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Abstract

Perinatal hypophosphatasia (HPP) is a rare, potentially life-threatening, inherited, systemic metabolic bone disease that can be
difficult to recognize in utero and postnatally. Diagnosis is challenging because of the large number of skeletal dysplasias with
overlapping clinical features. This review focuses on the role of fetal and neonatal imaging modalities in the differential diagnosis
of perinatal HPP from other skeletal dysplasias (e.g., osteogenesis imperfecta, campomelic dysplasia, achondrogenesis subtypes,
hypochondrogenesis, cleidocranial dysplasia). Perinatal HPP is associated with a broad spectrum of imaging findings that are
characteristic of but do not occur in all cases of HPP and are not unique to HPP, such as shortening, bowing and angulation of the
long bones, and slender, poorly ossified ribs and metaphyseal lucencies. Conversely, absent ossification of whole bones is
characteristic of severe lethal HPP and is associated with very few other conditions. Certain features may help distinguish
HPP from other skeletal dysplasias, such as sites of angulation of long bones, patterns of hypomineralization, and metaphyseal
characteristics. In utero recognition of HPP allows for the assembly and preparation of a multidisciplinary care team before
delivery and provides additional time to devise treatment strategies.

Keywords Computed tomography - Hypophosphatasia - Metabolic bone disease - Perinatal - Radiography - Skeletal dysplasia -
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Introduction phosphatase activity results in the accumulation of phosphory-

lated substrates, specifically inorganic pyrophosphate, pyridoxal

Hypophosphatasia (HPP) is a rare, inherited, systemic, metabol-
ic bone disease caused by low tissue-nonspecific alkaline phos-
phatase activity [1-3]. In patients with HPP, low alkaline
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5'-phosphate and phosphoethanolamine [1, 3-5]. Elevated inor-
ganic pyrophosphate levels inhibit mineralization of the bone
matrix, leading to hypomineralization of the skeleton [2, 6-8].
The inability of pyridoxal 5'-phosphate, the circulating form of
vitamin B6, to cross the blood-brain barrier likely contributes to
the seizures observed in some infants with HPP [2, 8].

HPP is a clinically heterogeneous disease traditionally cate-
gorized by the age of onset of the first signs and symptoms as
perinatal onset (in utero and at birth), infantile onset (age
<6 months), childhood onset (age >6 months to
<18 years), and adult onset (age > 18 years) or, in patients with
only dental manifestations, as odonto-HPP [2, 3, 9].
Characteristic signs, symptoms and complications of perinatal
HPP include skeletal manifestations (e.g., hypomineralization,
chest deformity, bowing, craniosynostosis) [9, 10], vitamin B—
responsive seizures [9, 11-13] and respiratory failure [11, 14].
Before the availability of enzyme replacement therapy, mortal-
ity among patients with perinatal/infantile HPP was high, rang-
ing from 58% to 100% within the first year of life [15—17]. The
incidence of HPP has been estimated to be 1:100,000 in
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Ontario, Canada, based on the local birth rate in 1957 [9]. The
prevalence of perinatal and infantile HPP in Europe has been
estimated to be 1:538,000, based on molecular diagnoses made
from 2000 to 2009 [18]. Local populations with a higher inci-
dence of HPP include the Mennonite communities in Canada
[19] and an endogamous village in Hungary [20, 21]. Because
of the rarity of HPP, its true incidence and prevalence remain
unknown [3].

HPP is confirmed with consistently low age- and gender-
adjusted alkaline phosphatase activity in conjunction with
medical history and physical findings, radiologic findings,
elevated levels of tissue-nonspecific alkaline phosphatase sub-
strates or sequencing of the ALPL gene [3, 22, 23]. In utero
and postnatal recognition and diagnosis of perinatal HPP
based on radiologic findings can be challenging because of
features that overlap with many of the more than 400 other
skeletal dysplasias, the phenotypic variability and a lack of
information about the in utero natural history of HPP
[24-26]. The skeletal abnormalities and the gestational and
postnatal ages at which they manifest vary across skeletal
dysplasias, including HPP. Many sonographic and radio-
graphic findings are not pathognomonic for a specific disor-
der, as obtaining reliable information regarding skeletal min-
eralization is difficult with prenatal sonography and computed
tomography (CT). These difficulties are confounded by a gen-
eral lack of familiarity with HPP among the health care pro-
viders who perform prenatal ultrasound (US) and neonatal
imaging. In addition, abnormalities can be detected at earlier
gestational ages than they have in the past [27], underscoring
the need for obstetricians, ultrasonographers and radiologists
to possess in-depth knowledge of the appearance of the fetal
skeleton at all gestational ages [28]. This review focuses on
the role of fetal and neonatal imaging modalities in the differ-
ential diagnosis of perinatal HPP.

