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Abstract: Chromatin is a highly structured nucleoprotein complex made of histone 

proteins and DNA that controls nearly all DNA-dependent processes. Chromatin plasticity 

is regulated by different associated proteins, post-translational modifications on histones 

(hPTMs) and DNA methylation, which act in a concerted manner to enforce a specific 

“chromatin landscape”, with a regulatory effect on gene expression. Mass Spectrometry 

(MS) has emerged as a powerful analytical strategy to detect histone PTMs, revealing 

interplays between neighbouring PTMs and enabling screens for their readers in a 

comprehensive and quantitative fashion. Here we provide an overview of the recent 

achievements of state-of-the-art mass spectrometry-based proteomics for the detailed 

qualitative and quantitative characterization of histone post-translational modifications, 

histone variants, and global interactomes at specific chromatin regions. This synopsis 

emphasizes how the advances in high resolution MS, from “Bottom Up” to “Top Down” 

analysis, together with the uptake of quantitative proteomics methods by chromatin 

biologists, have made MS a well-established method in the epigenetics field, enabling the 

acquisition of original information, highly complementary to that offered by more 

conventional, antibody-based, assays. 

Keywords: chromatin; histone post-translational modifications (hPTMs); combinatorial 

modifications; epigenetics; mass spectrometry; proteomics; SILAC; histone code readers; 

histone variants 

 

OPEN ACCESS



Int. J. Mol. Sci. 2013, 14 5403 

 

 

1. Introduction 

Chromatin is a highly ordered nucleoprotein complex that both mediates the DNA compaction into 

the eukaryotic nucleus and regulates gene expression. At the structural level, the basic unit of 

chromatin is the nucleosome, consisting of 147bp DNA wound around an octamer core containing one 

histone H3–H4 tetramer and two histone H2A-H2B dimers [1,2]. Functionally, chromatin is organized 

into two distinct regions: euchromatin is less condensed and generally permissive for transcription, 

whereas heterochromatin is highly condensed and transcriptionally silent. Heterochromatin is classified 

as being either constitutive or facultative. In constitutive heterochromatin, the DNA remains 

condensed throughout the cell cycle. In facultative heterochromatin however the DNA can lose its 

condensed form and become transcriptionally active in response to distinct signals [3–5].  

Changes in the chromatin structure that do not involve the nucleotide sequence can translate into 

heritable adjustments of gene expression and thus be stored as an “epigenetic memory” of the cell [6–10]. 

Epigenetic inheritance can be explained through a step-wise model proposing that “epigenator, initiator 

and maintainer” factors operate sequentially and synergistically to enforce and maintain specific 

functional states of the genome [11]. The “epigenator”, a signal emanating from the external 

environment, is translated by an “initiator” into a specific chromatin/DNA functional state, which is 

sustained by a number of different “maintainer” factors. These factors include the methylation of 

cytosine in CpG islands [12,13], covalent post-translational modifications of histones (hPTMs) and, in 

light of more recent studies, the activities of non-coding RNAs (ncRNA) [14,15].  

Among the epigenetic maintainers listed, histone PTMs are largely recognized as key regulators of 

chromatin structure and function. hPTMs include acetylation, ubiquitination and sumoylation of Lysines; 

different methylation degrees of Arginines and Lysines; phosphorylation of Serines, Threonines and 

Tyrosines; ADP-ribosylation of Arginines, Glutamic and Aspartic acids; deimination (or citrullination) 

of Arginine; Proline isomerization [16–18], and in addition some less-characterized modifications.  

The histone code hypothesis proposes that these modifications act either singly or in combination to 

control distinct downstream pathways or processes on chromatin, ultimately defining the functional 

status of the underlying DNA. The “letters” of this code are the modifications themselves, which are 

placed and removed by enzymes known as “writers” and “erasers”, respectively. hPTMs exert their 

function on chromatin through two distinct mechanisms. In the first, higher order chromatin structure 

is altered via changes in inter-nucleosomal or histone-DNA interactions, thus controlling the 

accessibility of DNA-binding proteins such as transcription factors (cis mechanisms). Alternatively, 

hPTMs can generate binding platforms for the recruitment of effector proteins containing specialized 

domains (trans mechanisms): the so-called “readers” of the code. The “readers” translate the information 

encoded by the modification patterns into specific biological outcomes [19–22]. In addition to hPTM 

patterns, chromatin is characterized by the local enrichment of a distinct set of histone variants; 

binding proteins, including various ATP-dependent chromatin remodelling complexes; and differential 

nucleosome density. Together, these components contribute to the establishment of specific 

“chromatin landscapes”, defining the functional state of the genome in that territory [23]. 

Antibodies specifically selected against hPTMs are traditionally used to study the language of 

histone modification through various assays. These include: immunofluorescence (IF) analyses of 

modifications at the single cell level, immunoblotting (WB) to profile PTMs in different samples 
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and/or conditions, and chromatin immunoprecipitation (ChIP) that can be coupled to either PCR, DNA 

microarray (ChIP-on-chip) or deep sequencing (ChIP-Seq) for targeted or large-scale gene expression 

analysis. The last two methods allow the genome-wide mapping of modifications, with a resolution of 

a few nucleosomes [24–26]. Although advantageous for their sensitivity, antibody-based assays are 

hampered by limitations in their specificity and efficiency when used to reveal the combinatorial 

aspect of the code. In fact, modifications can occur on adjacent or closely spaced residues within the 

same histone, making an epitope-masking effect more likely. For instance, acetylation of K14 and 

phosphorylation of S10 co-occur on the H3 N-terminal region [27,28]. In this way, the modifications 

may escape detection by antibodies that are not specifically designed to recognize both modifications 

on the same epitope. To address this issue, a number of strategies have been developed to assess 

accurately the specificity of antibodies used in epigenetic research. Peach et al. combine 

immunoprecipitation (IP) of native HPLC-purified H3 with mass spectrometry to detect PTMs  

co-enriched by a certain antibody on the same polypeptide. Also, Fuchs et al. have developed a 

peptide-array assay, based on a comprehensive library of modified peptides [29,30]. 

