovascular damage accu-
mulates across the life span and eventually leads to neural 
impairment, is that using cognitive performance as a pri-
mary outcome measure may track levels of impairment that 
occur too late to be clinically useful. For optimal outcome, 
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the various vicious cycles involved in cerebrovascular 
aging should be interrupted when the damage is still very 
subtle. Truly, the research covered in this review shows 
that there is evidence for improvements in cognition based 
on interventions targeting vascular health, even at older 
ages, when vascular damage has likely already translated 
to some level of neural damage. However, given that there 
is a strong connection between cerebrovascular health and 
cognitive impairment and that cerebrovascular health may 
begin to decline well before significant changes in cogni-
tive impairment are observed, a therapeutic strategy focus-
ing strongly on prevention is well justified. To that end, 
cerebrovascular health measures should be considered as 
alternative or complementary primary outcome measures 
to cognitive performance, even though, in the end, it is cog-
nitive ability that we want to preserve.
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