Prenatal imaging

Prenatal diagnosis of skeletal dysplasia relies on cross-sectional
imaging modalities (US, CT and magnetic resonance imaging
[MRI]), whereas postnatal diagnosis relies more heavily on ra-
diography [29]. The International Society of Ultrasound in
Obstetrics and Gynecology [30] and the United Kingdom’s
National Institute for Health and Care Excellence [31] recom-
mend that all pregnant women undergo US scanning at 10 to
14 weeks to establish gestational age and at 18 to 22 weeks to
screen for structural anomalies. Thereafter, the frequency of fetal
monitoring depends on the severity of findings, the mother’s
health and the family’s wishes. High-resolution US is required
to clearly identify the skeletal abnormalities of HPP. Two- or
three-dimensional (2-D or 3-D) US may be used to visualize the
skeleton by gestational week 12 [29]. Although radiologists are
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usually trained with 2-D images and generally prefer 2-D to 3-D
US when reviewing image slices, 3-D US may allow the radi-
ologist to more clearly visualize characteristic dysmorphic find-
ings of the face, hands, feet, vertebrae, ribs and skull sutures in
skeletal dysplasias [32].

Prenatal CT is a useful modality when skeletal dysplasia is
suspected after sonographic examination [33, 34] and is best
performed from 30 weeks’ gestation; image quality is poor at
earlier gestational ages because of relatively poor skeletal min-
eralization and artefacts caused by fetal movement [29, 34].
Although the added diagnostic value of CT over US has not
been formally assessed in a large study, CT allows detailed
visualization of the fetal skeleton and is less dependent on am-
niotic fluid volume and fetal position than US [33-35]. The risk
associated with fetal radiation is a common concern with prena-
tal CT; however, the risk to benefit ratio can be relatively low if
the radiation dose is kept to a minimum by selecting appropriate
technical parameters [34, 36-39]. A recommended threshold of
radiation that would have negligible risk to the fetus is 50
milligray [38]. Advances in model-based iterative reconstruc-
tion methods for ultra-low-dose fetal CT yield fetal radiation
exposures as low as 0.5 milligray while maintaining excellent
image quality for the diagnosis of skeletal dysplasias [40].

MRI has shown only limited utility in prenatal diagnosis of
skeletal dysplasias and is not routinely used in HPP diagnosis
[29, 41]; however, fetal MRI can provide valuable details when
targeted US is unable to clarify the diagnosis [42, 43]. Fetal
“black bone” MRI, compared with standard MRI sequences,
may improve visualization of the mineralized skeleton [44].

Postnatal imaging

A whole-body radiograph of an infant (i.e. babygram) is
required for any live-born infant, preterm fetus or stillborn
with a suspected constitutional disorder of bone [29, 45].
The babygram includes anteroposterior (AP) and lateral
radiographs of the full body length. Figures 1, 2 and 3
show postmortem whole-body radiographs of fetuses with
normal skeletons at 11, 14 and 15 weeks’ gestation. In
cases of stillbirths, babygrams may be performed using
cabinet X-ray machines that visualize all bones of the
skeleton on a single projection [28, 29]. For live-born,
larger infants, a standard skeletal survey may be required
to enhance diagnostic accuracy [29, 45]. The series of
radiographs obtained for a standard skeletal survey may
vary among institutions but should include the following
views: AP and lateral skull, AP chest (including AP tho-
racic spine), lateral thoracolumbar spine, AP pelvis (in-
cluding AP lumbar spine), AP one upper limb, AP one
lower limb and dorsipalmar left hand [29, 45]. A review
of family members’ previous radiographs, if available,
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Fig. 1 Normal ossification of the
fetal skeleton of a male fetus at
11 weeks’ gestation. a,b
Radiographs in lateral (a) and
anteroposterior (b) projections
show absent ossification of skull
vault, cervical, thoracic and sacral
vertebral bodies, and ischia and
pubic bones. This is normal for
the gestational age (the pelvic
calcification [arrows] is probably
within the bowel)

may help if any first-degree relatives are suspected of
being affected [29].