Mass spectrometry (MS) has emerged as a promising complementary analytical strategy to identify 

known and novel PTMs on proteins, as well as for the relative quantitation and detection of synergies 

between them [31]. The recent advent of high-resolution mass spectrometry has increased the 

relevance of MS-based hPTM analysis by enabling the discrimination of near-isobaric modifications, 

either singly or in combinations, on very long polypeptides and even on intact histones [32–40]. 

Finally, the use of different labeling strategies, both chemical and metabolic, has enabled the accurate 

quantitation of modifications, both in a relative and absolute manner [41]. 

The “epigenomics” and “chromatomics” disciplines share a common goal in studying chromatin 

structure, composition and features: to gain a comprehensive view, from genome to proteome, of the 

epigenetic phenomena underlying the establishment and inheritance of specific expression  

patterns [42,43]. In this review we provide an overview of the contributions made by MS-based 

proteomics towards achieving this ambitious aim. 

2. Fundamentals of Mass Spectrometry Technology 

Before considering the different MS strategies applied to in-depth investigations of histones and 

non-histonic chromatin proteins, we offer here a concise synopsis of the basic principles of mass 

spectrometry, referring to specialized reviews for more detailed descriptions [44,45]. 

Essentially, all mass spectrometers measure the mass-to-charge ratio (m/z) of freely moving  

gas-phase ions in electric and/or magnetic fields. One of the most important developments in 

instrumentation has been the introduction of “soft-ionization” technology, which permits proteins and 

peptides to be analyzed by MS. Proteins and peptides are polar, nonvolatile species that require an 

ionization method to transfer them into the gas phase, without extensive degradation. Two techniques 

paved the way for the modern bench-top MS proteomics: matrix-assisted laser desorption ionization 

(MALDI) [46,47] and electrospray ionization (ESI) [48]. In a MALDI source, peptides are  

co-crystallized with a solid-phase matrix onto a metal plate. The matrix typically consists of a small 

organic molecule such as α-cyano-4-hydroxycinnamic acid or dihydrobenzoic acid (DHB). When laser 

pulses irradiate the resulting solid mixture, this absorbs the laser energy and transfers it to the acidified 
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peptides. At the same time, the rapid heating causes desorption of both matrix and newly formed 

[M+H]+ protonated peptides into the gas phase. Currently, MALDI ionization can support different 

types of mass analyzers, but the most common combination for proteomics studies is the  

MALDI/time-of-flight (TOF) setup [49]. In recent mass analyzers, ions generated in the source are 

accelerated to a fixed amount of kinetic energy and travel down a flight tube. The small ions have a 

higher velocity and are recorded by a detector before the larger ones. The m/z value displayed in a 

TOF spectrum is proportional to the time, for a given analyte, required to reach the detector. Unlike 

MALDI, the ESI source produces ions from the solution. Briefly, the ESI process consists of the 

formation of an electrically charged spray, driven by high voltage (2–6 kV), which triggers desolvation 

of peptide/protein-solvent droplets. This process is aided by high temperature and, in some cases, by 

sheath gas flow at the mass spectrometer inlet. There are different theoretical models to describe ESI 

ion formation, however the important features are: formation of multiply charged species, sensitivity to 

analyte concentration and flow rate.  

Liquid chromatography (LC) instruments are usually coupled “on-line” with the ESI source to 

achieve continuous or high throughput analysis. For instance, reverse phase high-pressure liquid 

chromatography (RP-HPLC) has been widely adopted in proteomics to resolve very complex peptide 

mixtures prior to MS analysis (LC-MS), due to its high resolution, efficiency, reproducibility, and 

mobile phase compatibility with ESI. A further development of this technology is nano-ESI [50,51]. In 

this case, the flow rates are lowered to a nanoliter-per-minute regime to improve the sensitivity of the 

method. Nano-ESI is compatible with capillary RP-HPLC columns [52], allowing users to perform 

analyses with high sensitivity [53]. 

Two levels of information are provided by LC-MS analysis of peptides and proteins. First, 

molecular weight and the elemental composition of the analyte can be extracted when the analyzer 

achieves sufficient mass resolution. In the second, information about the primary sequence can be 

obtained if the peptide of interest (precursor ion) is subjected to tandem mass spectrometry (MS/MS) 

analysis. MS/MS is therefore a key technique for protein or peptide sequencing and PTM analysis. 

Collision-induced dissociation (CID) [54] has been the most widely used MS/MS technique in 

proteomics research. In this method, gas-phase peptide/protein cations are internally heated by 

multiple collisions with rare gas atoms. This leads to breakage of the C-N bond in the peptide 

backbone, resulting mainly in b- and y- fragment ions. However, CID fragmentation results in limited 

sequence information for large peptides (>15 amino acids) and intact proteins. 

