
Citation: Mandarino, A. Quantum

Thermal Amplifiers with Engineered

Dissipation. Entropy 2022, 24, 1031.

https://doi.org/10.3390/e24081031

Academic Editor: Pavan Hosur

Received: 27 June 2022

Accepted: 21 July 2022

Published: 26 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Quantum Thermal Amplifiers with Engineered Dissipation
Antonio Mandarino

International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-309 Gdansk, Poland;
antonio.mandarino@ug.edu.pl

Abstract: A three-terminal device, able to control the heat currents flowing through it, is known as a
quantum thermal transistor whenever it amplifies two output currents as a response to the external
source acting on its third terminal. Several efforts have been proposed in the direction of addressing
different engineering options of the configuration of the system. Here, we adhere to the scheme in
which such a device is implemented as a three-qubit system that interacts with three separate thermal
baths. However, another interesting direction is how to engineer the thermal reservoirs to magnify
the current amplification. Here, we derive a quantum dynamical equation for the evolution of the
system to study the role of distinct dissipative thermal noises. We compare the amplification gain in
different configurations and analyze the role of the correlations in a system exhibiting the thermal
transistor effect, via measures borrowed from the quantum information theory.
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1. Introduction

In nature, energy transport in condensed matter systems can be achieved mainly via
two different mechanisms, namely electric and thermal conduction. However, despite
their comparable relevance, they have been treated in a different way for many years.
In fact, the flow of electrons has boosted all the recent information and communication
technologies, while heat production has always been seen as a detrimental effect. Recently,
due to the terrific success of electronics, several contributions have opened a prolific field
of investigation proposing devices that operate by exchanging heat instead of electrons.

Heat can be understood as vibrations in the lattice structure of a solid. This collective
behaviour at the microscopic level is described by the quantization of the modes of vibration,
and the resulting bosonic quasiparticles are known as phonons. Recently, the engineering
of the exchange of phonons paved the way to the exploitation of the heat flux and opened
an intense field of research known as phononics [1,2]. In fact, at the very basic level,
the thermal currents throughout an object in contact with to two or more thermostats are
mediated by phonons.

Since then, several different devices operating in an analogous way to the known
electronic ones have been addressed in the literature, the most notable are heat valves [3],
thermal rectifiers [4–7], amplifiers [8–12] and thermal logic gates [13].

A three-terminal device showing at the outputs an amplification of the currents stays
at the cornerstone of the modern development of electronic devices; for this reason, one of
the devices that has attracted more attention, for its possible applications, is the quantum
thermal transistor.

During the last few years, several possible implementations of this device have been
proposed considering tree–qubit systems [9,10], qubit–qutrit system [11], in circuits of
superconducting qubits [12] and in a system with three-body interaction [14]. Eventually,
also, networks of connected thermal transistors were proposed [15,16]. The main trait of all
these implementations is that they propose a three-terminal system to control the thermal
energy exchanged by two of its terminals via an incoherent operation offered by the tuning
of the temperature of its third terminal.
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However, even if detailed studies about several implementations of the system have
been proposed, less attention has been paid to the reservoirs’ characteristics that lead to
transistor-like behaviour. In this paper, we tackle this second point and we address how the
current amplification varies in function of two of the most significant phenomenological
features of the thermostats: the temperatures and the noise spectra. Eventually, a prelim-
inary study on the correlation among the parties composing the system will allow us to
grasp useful insight into the non-equilibrium steady state configuration of the system.

The paper is structured as follows: in Section 2 we describe the Hamiltonian of the
system, while in Section 3 we address its dissipative evolution. The results regarding the
heat amplification are presented in Section 4, and in Section 5 the role of correlations arising
from the dissipative dynamical evolution is studied. Finally, Section 6 closes the paper with
the final remarks and avenues for future research.

We remark from now that throughout the article, we will use a system of natural units
fixing h̄ = c = KB = 1, where h̄ is the Planck’s constant, c is the speed of light in vacuum
and KB is the Boltzmann’s constant.