Cross-sectional imaging modalities (e.g., US, CT, MRI) are
generally reserved for specific skeletal and systemic abnor-
malities. Whole-body MRI findings associated with HPP have
been described in children [46] but may be less useful/
practical in a perinatal setting.

Perinatal hypophosphatasia
A broad spectrum of skeletal characteristics is consistent with

perinatal HPP in fetuses and neonates but is not exclusive to
this disease (Table 1) (Figs. 4, 5, 6, 7 and 8) [47-58]. Early

scans may appear unremarkable simply because of the normal
absence of bony ossification at earlier gestational ages
(<8 weeks) [28], while later scans may show characteristic
features of HPP (Figs. 4, 5, 6, 7 and 8). To our knowledge,
absent ossification of whole bones at or after 11 weeks’ gesta-
tion is characteristic of severe lethal HPP and is associated with
very few other conditions. Shortening, bowing and angulation
of the long bones are common characteristics but do not occur
in all cases of HPP and are not unique to HPP. Slender, poorly
ossified ribs are consistent with but not exclusive to HPP and
could be related to gestational age or other conditions, in par-
ticular osteogenesis imperfecta [59, 60]. Metaphyseal lucencies
or “tongues” are also strongly characteristic of but not exclusive
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Fig. 2 Normal ossification of the
fetal skeleton of a male fetus at
14 weeks’ gestation. a,b
Radiographs in lateral (a) and
anteroposterior (b) projections
show ossification of all vertebral
bodies, which is in contrast with
characteristics shown in the 11-
week fetus in Fig. 1; however,
there remains absent ossification
of the skull vault, much of the
skull base, and the ischia and
pubic bones

to HPP. In HPP, the skull vault has deficient ossification with
wide sutures and fontanelles; deficient ossification of the skull
allows visualization of intracranial structures that are not nor-
mally visible on prenatal US [61]. Mid-diaphyseal spurs
(Bowdler spurs) are rare but almost always diagnostic for
HPP [10, 56, 58, 62, 63]. These spurs may protrude through
or cause dimpling or indentation of the overlying skin [10, 58,
62]. Although once considered specific to HPP [62], diaphyseal
spurs have also been reported in campomelic and cleidocranial
dysplasia [64, 65]. Spurs can be difficult to detect on US be-
cause they are usually unossified [56], but they have been vi-
sualized as early as 18 weeks’ gestation on 3-D US when not
visible on 2-D US [56, 63].
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The gestational age at which skeletal abnormalities are appar-
ent in perinatal HPP varies widely, with some cases detected on
prenatal US as early as 13 weeks’ gestation [66]. However, HPP
diagnosis based on US findings cannot be definitive until half-
way through the second trimester, when characteristics of in
utero HPP become more evident. In the second trimester, all
bony features become more apparent as the fetus grows and
increase in visibility as ossification progresses. If the diaphysis
of a tubular bone is not ossified in the second trimester, it is likely
abnormal rather than physiologically related to gestational age.

Prenatal US findings may help predict lethality of a skeletal
dysplasia [67]. The three most accurate predictors of fatality
when evaluated in conjunction with fetal amniotic fluid
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Fig. 3 Normal ossification of the
fetal skeleton of a male fetus at
15 weeks’ gestation. a,b
Radiographs in lateral (a) and
anteroposterior (b) projections
show early ossification of the
ischia at 15 weeks (arrows)

volume are 3-D fetal lung volume [67, 68], the ratio of femur
length to abdominal circumference and the ratio of chest cir-
cumference to abdominal circumference [67]. In general, the
risk of fatality is greater if chest size is small and/or multiple
rib fractures are present because this will lead to breathing
difficulties ex utero [14, 67, 68]. Lethal perinatal HPP is char-
acterized by diffuse hypomineralization of the fetal skeleton
with the absence of many bones and a lack of posterior acous-
tic shadowing from bones that are sonographically visible [54,
67]. In particular, the neural arches and the thoracic spine may
be poorly ossified or absent [56, 67]. In general, lethal perina-
tal HPP is clearly more severe than other forms of HPP at first
detection, with a lack of improvement in skeletal signs with
increasing gestational age. The severity of hypomineralization
may also predict fatality. A diagnosis of lethal HPP can usu-
ally be made by the late second or early third trimester. Lack of
mineralization of bones in the hands is considered an impor-
tant feature. However, no correlation is apparent between the
gestational age when skeletal disease is first observed and the
severity of HPP after birth [66].