This limitation has been addressed by the development of novel methods for ion-electron reactions 

to carry out peptide fragmentation: electron capture dissociation (ECD) and electron transfer 

dissociation (ETD) enable sequencing of larger peptides, providing an option to investigate 

combinatorial features of hPTMs [55–58]. Both ECD and ETD are based on the transfer of electrons to 

the multi-protonated longer peptides (>2 kDa). In ECD, the electrons are generated from a heated 

filament composed of a rhenium-based alloy, whereas in ETD they are transferred by gas-phase radical 

ions. Despite the similarity between the two techniques, ECD can be used only in combination with 

fourier transform ion cyclotron resonance (FT-ICR) instruments, whereas ETD can be implemented in 

low-cost, high-capacity ion traps or new generation Orbitrap mass spectrometers and it has thus a 

wider applicability.  
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2.1. From “Bottom Up” to “Top Down”, via “Middle Down” MS Approaches in hPTM Research 

The “Bottom Up” approach is highly popular in proteomics studies for investigations of protein 

PTMs [31]. It is a “peptide-centric” strategy, based on the enzymatic digestion of proteins into peptides 

prior to MS analysis. The “Bottom Up” approach has been demonstrated successful in identifying 

known and novel modifications on histones, combining its sensitivity in detecting peptide m/z in full 

MS with its efficient MS/MS fragmentation via CID [32]. The most common protease used in “Bottom 

Up” proteomics studies is trypsin, which cleaves at the C-terminal end of Arginine and Lysine  

residues [59]. However, trypsin digestion is not ideal for the analysis of histones that are highly rich in 

these basic residues (especially at the N-terminal regions, where the modifications accumulate), 

because the peptides produced are too short to be efficiently retained and separated in RP-HPLC and 

thereafter be detected by the mass spectrometer [60]. The endopeptidase Arg-C is a good alternative 

because of its specificity for the C-terminal region of Arginines, producing longer and easy-to-ionize 

peptides, also suitable for LC-MS [60,61]. In addition, peptides produced in this digestion retain a 

positive charge at C-terminal Arginine residues, leading to a well-defined y-ion series [62–64]. 

Alternatively, histones can be chemically derivatized using either propionic anhydride [(C3H5O)2O] or 

deuterated acetic anhydride (D6-acetic anhydride [(CD3CO)2O]), prior to trypsin digestion. These 

compounds trigger Lysine alkylation that prevents tryptic cleavages, resulting in Arg-C-like digestions. 

The advantage of this approach is that it leads to the described benefits of an Arg-C-like digestion 

while using trypsin as the protease, well-suited to in gel digestion [65]. The in gel approach, commonly 

performed by SDS-PAGE, facilitates separation at the level of individual histone molecules [66]. 

Moreover, this derivatization labels unmodified and mono-methylated Lysines with a deuterated 

acetyl moiety (showing a delta mass of 45.0294 Da) but does not react with di-methyl, tri-methyl and 

acetyl Lysines, enabling the distinction between isobaric modification-bearing peptides. For example, 

peptide H3 (27–40) contains three Lysines, which can be differentially modified. In a case where two 

of these Lysines are mono-methylated, it is challenging to distinguish this species from an isobaric 

peptide containing a single di-methylation modification (Figure 1A). The derivatization approach 

however removes this isobaric feature (Figure 1B), since the addition of the deuterated acetyl moiety 

to unmodified and mono-methylated Lysines leads to a mass difference between the two-peptide 

isoforms. Furthermore, the peptides modified by distinct combinations of native and chemical 

modifications, display slightly different elution times, which contributes to the unambiguous 

assignment of modifications to specific residues. 

A limitation of the “Bottom Up” approach emerges when analyzing histone variants or 

combinations of histone modifications. In fact, the short tryptic and Arg-C-like peptides do not permit 

detection of simultaneously occurring, long-distance PTMs. Offline chromatography, to separate 

histone variants or differently modified versions of the same histone molecule prior to “Bottom Up” 

analysis, is one solution to this problem. For instance, the three mammalian variants of histone H3 

(H3.1, H3.2 and H3.3) share the majority of peptides produced upon enzymatic digestion; however the 

intact proteins can be separated prior to digestion and LC-MS using tap-tag purifications and/or  

RP-HPLC [67,68]. Alternatively, intact proteins or larger histone domains can be directly analyzed by 

mass spectrometry with the so-called “Top Down” and “Middle Down” strategies [69,70]. Histones are 

basic proteins and, in the acidic conditions used in MS, they are typically highly charged and thus 
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capable of producing multiply charged fragment ions in MS/MS. Consequently, non-ergodic 

fragmentation methods [71] such as ETD and ECD on high-resolution instruments (Orbitrap, FT-ICR) 

are feasible for “Top Down” analysis [57,58]. “Top Down” enables the user to distinguish between  

co-occurring histone variants and differently modified isoforms, with information about the relative 

abundances and modification stoichiometries, thus providing a so-called “bird’s eye view” on the 

complete panel of histone isoforms present in a specific functional state [72]. The approach however 

lacks the sensitivity of “Bottom Up” and, furthermore, the analysis of the spectra obtained is less 

straightforward. These two restraints have limited the uptake of this approach so far, even though 

recent advances in online separation of intact proteins by ultra high-pressure (UPLC) liquid 

chromatography have made the approach more feasible. Further improvements in implementations are 

therefore still required to make “Top Down” analysis of intact histones, with variants and modified 

forms, a more routine approach [73,74].  