2. The Model

The effects of different forms of dissipation on the transport of thermal excitation in a
quantum system are described considering first of all a generic model Hamiltonian:

H = HS + HR + VSR. (1)

The three terms in the previous equation correspond to the system Hamiltonian (HS),
the Hamiltonian of the thermal reservoirs (HR) and their interaction (VSR). The first term is
the free Hamiltonian of three-qubits. Each of them occupies a vertex of a triangular graph.
For ease of notation and analogy with the electronic terminology, we label them as S, M
and D, (standing for source, modulator and drain, respectively) as depicted in Figure 1,
and it explicitly reads:

HS =
1
2 ∑

k=S,M,D
ωkσz

k + ∑
n<k

ζknσ
y
k σ

y
n , (2)

where σα
k is the α-th Pauli matrix acting on the k-th qubit. In particular, we chose as

the magnetization easy axis the z axis and defined the eigenstates of σz|j〉 = (−1)j|j〉
as a computational basis. They constitute the smallest realization of a fully connected
Ising model in a transverse field, also known as Lipkin model. It can be implemented in
nanostructurated systems such as quantum dots or single-molecule magnets and has found
application for several quantum technology purposes [10,17–19].

It is worth noting that the considered configuration in Figure 1 has been widely studied
also for quantum thermodynamics purposes. In fact, a system composed by three qubits in
thermal contact with the same number of baths has been proposed as the building block of
a quantum absorption refrigerator [20–24]. The purpose of this engine is to cool one of the
three qubits. This is reached imposing that the intra-qubit interaction is weak enough to
assume that each qubit dissipates only into the bath directly connected to itself. However,
despite a similar configuration, a main difference appears concerning the local nature of the
dissipation. We will see in the following that the mechanism leading to a quantum thermal
transistor is a collective one, i.e., the compound system as a whole interacts and exchanges
energy with the three thermal environments.

The three reservoirs are assumed to be separate to avoid cross-talk dissipation [25]
and are described by

HB = ∑
k=S,M,D

hk, with hk = ∑
p

εpak †
p ak

p, (3)
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while the system-reservoir interaction is linear and reads

VSR = ∑
k=S,M,D

Sk ⊗ Rk, (4)

where ak
p (ak †

p ) are the annihilation (creation) operators of the reservoir k. We remark that
each qubit is directly coupled only to the corresponding k-th bosonic reservoir.

TM

TS TDζSD

ζMDζSM

wM

wDwS

Figure 1. Representation of the dissipative model considered in the paper. A system of three coupled
qubits as in Equation (2), connected to independent thermal reservoirs as described in Equation (3)
via the interaction in Equation (4).

3. Non-Equilibrium Dynamics

To describe the reduced dynamics of the system, we assume that the interaction be-
tween the system and the reservoir is weak and in a regime in which the Davies derivation
of the Markovian master equation (MME) holds [26,27]. Therefore, it has the following struc-
ture

∂ρ

∂t
= −i[HS + HLS, ρ] +

3

∑
k=1
Dk[ρ], (5)

where HLS = ∑k, ω f (ω)S†
k (ω)Sk(ω) is the Lamb shift Hamiltonian, responsible for a shift

in the system’s frequency due its interaction with the reservoirs. The system operators
Sk(ω) = ∑ω=Ei−Ej

∣∣Ej
〉〈

Ej
∣∣Sk|Ei〉〈Ei|, are frequency-dependent and the sum is extended

over all the eigenvalues of the system, Ei, corresponding to the eigenvectors |Ei〉 with
i = 1, ..., 8, such that the difference has a fixed value of frequency ω. The following
commutation relations hold: [HS, S(ω)] = −ωS(ω) and [HS, S†(ω)] = ωS†(ω).

The Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) operators are given by [28,29]

Dk[ρ] =
1
2 ∑

ω>0
Gk(ω)

([
Sk(ω), ρS†

k (ω)
]
+
[
Sk(ω)ρ, S†

k (ω)
]
+ (6)

e−ω/Tk
[
S†

k (ω), ρSk(ω)
]
+
[
S†

k (ω)ρ, Sk(ω)
])

.

This is the general form for a Markovian master equation and, assuming that the state of
each reservoir is νk, their influence on the system relaxation processes is described by the
power spectrum defined as:

Gk(ω) =
∫ +∞

−∞
eiωt Tr(Rk(t)Rkνk)dt, (7)
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where Rk(t) are the reservoir operators entering the interaction Hamiltonian in the inter-
action picture. In deriving the equation in (7), we have assumed that all three baths fulfil
the Kubo–Martin–Schwinger condition such that Gk(−ω) = e−ω/Tk Gk(ω). Therefore, it is
easy to identify the physical meaning of both terms proportional to Gk(ω). The first one
characterizes the dissipation via emission of quanta of frequency ω into the k-th bath, while
the second term corresponds to the absorption of quanta by the system.