A slowly progressing type of perinatal HPP, with only some
or none of the skeletal abnormalities considered characteristic

of HPP, may also present prenatally [48—50, 52, 66]. This phe-
notype of HPP is relatively mild at birth, with some patients
presenting with long bone bowing, femoral or humeral angula-
tion, and presumed in utero fractures but no other radiologic

Table 1 Key radiographic and sonographic features of perinatal
hypophosphatasia [47-58]

Long bones: shortening, bowing, angulation
Small/narrow thorax (chest size smaller than abdominal circumference)
Osteochondral spurs (Bowdler spur)
Fractures
Metaphyseal irregularities
Lucencies (“cupping” or “tongues”)
Ribs
Short and beaded®
Thin®
Deficient/absent ossification of bones
Tubular bones, skull vault, ribs, vertebrae
Abnormal sonolucency of bony structures
Hypoechogenic skull
Increased nuchal translucency
Wide sutures and fontanelles”
Polyhydramnios

#Second trimester (13-27 weeks’ gestation)

® Full-term neonate
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Fig. 4 Imaging features of
hypophosphatasia of a fetus of
unknown gender at 18 weeks’
gestation. a-d Prenatal US scan in
a longitudinal view of the femur
(a) shows a short and angulated
femur and a coronal view of the
thorax (b) shows short irregular
ribs. The vertical line highlights
the original software calipers used
by the sonographer to document
thoracic height. Axial (¢) and
sagittal (d) views of the skull
show a severely underossified
cranium. Calipers on the axial
view are measuring the biparietal
diameter. [Images reproduced
with permission from Radcliffe
Publishing [38], page 370, case 1,
images la, lc, 1f, and 1g]

features of HPP (Figs. 9, 10 and 11) [49, 52, 66]. Bone ossifi-
cation is usually normal or only slightly reduced on US exam-
inations, and chest size is usually normal. In such cases, the
diagnosis of HPP may be suspected based on family history
(e.g., dental abnormalities) or diagnosed after confirmation of
low alkaline phosphatase activity. These patients have a better

prognosis in the perinatal period than patients with perinatal or
infantile HPP, which may be fatal [49, 50, 52].

Pregnancy in cases of perinatal HPP may be complicated by
polyhydramnios [2]. Whether perinatal HPP is associated with
other maternal complications, small size for gestational age or
premature birth has not been systematically studied. A retro-
spective review of 15 Manitoban Mennonite patients with

Fig. 5 Imaging features of hypophosphatasia in a fetus at 25, 34, and
38 weeks’ gestation. The fetus died. a,b Three-dimensional reconstructed
fetal CT images show deficient ossification of ribs, which is progressive
between 25 weeks’ (a) and 34 weeks’ (b) gestation, and wide cranial
sutures and anterior fontanelle. Metaphyseal “tongues” of radiolucency
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are best appreciated on the CT scan at 34 weeks (dashed arrow).
¢ Postmortem anteroposterior radiograph of the same fetus at 38 weeks’
gestation shows bowed femora (arrows) and absent ossification of
pedicles
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Fig. 6 Imaging features of
hypophosphatasia of an infant of
unknown gender at birth.
Anteroposterior radiograph of the
left upper limb shows
metaphyseal “tongues” of
radiolucency of the left proximal
humerus (circled), with bowing
and spurring (arrow) of the radius
and ulna. [Image reproduced with
permission from Radcliffe
Publishing [38], page 374, case
11, image 11c]

perinatal HPP reported during an 80-year period (1927-2007)
found that most of the infants (73.3% [11/15]) were born at full
term, 13.3% (2/15) were born early at 36 weeks’ gestation, and
13.3% (2/15) were born prematurely at 30 and 33 weeks’ ges-
tation [15]. Birth weights (n=6) ranged from below the 5th
percentile (2.3 kg) to within the 25th—50th percentile (3.3 kg).
As technology advances, we may learn more about maternal
complications.