The “Middle Down” approach is an optimal compromise between “Top Down” and “Bottom Up” 

strategies, when the mass spectrometer is hyphenated to online liquid chromatography. In “Middle 

Down” approach, large histone peptides (>2 kDa) are analyzed upon the enzymatic digestion of 

histones with endoproteinases that have specificities to less frequently-occurring amino acids within 

histone sequences, such as Glu-C or Asp-N. In fact, since mammalian H3 contains the first Glutamic 

acid at position 50, Glu-C at pH 8 produces an N-terminal peptide (1-50) of 6 kDa that contains the 

majority of PTMs decorating this histone, as well as being suitable for MS analysis and sequencing by 

either ETD or ECD MS/MS fragmentation. Similarly, Asp-N is useful for “Middle Down” analysis of 

histone H4, because it cleaves at the N-terminal side of Aspartic acid at position 24. Again, the 

resulting peptide (1–24) includes all modifications annotated at the H4 tail [33]. The “Middle Down” 

approach therefore allows a more precise detection of PTM combinations on particular histone regions, 

especially when combined with pre-fractionation of the enzymatic digestion products. For instance, a 

combination of weak-cation exchange with hydrophilic interaction liquid chromatography (WCX-HILIC) 

prior to high-resolution MS, efficiently resolve co-occurring and/or (near-) isobaric modified histone 

species [75], separating longer peptides first by their charge state and then by hydrophilicity. Based on 

this, Young et al. proposed a high-throughput approach using a gradient of decreasing organic solvent 

and decreasing pH on a commercial WCX-HILIC resin to separate and analyze by a “Middle Down” 

approach differentially modified histone domains [76] (See also Section 3). 

An inconvenience of the “Top Down” and “Middle Down” approaches is the need for specialized 

software to summarize the complex combinatorial networks existing among hPTMs. The main 

problems concern the complexity of the MS/MS spectra generated, either from intact histones or from 

large peptides, and the increased incidence of internal peptide sequence fragments that further 

complicate the sequence annotation and consequently the PTM site-specific attribution in the MS/MS 

spectra [77–79] (Figure 2). Improvements in computational approaches should enable more detailed 

comprehension and visualization of the inter-reliant relationships between unique modified forms. 
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Figure 1. Elution profile of H3 (27-40) modified peptide. (A) Extracted ion 

chromatograms (XIC) of various 2+ charge modified forms relative to H3(27–40) peptide 

are reported, upon Arg-C digestion, for the time range corresponding to 20–34 min. 

Peptide ions at the specific m/z values: 717.4204, 724.4282, 731.4361 and 738.4439, 

correspond to unmodified, mono- (me1), di- (me2) and tri-(me3) methylated H3(27-40) 

peptides, respectively. In this case it is problematic to distinguish between methylations at 

K27 and K36; (B) Extracted ion chromatograms (XIC) of various 2+ charge modified 

forms relative to the H3(27–40) peptide are reported, upon deuterated acetic anhydride 

alkylation, prior to trypsin digestion, for the time range corresponding to 36–50 min 

(bottom panel describes the reaction in detail; the asterisk indicates the addition of a  

D3-acetyl group to unmodified and mono-methylated Lysine). Peptide ions at the specific 

m/z values 784.9645, 791.9723, 776.4655 and 783.4733 correspond to unmodified,  

mono- (me1), di- (me2) and tri-(me3) methylated H3(27-40) peptides, respectively. Peptide 

ion at 798.9802 m/z is assigned to mono-methylations at K27 and K36. Based on the 

number of D3-acetyl groups and methylations, distinct modification degrees at specific 

Lysines residues can be assigned unambiguously. With this strategy, distinct isobaric 

peptides (i.e., K27me2 and K36me2) are resolved during chromatography by their discrete 

elution times. 
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Figure 2. Comparison of “peptide-centric” versus “protein-centric” MS strategies for 

hPTMs analysis. (A) In a “Bottom Up” approach the H3 is first digested with Arg-C and 

the resulting peptides are subjected to LC–MS/MS analysis using CID fragmentation. The 

series of b- and y-ions generated permits the assignment of di-methylation on the K9 

residue within peptide 9–17 of histone H3; (B) In a “Middle Down” approach the H3 is 

digested with Glu-C and the resulting peptides are subjected to LC separation. In the example, 

the full MS spectrum corresponding to peptide 1–50 is reported. The peak corresponding to  

8+ charge state is then isolated and subjected to ECD fragmentation. Zoomed region (red) 

shows fragment ion c9
2+, corresponding to K9me2; (C) RP-HPLC- purified intact histone 

H3.1 variant (green box) is directly MS analyzed in “Top Down” approach. In the 

example, the modified form of H3.1 is reported (middle panel) and the zoomed region of 

the ECD spectrum, corresponding to 18+ charge state of H3.1, is shown (bottom panel). 

K9me2 and K23 acetylation are identified on the same molecule through the characteristic 

c- and z-ion series produced via non-ergodic fragmentation.  

 

2.2. Bioinformatics Tools for hPTM Analysis 

A number of bioinformatics tools have emerged to interpret the large amount of data generated by 

modern mass spectrometers. Of particular relevance to the analysis of the modifications that occur on 

histones are tools that enable identification of several different PTMs, often co-existing on the same 

peptide. Identification of PTM-bearing peptides in sequence databases, however, is more challenging 

than that of unmodified forms because the database search engine needs to take into account the 

diversity of modified forms that might exist. There are at present a number of computational methods 
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available for the automated annotation of PTMs in peptides (Table 1). These methods analyze the MS 

and MS/MS data, taking into account the delta-mass values, and also neutral losses and other 

diagnostic ions for the PTM of interest [80]. 

Table 1. Software and search algorithms used to study hPTMs. 

Software Freely available Unbiased PTM search Reference 

FindMod + − [81] 
Mascot − − [82] 

MaxQuant + − [83] 
Modificomb + + [84] 

OMSSA + − [85] 
Phenyx − − [86] 

PILOT PTM + + [87] 
ProSightPTM 2.0 + + [88] 
Protein Prospector + + [89] 

QuickMod + + [90] 
SEQUEST − − [91] 

SIMS + + [92] 
VEMS 3.0 + − [80] 
X!Tandem + − [93] 

The computational methods used to identify PTMs fall into two categories [32]. In the first, the user 

selects a set of PTMs of interest prior to employ the bioinformatics tool for peptide and protein 

identification. This option is applied during the sequence database search, when PTMs are assigned to 

the relevant amino acids of a candidate peptide sequence. To limit the complexity required to search a 

very large set of possible modified forms, a restriction is usually imposed on the number of 

modifications that may be included in this search. 