Each reservoir is in a Gibbs thermal state ν(Tk) =
e−hk/Tk

Tr e−hk/Tk
, and we assume a system–

reservoir interaction of the Caldeira–Leggett type [30], namely

VSR = ∑
k=S,M,D

vk, with vk = σ
y
k ⊗∑

p
ck

p(ak †
p + ak

p). (8)

The coefficients cp account for the coupling strengths of the system to each mode of energy
εp in the bath.

Moreover, the coefficients Gk(ω) can be expressed as a product of two terms Gk(ω) =

Jk(ω)(nk(ω) + 1), where nk(ω) = [exp(ω/Tk)− 1]−1 is the mean number of phonons,
and Jk(ω) is the spectral density of the k-th reservoir. The latter one gives information
about the relevance of the noise at a given frequency ωp and is determined by

Jk(ω) = π ∑
p

|ck
p|2

ωp
δ(ω−ωp). (9)

In accordance with the notation of the Caldeira and Leggett model [31,32], we choose for
the bosinic environments a spectral density of the following form

Jk(ω) = λkωc

(
ω

ωc

)s
e−

ω
ωc . (10)

The coefficient λk determines the overall strength of the qubit–reservoir coupling and ωc
is a cutoff frequency that depends on the physical realization of the thermal reservoir.
Throughout the paper we will assume ωc = 10 maxi{Ei}, such that all the conditions on
the different time scales needed to derive the MME are fulfilled [26].

This type of spectral density has been widely used to study the transport in non-
equilibrium quantum systems such as quantum dots, nanotubes and molecular systems [33].
Its dependence upon the parameter s allows us to identify three mean types of dissipation
mechanism. The sub-Ohmic case is for s < 1, the Ohmic one is for s = 1 and the super-
Ohmic one for s > 1 [34].

Definition of Heat Currents

Following the standard approach, we introduce the currents for time-independent
system Hamiltonian in quantum thermodynamics (see, e.g., [35] for a detailed discussion).
A heat current flowing through a system in contact with multiple thermostats is defined as
the time derivative of the system mean energy, namely

I =
∂〈HS〉

∂t
= Tr

{
Hs

∂ρ

∂t

}
. (11)

For all our purposes we will consider the currents that are flowing through the system when
it is in a Non-Equilibrium Steady State (NESS), such that ∂ρNESS

∂t = 0. In this configuration
the preceding equation in (11) reduces to

0 = ∑
k=S,M,D

Ik = ∑
k=S,M,D

Tr{HsDk[ρNESS]}. (12)

In the last equality we have used the property of the stationary solution of the GKSL
equation in (7), such that the NESS density matrix commutes with the system Hamiltonian.
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The chosen geometry depicted in Figure 1 allow us to identify three different currents.
For shorthand of notation we will refer to them as the source, the modulator and the drain
current, and label them as IS, IM and ID. They refer to the heat exchanged by the three-
qubit system with the homologous reservoirs, respectively. For the sake of clarity, we
remark here that we are in a regime of global dissipation, i.e., it is the whole system
exchanging energy with the thermostats and not only the single qubit directly coupled
with it [36].

4. Quantum Thermal Transistor

In electronics, one of the main features of the transistor consists in the amplification of
the currents at the source and the drain having an almost null current at the modulator. The
equivalence between electronic and thermal transistor is established when the fermionic
leads are substituted by bosonic thermostats (described by a Gibbs state with null chemical
potential). Temperatures and heat currents will play the part of the voltages and electronic
currents, respectively. In particular, in the thermal equivalent of an electronic transistor,
we use as control parameter the temperature TM of the modulator thermostat, that will
assume the role of the gate voltage. Using the tools developed in the preceding sections,
we discuss how the temperature difference between the source and the drain, and different
types of spectral density affect the amplification of the heat currents.