Differential diagnosis

Metaphyseal abnormalities similar to those observed in HPP
are also observed in rickets and osteopathy of prematurity
[69]. Active rickets may present with widened zones of pro-
visional calcification and wide costochondral junctions, in-
cluding widening along the anterior ends of the ribs (i.e. ra-
chitic rosary). Osteopathy of prematurity is associated with
radiologic changes characteristic of rickets, and fractures
may be seen in infants with very low birth weights [69, 70].

Osteogenesis imperfecta

Osteogenesis imperfecta and perinatal and infantile HPP share
features of reduced bone density, deficient ossification of the
skull vault, bowed long bones, fractures, gracile ribs and nar-
row thorax (Table 2) [27, 29, 56, 59-61, 64, 65, 71-77].

Although it may be difficult to distinguish osteogenesis
imperfecta from HPP on US [27], certain patterns of demin-
eralization may help [61]. Osteogenesis imperfecta types 11, 111
and IV are characterized by overall diffuse osteopenia
(Figs. 12, 13, 14 and 15), whereas HPP is characterized by a
near complete lack of mineralization in individual bones with
more densely or normally mineralized adjacent bones [61, 73,
74, 78]. Wormian bones of the skull and compression fractures
in the spine are common findings in the majority of cases of
severe osteogenesis imperfecta [59, 79] but not in HPP.
Demineralization of the skull is usually severe and diffuse in
HPP. This is in contrast to the “island-like” centers of ossifi-
cation (i.e. Wormian bones) in the frontal, parietal and occip-
ital bones often observed in osteogenesis imperfecta. The
hand bones are echogenic in osteogenesis imperfecta but are
usually sonolucent in HPP [54, 61]. Similar to HPP, in the
neonatal period, osteogenesis imperfecta type V may present
with reduced bone density, metaphyseal widening/flaring and
widening of the growth plates [59]. However, unlike active
rickets, the metaphyses are sclerotic and irregular and there
may be centrally located wedge-shaped sclerosis of the ante-
rior vertebral bodies and unusual lucency of the
metadiaphyseal regions [59].

Campomelic dysplasia

Campomelic dysplasia shares some characteristics with HPP,
including shortening, bowing and angulation of the long
bones, diaphyseal spurs, tibial dimple, absent ossification of
the pedicles and hypoplastic fibulae (Table 2) (Figs. 16 and
17)[27, 65, 76]. Unlike HPP, the absence of ossification of the
pedicles is limited to the thoracic spine in campomelic dyspla-
sia. Campomelic dysplasia is also distinguished from HPP by
characteristic sites of long bone angulation, specifically in the
femur at the junction of the proximal third and distal two-
thirds and in the tibia at the junction of proximal two-thirds
and distal third. Other distinguishing characteristics of
campomelic dysplasia include the absence of ossification of
the wings of the scapulae, dislocated elbows, 11 pairs of ribs,
narrow iliac wings and normal bone density [27].

Achondrogenesis/hypochondrogenesis

Achondrogenesis is characterized by early hydrops and a short
trunk (crown—rump length), narrow barrel-shaped thorax and
prominent abdomen (Figs. 18, 19 and 20) [27].
Achondrogenesis types IA/B are inherited by autosomal-
recessive transmission and are associated with extreme
micromelia, short hands and feet, poor mineralization, a large
head, a flat face and a short neck. Achondrogenesis type II (au-
tosomal dominant) is less severe and presents later in gestation
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Fig. 7 Imaging features of
hypophosphatasia in a 3-week-
old girl who died with HPP who
died within the first 3 months of
life. a-¢ Anteroposterior
radiographs show metaphyseal
“tongues” of radiolucency
(arrow) in the left upper limb
(a), wide irregular metaphyses
(arrows) and absent ossification
of epiphyses of the knee in the
right lower limb (b), and
slender ribs and metaphyseal
“tongues” of radiolucency
(arrows) in the upper chest (¢)

than type I, often with polyhydramnios. Hypochondrogenesis is
characterized by a small thorax, short limbs, a flat face with
micrognathia, a short trunk and macrocephaly, a flat nose and

depressed nasal bridge [27].
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In achondrogenesis and hypochondrogenesis, deficient
ossification of the vertebral bodies is usually most severe
in the lumbosacral and cervical spine [56]. In
achondrogenesis, the whole spine may be unossified, with
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Fig. 8 Imaging features of
hypophosphatasia in a 3-month-
old girl. a-¢ Anteroposterior
radiographs show short bowed
femora (arrows) (a), short bowed
radius and ulna with spurred
radius (arrow) of the right
forearm (b), and slender, poorly
ossified ribs in the chest (c).