In the second approach, which is unbiased, PTMs are identified through a “blind” database search. 

In the initial step, a basic database search is performed, excluding the specification of PTMs of 

interest, but often specifying recurring/standard modifications such as oxidized Methionine, for 

example. The specification of this relatively common modification avoids false-positive PTM 

assignments later on. Once a set of peptides is identified in an MS/MS-based proteomics experiment 

the idea is that, since the PTM leads to a mass increment or deficit of the modified peptide relative to 

the form without the modification present, all unassigned MS/MS spectra can be searched to find those 

which might match a post-translationally modified form. The software therefore inspects unassigned 

spectra, using information based on a list of known modifications such as delta-mass values and lists of 

predicted and observed peptide masses. 

Computational methods that search for post-translational modifications are however associated with 

higher rates of false-positive identifications. The combinatorial issues linked with assigning the masses 

of included modifications can dramatically increase the number of peptide and protein candidates in 

the output. In this regard though, technological improvements that enable higher mass accuracy when 

generating the MS and/or MS/MS spectra have helped to address this issue [94]. High-resolution mass 

analyzers can resolve and identify peptides bearing modifications with very similar delta-mass values 
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as well as multiply charged ions in MS/MS spectra. Recent data analysis software therefore considers 

product ions with multiple charges either before or during database searching.  

Nevertheless some issues are still beyond the reach of current algorithms. The first is that some 

modifications may arise from in vitro artefacts rather than in vivo enzymatic activity. A well known 

example is the di-glycine (GG) tag which occurs on Lysine, and is used to determine ubiquitination 

sites: the elemental composition of this tag is identical to that of iodoacetamide (IAA), commonly used 

for the alkylation of Cysteines in standard shotgun MS proteomics workflows [95]. Another issue is 

that most of the available methods are sub-optimal for the analysis of MS/MS spectra deriving from 

long peptide sequences and intact proteins, which may result from “Top Down” or “Middle Down” 

approaches. As described in the recent review by Sidoli et al. [32], the complexity of these spectra 

requires more specialised search algorithms, which can efficiently determine monoisoptic peaks, 

recognize ion charge states and deconvolute multiply-charged ion signals into singly-charged ion mass 

values. Currently, only a few software packages are available for this purpose [32]. 

2.3. Quantitative MS-Based Approaches in Epigenetic Research 

Various strategies have been developed in MS-based proteomics for accurate protein quantitation, 

from single proteins up to global proteome profiling. They can be grouped into four categories: 

chemical labeling, metabolic labeling, quantitation by the use of standard peptides and label-free. 

While the first three all rely on the use of differently isotope-encoded tags, the fourth implies the direct 

comparison among unlabeled proteomes. We refer to specialized reviews for an extensive description 

of these strategies for global protein analysis [96,97], while focusing on their application to the 

measurement of histone modification, variants and turnover. 

Chemical derivatization as a means to modify cleavable residues has been widely applied in 

epigenetic studies for their technical advantages, previously described [62,63]. In addition, the alkylation 

of Lysines with the deuterated acetic anhydride can also be used to quantitatively estimate the 

acetylation status of histones. For instance, distinct acetylated forms of H4 in Drosophila melanogaster 

and their developmental changes have been profiled using D6-acetic anhydride prior digestion and 

MS-analysis [60]. Reinberg and co-workers, using propionylation of histones, demonstrated that a 

significant portion of nuclesomes are asymetrically modified in embryonic stem cells, mouse 

embryonic fibroblasts (MEFs) and HeLa cells with respect to two prominent histone modifications: 

H3K27 di-/tri-methylation and H4K20 mono-methylation [98]. Similarly, this strategy was used to 

observe the effect of G9a/Glp1 methyltransferase knockdown on global histone methylation [40]. 

Other chemical derivatization strategies, such as TMT and iTRAQ, have only been employed on 

chromatin for protein-level profiling, with no focus on PTM level changes [99–101]. 

In vivo metabolic labeling with isotope-encoded amino acids has emerged as the most powerful 

approach to accurately quantify changes of histones and their PTMs. In stable isotope labeling by 

amino acids in cell culture (SILAC), a growth medium is prepared where natural (“light”) amino acids 

are replaced by “heavy” SILAC amino acids. Cells grown in this medium incorporate the heavy amino 

acids. When light and heavy cell populations are mixed, they remain distinguishable by MS, and 

protein abundances are determined from the relative MS signal intensities [102]. The possibility 

offered by this strategy to combine two cell populations from distinct media at a very early stage of the  
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MS-proteomics workflow, significantly reduces the effects of experimental variation in sample 

preparation, thus leading to very accurate quantitation, which only takes into account changes caused 

by the different functional states. In the last years, SILAC has gained wide popularity in proteomics 

and, more recently, also in chromatin studies [36,103–105]. SILAC is preferentially used to profile 

protein levels; however it has also been successfully applied to identify and quantify hPTMs, and in 

particular to profile modification dynamics during the cell cycle: Bonenfant et al showed increasing 

phosphorylation on histone H3 and H4 and decreasing methylation of H3K27/K36 during mitosis [106]; 

Pesavento et al. proved that H4K20 methylation degree was tightly linked to cell cycle progression 

while Scharf et al. demonstrated that H4K20 mono-methylation promotes chromatin assembly, 

facilitating the subsequent deacetylation of H4 [107,108]. Using a SILAC MS-based experiment,  

Jung et al. showed that Polycomb repressive complex Suz-12 promotes the establishment of H3K27  

di/tri-methylation in mouse embryonic stem cells, with a functional interplay between H3K27  

tri-methylation and H3K27 acetylation, functioning as molecular switch in this system [109]. A 

drawback of the SILAC approach is that it is limited to comparison of no more than three functional 

states in a single experiment [110]. Recently, however, our group circumvented this limit adapting the 

SILAC approach to a “spike-in” strategy to determine breast cancer-specific histone PTM signatures. 