4.1. Amplification of Heat Currents

The first step towards the assessment of a thermal transistor is done by looking at the
behaviour of the currents that that three-qubit system exchange with the reservoirs. In anal-
ogy with the current-voltage characteristic curve for electronic components, in Figure 2
we plot a paradigmatic example of the current–temperature curve for a system showing
amplifications of currents at two terminals. The parameter we have chosen as control is the
temperature of the collector, TM, and without loss of generality we imposed TS > TD. It is
easy to see how the currents of the configuration considered in Figure 2 exhibit the standard
behaviour of those observed in a transistor: the source and the drain currents are amplified,
while the collector current remains almost constant in the entire interval of temperature. We
report here |ID|, to make it more visible that it is almost the exact opposite of IS signaling
a quasi-null heat flow between the three qubits and the modulator thermostat.

In the inset of Figure 2, we have reported the behaviour of the modulator current,
in the interval 0 ≤ TM ≤ 5. It is easy to see that for 0 ≤ TM ≤ 5 where the source and
drain currents are amplified, |IM| ≈ 0.01I . On the contrary, for values of TM beyond such
interval we observe a linear grow of the modulator current. In fact, when the temperature of
the modulator reservoir is comparable or higher than the highest one (in the case considered
TS) it starts to inject heat into the system. In other words, we can say that it stops to work
as a buffer between the hot and the cold reservoir.
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IS

IM

ID 5 10 15 20 25
TM

-0.002

0.000

0.002

0.004

0.006

0.008

IM

1 3 5
TM0

0.1

0.2

I

Figure 2. The three thermal currents defined in Equation (11) exchanged by the system with the three
Ohmic reservoirs (s = 1) as a function of the modulator temperature TM. Upon fixing the frequency
of the source qubit as reference, namely ωS = ω, the parameters are ω = 10ωM = 3ωD = ζSM =

6ζMD = ζSD. The source and drain temperature are set to TS = 10ω and TD = 0.01ω, respectively.
The coupling strength of the system with the three reservoirs are 106λS = 106λM = 104λD = ω. Note
that to highlight that the energy is conserved we plot |ID|. In the inset the current IM exchanged
by the modulator reservoir with the system. The black solid line is a linear fit IM = mTM + q,
with m ' 3.1× 10−4 and q ' 3.4× 10−4.

4.2. Amplification Factor

We examine here the currents exchanged by the system with the three thermal environ-
ments depending on a suitable engineering of their characteristics, namely temperature Tk
and spectral density Jk(ω). Each configuration will be identified by the functional type of
the considered spectral density (subOhmic s = 0.5, Ohmic s = 1 and superOhmic s = 1.5)
and by the temperature difference between the source and drain reservoirs.

We have seen, in Figure 2, that a variation of the gate temperature TM produces a
significant variation of the two lateral currents in contrast with a significantly smaller value
of IM. However, observing the behaviour of the heat currents gives only a qualitatively
assessment of the presence of an effect comparable to the amplification produced by a
transistor. To have a quantitative benchmark of the amplification as a function of the control
temperature TM it is suitable to introduce the amplification factor:

β =

∣∣∣∣ ∂IS
∂IM

∣∣∣∣ =
∣∣∣∣∣ ∂IS
∂TM

(
∂IM
∂TM

)−1
∣∣∣∣∣ (13)

In principle, one can define also the factor comparing the change in the drain current
over the modulator one. Anyway, given Equation (12), that is a reformulation of the
first principle of the thermodynamics in terms of currents, one can show that the relation
βS + βD = −1 holds.

For our aim, the interesting interval of temperature are those for which |β| � 1. In
fact, a high value of this parameter signals a strong amplification of the currents at the
source and the drain compared to the one the system exchanges with the reservoir acting
as modulator.

We report in Figure 3 the amplification factors for different reservoirs’ engineering.
In particular, we focus on the temperature gradient between the hottest and the coldest
reservoir (TS − TD) and on the power noise of the the reservoirs via three paradigmatic
cases of spectral densities as in Equation (10). For all the considered settings the operating
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regime of the QTT is given by the interval in which the temperature of the gate reservoir
varies, i.e., TM ∈ [0, 5].

In Figure 3a we observe that increasing the temperature gap, TS − TD, leads to a
magnification of the thermal transistor effect. This is achieved without performing any
operation on the system. In contrast, it is apparent from Figure 3b how a change in the
dissipation model does not contribute to a better performance when building a QTT. In fact,
a sudden transition appears from subOhmic to superOhmic regimes in correspondence to
a power noise with s = 1.