d Three-dimensional CT
reconstruction in the same child
shows wide sutures and
fontanelles (double-headed
arrows). [Images reproduced with
permission from Radcliffe
Publishing [38], pages 375-376,
case 12, images 12n, 12p, 12q,
and 12s]

complete absence of vertebral bodies. In contrast, HPP
typically presents as deficient spine ossification in the tho-
racic region, with a sharp demarcation between almost nor-
mal ossification in the lumbar spine and complete absence
of ossification in the thoracic spine.

Cleidocranial dysplasia

Cleidocranial dysplasia is an autosomal-dominant skeletal
dysplasia characterized by clavicular hypoplasia or
aplasia, delayed closure of fontanelles and sutures, and
hypoplasia of the pubic bones (Table 2) (Fig. 21) [64].
Prenatal US may reveal absent or hypoplastic clavicles,
missing nasal bones, and hypomineralization of the crani-
um and vertebral spine early in the second trimester

[80—-82]. Later in life, patients with cleidocranial dysplasia
may have dental anomalies (e.g., delayed eruption of pri-
mary and secondary dentition, supernumerary teeth) and
short stature. One case of cleidocranial dysplasia
misdiagnosed as HPP during infancy has been reported
[64]. Some patients with severe cleidocranial dysplasia
may have low serum alkaline phosphatase activity [83,
84]. However, these patients may also have normal serum
pyridoxal 5'-phosphate and urine phosphoethanolamine
[83, 84].

Thanatophoric dysplasia

Thanatophoric dysplasia is one of the most commonly
encountered lethal prenatal skeletal dysplasias [27].
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Fig.9 Images ofa 1-day-old boy with a slowly progressing phenotype of
perinatal hypophosphatasia. a Anteroposterior radiograph shows mild
femoral bowing (arrows) of both lower limbs. b,c By comparison, the
lateral spine (b) and anteroposterior skull (¢) are relatively normal. The
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Fig. 10 Images of a girl with a regressing phenotype of perinatal
hypophosphatasia at 30 weeks’ gestation. a,b Three-dimensional fetal
CT scans in the coronal view (a) and sagittal view (b) show
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patient had low alkaline phosphatase activity and an elevated vitamin B6
concentration. Mutation of the ALPL gene was identified in the infant and
mother. The child later had premature loss of primary dentition and
femoral remodeling with growth

metaphyseal “tongues” of radiolucency (dashed arrows) and bowing of
the long bones. ¢ An anteroposterior radiograph obtained at birth shows
regression of the metaphyseal change, although bowing persists (arrows)
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Fig. 11 Images of a male of
unknown age with benign
perinatal hypophosphatasia show
a less aggressive phenotype.

a,b Anteroposterior radiograph
(a) and three-dimensional
reconstructed CT of the lower
limbs (b) show bowing of the
long bones but normal
metaphyses; note the Bowdler
spurs of the fibulae (arrows).

¢,d Three-dimensional whole-
body CT images show skull vault
ossification that is within normal
limits

Characteristic in utero sonographic features of
thanatophoric dysplasia include severe micromelia and
brachydactyly, bowed (type I) or straight (type II) long
bones, severe platyspondyly with normal trunk length,
narrow thorax, short ribs and prominent abdomen appar-
ent by the 18-week morphology US (Table 2) (Fig. 22)
[27]. In one report, suspicious findings on US per-
formed at 13 weeks’ gestation prompted a repeat scan
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o

at 15 weeks to confirm the diagnosis of thanatophoric
dysplasia [85].