In this study, we focused on human breast cancer and comprehensively analyzed PTMs on histones H3 

and H4 from a panel of heavy-labeled cancer cell lines (MCF7, MDA-MB231, MDA-MB453 and  

T-47D). Their modification patterns were compared to unlabeled normal epithelial breast cells 

(MCF10), used as a “spike-in” reference. The “spike-in” SILAC approach enabled quantitative 

tracking of the modification changes in cancer cells, as compared to their normal counterpart. With the 

accuracy of this strategy, it was possible to identify PTMs specifically associated to distinct type of 

breast cancer cell line with different properties (aggressiveness/prognosis). Among them some were 

already known as modifications linked to cancer, such as a decrease of H4K20 tri-methylation, whereas 

some emerged as novel markers of breast cancer, such as reduced levels of H3K9 tri-methylation [111]. 

A further limitation of SILAC is that it cannot be directly applied to clinical samples, as it relies on 

metabolic labeling of actively dividing cells. However, an interesting recent trend is the use of SILAC 

as an internal standard in the so-called “super-SILAC” approach [112], providing a solution to this 

restraint. In the super-SILAC approach, a combined heavy-labeled proteome mixture is derived from 

different cell lines cultured in heavy-isotope media. This “standard” mixture can then be spiked into 

clinical samples [113], generating a universal reference for quantitation, similar to that used in 

microarray analysis. It is possible to envisage the applicability of this strategy to quantify hPTM 

patterns from clinical samples by generating a super–SILAC mixture prior to biochemical methods to 

purify chromatin regions and/or bulk histones, thus generating a comprehensive set of heavy-labeled 

histone peptides, containing virtually all known hPTMs, as a universal reference. 

The SILAC method has also been adapted for a range of other applications. In pulse experiments 

SILAC was used to measure the turnover of both hPTMs and histone variants: Zee et al. showed that 

H2A.Z has higher turnover rates than canonical H2A variants and, more generally, that acetylated 

histone peptides appear to turn-over much faster than methylated ones [114]. A variation of SILAC, 

known as heavy methyl SILAC (hmSILAC), is used for high confidence identification of methylation 

at Lysines and Arginines. In heavy methyl SILAC labeling, 13CD3-Methionine is added to  

Methionine-depleted media; upon uptake in the cell, the “heavy” Methionine is converted into  
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S-adenosyl Methionine (SAM), the sole donor of methyl groups in enzymatic methylation reaction. As 

such, histone and all non-histonic proteins that contain methylations are enzymatically heavy-methyl 

labeled. Such isotopically methylated peptides are then identified with high confidence in MS, based on the 

presence of the specific ‘light and heavy peak pair’ as marker of methylation, and subsequently quantified.  

Ong et al. first used this strategy to identify unambiguously methylated sites in vivo on both 

histones and non-histonic proteins [115]. Afterwards, hmSILAC was applied to study the dynamic 

turnover of H3K9 tri-methylation in pericentric chromatin [116]. More recently, the same approach 

was applied to profile more globally the turnover of histone Lysine methylation, revealing that mono-, 

di-, and tri-methylated residues generally have progressively slower rates of formation. Furthermore, 

methylations associated with active genes were found to have faster rates than methylations associated 

with silent genes [117]. 

A combination of both standard- and heavy methyl- SILAC in pulse-chase experiments, carried out 

on synchronized cells, enabled Sweet et al. to track the progression of H3K79 methylations throughout 

the cell cycle [118]. In addition, it was observed that H3K79 mono-methylations from  

newly-synthesized H3 molecules have the same turnover rates as those in pre-existing histones, with 

no differences among the three H3 variants [118]. 

Label-free or ion intensity-based quantitation strategies have been applied in a few studies to profile 

differently modified, but isobaric histone isoforms, which have a special feature to present identical 

molecular weight/mass (isobars) but different PTMs configurations, so they are undistinguishable in 

full MS and can be hardly separated by standard LC. Since in MS/MS such isobaric species are 

distinguishable based on the positional selectivity of ion fragmentation, a relative quantitation is 

possible in a label-free MS/MS-based manner, using the relative ratios of their fragment ions. “Top 

Down” intact histone analysis was successfully used to quantify different modified forms of H3.2 and 

H4, in a label-free approach [119,120] (See also Section 3). 