βTs=5

βTs=10

βTs=25

1 3 5
TM

-50

0

50

100

150

200
β

(a)

βsub

βohm

βsup

1 3 5
TM

-30

-20

-10

0

10

20

30

40

β

(b)

Figure 3. We plot the amplification factors for different bath configurations, assuming as a reference
the value giving the heat currents in Figure 2. (a) The configurations are given by the temperature
difference between the hot and the cold thermostat. We fix TD and set TS = 5ω (orange dashed line)
and TS = 25ω (cyan dotted line). (b) The configurations are given by a different spectral density
for the reservoirs. We assume for all the three baths a subOhmic s = 0.5 (orange dashed line) and
superOhmic s = 1.5 (cyan dotted line).

5. Insights into the Transistor Effect via Entropic Measures of Correlations

In this section we study the behaviour of the correlations present in the three-qubit
mixed state ρNESS as a function of the modulator temperature TM for the different con-
figurations of the reservoirs, as discussed in the previous sections. Introducing the von
Neumann entropy S of a quantum state ρ (the quantum analogue of the Shannon entropy):

S(ρ) = −Tr{ρ log ρ} (14)

we can consider the two and three particle mutual information [37–39] as quantifier of the
total correlations in the state. They are respectively defined as follows:

M2(ρAB) = S(ρA) + SρB)− S(ρAB), (15)

and

M3(ρABC) = S(ρABC) + S(ρA) + S(ρB) + S(ρC)− S(ρAB)− S(ρAC)− S(ρBC) (16)

where the marginal states ρX = Trk 6=X ρABC are the partial trace over the not considered
qubit(s).

We report in Figure 4 the tripartite mutual information and observe for all the con-
figuration a negative value. As outlined in [37], this is a signature of the fact that any
joint two-qubit subsystem contains more information about the third qubit than the two
subsystems individually considered. For our purposes, the negative values ofM3 are quite
strong evidences of the global and collective nature of the system relaxation by means of the
interactions with three different reservoirs. On the other side, looking at the figures of the
plots in Figure 5 we observe that the bipartite mutual information has the same functional
behaviour, but the subsystem composed by the modulator qubit and the drain one shares a
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higner value of information than the other two possible partitions. Overall, we observe that
the correlations in a NESS stemming from an Ohmic dissipation are always sandwiched by
those from the subOhmic and superOhmic model of dissipation. In contrast, as intuitively
expected, a higher value of the temperature TS lowers the total amount of correlations.

Out[ ]= ■
■

■
■

■
■

■ ■ ■ ■ ■ ■ ■

●
●

●
●

●
●

● ● ● ●

1 3 5
TM

-0.020

-0.018

-0.016

-0.014

-0.012

-0.010

M
3(ρSMD)

M
3
5,ohm

M
3
10,ohm

M
3
25,ohm

■ M
3
10,sub

● M
3
10,sup

Figure 4. The tripartite mutual information defined in Equation (16) as a function of the modulator
temperature TM. All the configurations are labelled by the temperature of the source reservoir and by
the type of the spectral density considered.

The mutual information takes into account all the correlations present in the state, but it
would be also useful to have an evaluation of the purely quantum part of them. To the best
of our knowledge, all the measures of quantum correlations in a multipartite mixed state
are mere arithmetic or geometric means of the quantum correlations in two-qubit reduced
systems. For the three-qubit state it reduces to the mean over the three possible two-qubit
states obtained after a bipartition that singles out one qubit [40]. Anyway, a measure that
goes beyond this approach has not been proposed yet.

For this reason, we find more instructive to asses only the entanglement in the three
bipartition, quantified via a measure based on the Peres–Horodecki criterion [41,42]. We
introduce for this task the negativity [43] defined as

N (ρAB) = −∑
i
|µi| − µi (17)

where µi are the eigenvalues of the matrix ρτB
AB, i.e., the partial transpose of the matrix ρAB

with respect to the subsystem B.
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■ M
2
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2
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Figure 5. The bipartite mutual information defined in Equation (15) as a function of the modulator
temperature TM, when one of the three qubit is traced out. The plots refers to tracing out the qubit
directly coupled with the source (a), the modulator (b), the drain (c). In the common legend the
configurations are labelled by the temperature of the source reservoir and by the type of the spectral
density considered.
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In Figure 6 we address the quantum correlations present in the three possible partitions
of the system. We observe in all the three plots that in the configuration with TM = 25ω all
the quantum correlations are almost null [44]. Nonetheless, quantum correlations are more
evident in the two subsystem with a lower value of bipartite mutual informationM2.