Suspicion of hypophosphatasia: Next steps
If perinatal HPP is suspected, alkaline phosphatase ac-

tivity may be assessed in umbilical cord blood or cho-
rionic villus samples [86—89]. Chorionic villus sampling
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Fig. 12 Radiographic features in a 22 weeks’ gestation male fetus with
lethal osteogenesis imperfecta type Il Anteroposterior babygram shows
generalized osteopenia, deformities of the ribs, and absent ossification of
the skull vault

Fig. 13 Radiographic features of
a girl with osteogenesis
imperfecta type V. a,b
Anteroposterior radiographs
show slender, deformed ribs of
the chest and abdomen on day 1
(a) and spurred, sclerotic and
flared metaphyses (arrow) of the
left femur at 6 weeks of age (b).
[Images reproduced with
permission from Radcliffe
Publishing [38], page 365, case 1,
images Ic and le]

for assay of alkaline phosphatase activity has been used
to diagnose HPP as early as 11-12 weeks’ gestation
[89, 90]. In some cases, however, alkaline phosphatase
activity may fail to identify affected fetuses, as alkaline
phosphatase activity varies with gestational age [89, 90].
After 13 weeks’ gestation, the placenta may produce
alkaline phosphatase, affecting the interpretation of the
analysis.

Measurement of parental serum alkaline phosphatase
activity can be useful for prenatal diagnosis of HPP
[87]. A retrospective analysis of 77 cases of fetal skel-
etal dysplasia (including 17 of HPP) in Japan from
2007 to 2016 showed that the presence of at least one
abnormally low maternal (<123 IU/L) or paternal alka-
line phosphatase value (<165 IU/L) any time during
pregnancy had high sensitivity (82%) specificity
(75%), and positive predictive value (80%) for HPP
[87].

For newborns, alkaline phosphatase activity must be
compared with age- and gender-adjusted reference
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Fig. 14 Radiographic features of an infant of unknown gender at birth
(delivered at term) with severe osteogenesis imperfecta type III. a-c
Anteroposterior radiographs show broad ribs with multiple fractures in

ranges for the testing laboratory; alkaline phosphatase
reference ranges vary widely depending on patient age
and gender and the laboratory and methods used [75]. If
alkaline phosphatase activity is low or suspicion for
HPP is high based on images, additional testing may
be necessary. In newborns, these tests should include
urine concentrations of phosphoethanolamine, and serum
concentrations of pyridoxal 5'-phosphate (i.e. vitamin
B6), calcium, vitamin D and parathyroid hormone [75].

Genetic testing for ALPL mutations can be confirma-
tory in cases of diagnostic uncertainty [91, 92].
However, clinicians should be aware of the depth of
coverage with whole-exome sequencing and next-

the chest (a), broad tubular bones with multiple fractures of the right
lower limb (b) and absent ossification of the skull vault (¢)

generation sequencing technology, as some pathogenic
variants may not be detected [92, 93].

Medical genetic evaluation and genetic counseling

A medical genetic evaluation should be obtained when a
diagnosis of HPP is being considered. In many centers, this
will be through a prenatal genetics clinic. A medical genet-
ics physician or genetics counselor can help obtain gene
testing and interpret results, especially if variants of un-
known significance are found. If gene testing results are
normal, alternative genetic causes for the apparent bony
abnormalities can be pursued in consultation with the ra-

Fig. 15 Radiographic features of a 2-week-old infant of unknown gender
with severe osteogenesis imperfecta type I1I. Anteroposterior radiographs
show broad ribs with multiple fractures (“beading”) in the chest (a),

@ Springer

broad tubular bones with multiple fractures and bowing of the tibia and
fibula of the right lower limb (b), and deficient ossification of the skull
vault (c; less severe than in the infant shown in Fig. 14)
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Fig. 16 Clinical and radiographic
features of lethal campomelic
dysplasia in a male neonate. a,b
Photograph (a) and radiograph
(b) show angulation at the
junction of the proximal third and
distal two-thirds of the femur
(arrow) and the junction of the
proximal two-thirds and the distal
third of the tibia (dashed arrow).
Note the clinical spur (yvellow
arrow), which may also be seen in
hypophosphatasia. [Images
reproduced with permission from
Radcliffe Publishing (38), page
246, case 1, image 1c]

diologist and obstetrician. Family genetic counseling
should also begin when HPP is suspected, and a detailed
pedigree should be obtained. Genetic counseling in cases
of suspected HPP may be particularly difficult due to the
autosomal-dominant and autosomal-recessive patterns of
inheritance and the phenotypic heterogeneity of the disease
[94]. The family should receive counseling by a clinician
familiar with the treatment of children with HPP so that
they are informed on available treatment options before
making decisions about terminating the pregnancy.