Lastly, synthetic, isotopically labeled peptides can be used as internal standards for both relative 

and absolute quantitation of histones and their PTMs in “spike in” assays. Briefly, isotope-encoded 

peptides are synthesized with the same sequence of the modified histone peptide of interest, derived 

from the endoproteinase digestion used in the study. Relative quantitation is obtained when a known 

concentration of the standard peptide is “spiked into” each histone sample from the panel under 

investigation, and the intensity of the each native modified peptide is compared with that of the 

standard. With the same approach the absolute quantitation of modified peptides can be also achieved, 

when a calibration curve of the ion intensity versus the peptide standard, injected at distinct 

concentrations, is calculated. Typically, this approach is combined with single or multiple reaction 

monitoring MS (SRM/MRM), enabling very sensitive detection of even sub-stoichiometric 

modifications. This technique benefits from the triple quadropole (QQQ) instrumentation. Briefly, 

targeted peptides are selected in the first mass analyzer (Q1), fragmented by CID (in Q2) and one or 

several of the fragment ions uniquely derived from the targeted peptide are measured by the third 

analyzer (Q3). In this way, each peptide is characterized by a specific “transition” which links both the 

precursor and fragment ions, observed in both analyzers. The identity of each peptide can be inferred 

from the “transition” and the relative abundance can be estimated from the transition intensity relative 

to that of the standard [121]. Darwanto and coworkers successfully employed SRM upon spike in of 

isotopically encoded histone peptides in U937 lymphoma cells expressing a mutated form of the 
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hDot1a methyltransferase. They profiled changes in a set of hPTMs and observed that in these 

conditions the decrease of H3K79 methylation parallels a corresponding increase in H2B K120 

ubiquitination [122]. 

3. Mass Spectrometry Analysis of Histone Variants and Their Modifications 

In addition to post-translational modifications, histone variants contribute to the epigenetic 

regulation of gene expression [123]. Histone variants typically accumulate at specific genomic regions 

and show unique modification patterns, affecting a variety of chromatin-related processes. Some 

interpretative models propose that they represent an “extra layer” of the histone code [124], providing 

additional mechanisms to modulate chromatin structure. However, at least for the majority of variants, 

the processes by which specific variants accumulate at certain regions and are transmitted throughout 

the cell cycle remain unclear. Except for H4, all core histones and linker histones H1 have a number of 

variant counterparts, often differing in a few amino acids, which hampers their analysis via 

conventional approaches, such as antibody-based assays. 

Mammalian histone H3 has three major variants (H3.1, H3.2 and H3.3), in addition to a  

testis-specific variant (H3t) and a centromeric variant (CENP-A). The major variants are very similar 

in sequence composition. Histone H3.1 differs from H3.2 by a change in Cysteine 96 to Serine, while 

H3.3 differs from H3.1 by only 5 residues. However, they display differences in their expression, 

enrichment at specific chromatin domains, and in their post-translational modification signatures. 

Studies of the PTM patterns of H3 variants have been performed, profiting from all MS approaches 

described: “Bottom Up”, “Top Down” and “Middle Down”. “Bottom Up” analysis of mammalian, 

Arabidopsis thaliana, and Drosophila melanogaster H3 variants revealed that H3.3 is enriched in 

modifications associated with transcriptional activity [125–127]. “Top Down” analysis of H3 variants 

from rat brains showed comparable results using this complementary approach [128]. Affinity 

purification of epitope-tagged H3.1 and H3.3 revealed a distinct set of modifications occurring on 

these two H3 variants before and after their assembly on chromatin, suggesting that pre-assembly 

modifications determine their final fate, as well as their PTM patterns on chromatin [67]. A 

combinatorial view of modifications on H3.1 and H3.3 from asynchronous or colchicine-treated HeLa 

was achieved by “Top Down”: with this approach it was observed that only 5% of K4 was  

mono-methylated and about 50% of K9 was di-methylated in the H3.1 pool from asynchronous cells. 

In addition, more than 90% of the H3.1 pool was acetylated: K14 and K23 represent the major sites of 

acetylation. Upon colchicine treatment, however, the unmodified, mono- and di- phosphorylated S10 

and S28 were detected in a 2:3:1 ratio, in addition to the K9 methylation and acetylations described. 

The absence of the K4 methylation in the colchicine-treated samples was probably due to the relatively 

small pool of molecules containing this modification [72]. “Middle Down” analysis of H3 variants in a 

panel of rat tissues showed distinct patterns of H3.2 and H3.3 levels and modification status between 

various tissues [129]. “Middle Down” was also successfully applied to the identification of more than 

200 modifications in H3.2 and 70 modifications in H4 from human samples, including several not 

previously described [76,120]. 

Canonical human histone H2A is encoded by sixteen genes in a genomic cluster. Kelleher and  

co-workers identified and characterized twelve unique sequences by using intact mass and 
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fragmentation spectra [70]. The modifications on the canonical H2A are incompletely characterized: 

only phosphorylation of S1 and acetylation on the N-terminal K5 are reproducibly reported [130], as well 

as mono-ubiquitination at K119, involved in gene silencing and mediated by Polycomb proteins [131]. 

The non-canonical H2A variants include H2A.X, H2A.Bbd, H2A.Z and macro-H2A. H2A.X 

phosphorylated at S139 is the so-called gamma-H2A.X, which localizes to sites of DNA double strand 

breaks (DSB) in response to DNA damage and thus represents a mark of the DNA damage response 

(DDR). Acetylation and ubiquitination of H2A.X were also shown to be involved in this process: 

acetylation of K5 is a prerequisite for the poly-ubiquitination and the subsequent release of H2A.X 

from the DNA damage sites [132]. H2A.Z is present at promoters where it is believed to maintain 

active chromatin in regions adjacent to silent ones. However, potential roles in gene silencing have also 

been proposed [133]. Acetylation of K4 and K7 of this variant were identified by a “Middle Down” 

approach in Jurkat cells [130]. Macro-H2A, the largest H2A variant, is generally enriched at 

transcriptionally silent regions. MS characterization of macro-H2A identified K115 ubiquitination and 

S137 phosphorylation. The former is implicated in X-inactivation whereas the latter is enriched in 

mitosis [134,135]. In addition, K17 mono-methylation, K122 di-methylation and Y128 phosphorylation 

are identified [134].  