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■

●
●

●
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●

●
●

●
●

● ● ● ● ● ●
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■
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■

■
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●
●

●
●

●
● ● ● ● ●

1 3 5
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0.10
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N (ρSD)

(b)

Out[ ]=
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(c)

N5,ohm

N10,ohm

N25,ohm

■ N10,sub

● N10,sup

Figure 6. As measure of bipartite quantum correlation we consider the negativity defined in
Equation (17) as a function of TM. The negativity is defined for two-qubit systems so one of the three
qubits has to be traced out. The plots refers to the two-qubit system obtained when the qubit directly
coupled with, (a) the source, (b) the modulator, (c) the drain is traced. The common legend explains
the various considered settings.

In Appendix A, to better substantiate the role of the quantum correlations in the total
three-qubit system, we address a straightforward comparison with two exemplary states
having extremely non-classical properties.

6. Outro and Future Perspectives

In this paper we have analyzed how different environmental settings are influencing
the performance of a system behaving as QTT. The effect is due to a purely dissipative
dynamics induced by three thermal reservoirs leading the quantum system to a NESS.
The role of the dissipation has been tackled considering as main phenomenological param-
eters the temperature gradient between the reservoirs constituting the source and the drain,
and the spectral densities of the baths. We have shown that, moving from a subOhmic to
a superOhmic type of noise, one induces a transition around the Ohmic regime in which
the thermal transistor effect is enhanced. Anyway, our study suggests that, at fixed sys-
tem engineering, the best way to produce a heat current amplification is to increase the
temperature gradient between the source and the drain reservoirs.

Moreover, we have observed how the correlations, in particular the quantum ones,
among the three subsystems do not play any fundamental role in building a quantum
thermal transistor, but on the other side they signal that the transistor effect is a collective
phenomena. We leave, as an open problem for future investigation, the question as to
whether it is possible to engineer a system with tunable interaction, that allows us to
employ a three-qubit system either as absorption refrigerator or thermal transistor.

As final remark, we notice that our work is an initial contribution to an interesting
avenue of research constituted by bath engineering for quantum thermal analogues of
electronic systems. To boost the performances of thermal devices, one should consider
a microscopic model of the reservoirs to have a better insight on the non-equilibrium
configurations of the system, for example in [45], in terms of non-equilibrium Green
functions to tackle regimes beyond the weak-coupling limit covered in the present paper.
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Figure A1. The fidelity (as in Equation (A1)) between the various NESS obtained when varying the
modulator temperature TM and the two states representing two very different kinds of entanglement
for three particles. In (a) the fidelity with the |W〉 state and in (b) with the |GHZ〉 state. The common
legend explains the settings we have considered in the paper.

The fidelity between two quantum states, ρ and σ, is defined as:

F = Tr
{√√

σρ
√

σ

}2
, (A1)

and, nevertheless endowed with several limitation, the fidelity provides a useful resource
for quantum technology purposes [46–48]. Considering the absence of an indisputable
measure of quantum correlation for mixed three qubit states, to have a better insight on the
geometry of the ρNESS we compute the fidelity of the state with the the maximally nonlocal
three qubits state [49], namely

|W〉 =
1√
3
[|001〉+ |010〉+ |100〉] (A2)

|GHZ〉 =
1√
2
[|000〉+ |111〉]. (A3)

We report in Figure A1 the fidelity between the various ρNESS obtained via tuning the
modulator temperature in the range [0, 5] with the two states that are the paradigmatic
example of two classes of nonclassical correlation present in a three-qubit system [50,51].
The plots indicate that the NESS shares a higher fidelity with the |GHZ〉 state than with
the |W〉. We remind that the correlation and the nonclassical properties of the |GHZ〉 state
are, in a certain sense, higher in respect to those of the |W〉, (the negativity of each bipartite
partitions areNGHZ = 1,NW = 2

√
2

3 , respectively) but more fragile when loosing a particle.
The previous consideration allows us to surmise that this is again a signature that the scarce
relevance of the the correlation present in the system on the thermal transistor effect, but of
the relevance of the global three-particle collective dissipation in three different baths.
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