Prompt diagnosis of HPP is important, as the health
care provider must evaluate treatment strategies for
newborns with HPP as early as possible. If the decision
is made to treat, treatment should begin as early as
possible postnatally. All decisions must be made in con-
sultation with the parents. It is important to assemble a
multidisciplinary team for care in the perinatal period.
The team should include the following specialists: neo-
natologist, pediatrician, geneticist, endocrinologist, radi-
ologist, nephrologist, specialist nurses, genetic
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Fig. 17 Radiographic features of
lethal campomelic dysplasia in
female and male fetuses. a,b
Anteroposterior radiographs in
female (a) and male (b) fetuses
show 11 pairs of ribs, hypoplastic
scapulae (arrows), absent
ossification of thoracic pedicles,
characteristic bowing/angulation
of tibiae and fibulae, and narrow
iliac wings. [Image (a)
reproduced with permission from
Radcliffe Publishing [38], page
249, case 13, image 13c]

Fig. 18 Radiographic features in a female fetus with achondrogenesis
type IA. Anteroposterior radiograph in the most severe form of the
disease shows short limbs, short ribs, deficient ossification of the pelvis
and skull, and “beaded” ribs due to healing fractures (arrow). [Image
reproduced with permission from Radcliffe Publishing [38], page 215,

case 3, image 3b]

@ Springer

Fig. 19 Radiographic features in a female fetus with achondrogenesis
type IB. Anteroposterior radiograph shows short ribs, short limbs,
deficient ossification of the ischia and widening of the lumbar
interpedicular distances (brackets), which has been likened to the shape
of a cobra’s head. [Image reproduced with permission from Radcliffe
Publishing [38], page 106, case 3]
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Fig. 20 Radiographic features of a male fetus with achondrogenesis type
II. Anteroposterior radiograph of the least severe form of the disease
shows less marked shortening of ribs and long bones, and improved
length of long bones and pelvic ossification; however, there is absent
ossification of all vertebral bodies and of the lower thoracic, lumbar and
sacral pedicles (brackets). [Image reproduced with permission from
Radcliffe Publishing [38], page 65, case 4]

Fig. 21 Radiographic features of
cleidocranial dysplasia. a,b
Radiographs of the skull in the
anteroposterior view (a) and
lateral view (b) show wide sutures
and fontanelles (arrow) and
multiple Wormian bones (arrows).
¢ Anteroposterior chest radiograph
shows hypoplastic clavicles
(arrows).

d Anteroposterior pelvic
radiograph shows deficient
ossification of the pubic bones
(arrows). [Images reproduced with
permission from Radcliffe
Publishing (38), page 390, case 4,
images 4a-b, and case 3,

images 3b-c]

counselor, social worker, physical therapist, occupational
therapist, respiratory physician (especially if long-term
ventilation is needed), and an ears, nose, and throat special-
ist, neurologist and craniofacial surgeon (if craniosynosto-
sis is present). Neonatologists should be prepared to pro-
vide invasive respiratory support, as many babies born
with skeletal dysplasias are likely to require ventilation.

Conclusion

Perinatal HPP is associated with a broad spectrum of im-
aging findings that overlap with other perinatal skeletal
dysplasias. Certain features (e.g., sites of angulation and
hypomineralization, spurs, metaphyseal characteristics)
may help distinguish HPP from other skeletal dysplasias.
ALPL gene mutation testing during pregnancy can con-
firm the diagnosis before delivery. Alkaline phosphatase
results are essential for confirming a suspected diagnosis
of perinatal HPP. Early recognition of the disease provides
more opportunity for education and counseling to prepare
the parents, allows for the assembly and preparedness of a
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Fig. 22 Radiographic features of
a 21 weeks’ gestation male fetus
with thanatophoric dysplasia type 1.
a Lateral radiograph shows
significant platyspondyly
(arrows), with bowing of the
humeri, femora and short ribs and
a small thorax. b An
anteroposterior radiograph shows
horizontal acetabula (dashed
arrow)

multidisciplinary care team upon delivery, and provides
additional time to consider and discuss treatment options,
with the goal of improving duration and quality of life or
minimizing unnecessary suffering for the affected child
and the family.
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