A combination of CID and ECD MS fragmentation at protein and peptide levels led to the 

characterization of several H2B variants and associated PTMs [130,136]: acetylation on K5, K12, K15 

and K20, and ubiquitination on K120. These PTMs were confirmed by peptide mass fingerprinting 

(PMF) MS analysis on bovine H2B, which revealed also K43 mono-methylation and K85  

acetylation [137]. “Bottom Up” approaches have also served to characterize modifications specific for 

the testis-specific variants of H2B (TH2B) [138]. In addition, “Top Down” analysis using ECD 

fragmentation of the two major H2B variants of Tetrahymena thermophila led to the characterization 

of their primary sequences and modification patterns [139]. Recently, mono-methylation and  

di-methylation at the N-terminal Proline of Drosophila melanogaster H2B have been identified using a 

combination of different strategies for sample preparation prior to MS analysis including D6-acetic 

anhydride derivatization followed by Trypsin digestion and Asp-N digestion. The abundance of this 

Proline methylation seems to depend on the developmental stage and is regulated by the enzyme 

dART8. The authors also observed predominant acetylation of H2B at K11 and K17 [140].  

Histone H1 is commonly referred to as the linker histone. A single copy of this histone is proposed 

to bind near the entry/exit site of DNA on the nucleosome (the so called dyad), stabilizing the 30 nm 

fiber and thus regulating higher order chromatin structure and stability. Sequence divergence between 

histone H1 isoforms occurs mainly in the N- and C-terminal regions of the proteins, generating as 

many as eleven mammalian isoforms. 

Mass spectrometry contributes to the identification of a number of PTMs specifically enriched on 

distinct linker histones, such as methylation, phosphorylation, acetylation, ubiquitination, formylation 

and ADP ribosylation [141–145]. RP-HPLC of the different H1 variants, followed by chemical 

derivatization of the protein with propionic anhydride and subsequent LC-MS/MS analysis revealed a 

K26 methylation and S27 phosphorylation on histone H1.4. Methylation on K26 appears to recruit 

heterochromatin protein 1 (HP1), whereas phosphorylation at S27 seems to inhibit HP1 binding, so 

that these two adjacent PTMs are believed to function as a molecular switch to modulate gene 

silencing [143,146]. Moreover, “Top Down” analysis of intact H1.2 and H1.4 purified at distinct cell 
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cycle stages provided indications that S173 on H1.2 and S187 on H1.4 are phosphorylated only during 

interphase. Interphase phosphorylated H1.2 and H1.4 associate to active rDNA genes to facilitate their 

RNA Pol I-mediated transcription. Finally, phosphorylation of H1 reduces its association to chromatin 

and, consequently, the accessibility to factors that regulate transcription and replication [147]. 

4. Interaction Proteomics to Study Chromatin Architecture 

A better knowledge of chromatin composition can contribute to a more comprehensive view of its 

higher-order structure and function. Until now, no purification method has emerged as a “gold 

standard” for chromatin purification and characterization, due to the difficulty in enriching chromatin 

samples from specific functional regions at a purity and quantity sufficient for subsequent analysis. In 

spite of these limitations and thanks to recent achievements in MS-based proteomics in terms of 

sensitivity and accuracy of quantitative information, a number of studies have demonstrated the high 

potential of this technology to characterize the chromatin proteome, with a focus on the histone code 

readers associated with specific functional regions (Figure 3). 

Figure 3. Different biochemical approaches for the proteomic characterization of 

chromatin architecture. (A) Some strategies address the chromosome as a whole, whereas 

others focus on the characterization of specific chromatin regions: (B) telomeres, regions 

enriched with modifications on (C) histones or (D) DNA and (E) specific histone variants. 

(F) Finally, some approaches aim at characterizing protein associating to chromatin via 

binding to distinct RNAs molecules and/or DNAs sequences. 
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An analysis of changes in protein levels in response to the overexpression of the oncoprotein MYC 

was the first attempt to characterize chromatin-binding proteins. This was achieved using differential 

detergent/salt extraction and chemical isotopic labeling by ICAT, in combination with multi-dimensional 

chromatography and mass spectrometry [148]. Subsequently, when ad hoc biochemical protocols were 

established for the purification of distinct chromosomes, MS proved to be successful in characterizing 

their protein composition: mitotic chromosomes were purified at different stages of the cell cycle 

(mitosis, metaphase and interphase) and the associating non-histone proteins were identified by  

MS [149–154]. More recently, a multiclassifier combinatorial proteomics (MCCP) approach was 

developed, where SILAC quantitative proteomics is integrated with a bioinformatics analysis pipeline. 

A statistical approach is applied to confirm which known and uncharacterized proteins are 

chromosomal, to obtain a more comprehensive and unambiguous collection of proteins associated with 

mitotic chromosomes [155].  

One elegant methodology to study the proteomic composition of telomeric regions was developed 

by the Kingston group using the PICh (Proteomics of Isolated Chromatin) approach. In this method, 

enrichment of cross-linked telomeric chromatin was achieved using DNA probes complementary to 

the telomeres, rich in repetitive sequences. The co-enriched proteins were characterized by MS and 

new telomere-associated proteins were observed [156]. Yet, a drawback of PICh is the limited 

applicability to regions rich in repetitive DNA sequences. 

All these methods provide a useful contribution to the knowledge of protein composition in large 

chromosomal regions or even intact chromosomes, but they are inadequate for gaining information on 

chromatin locus-specific composition. 

Recently, a number of interactomics assays combining affinity-interaction mapping with  

SILAC-quantitative MS read-out have been developed for the comprehensive characterization of 

hPTM “readers”. Vermeulen et al. used pull-down assays with peptides that differ by a single  

post-translational modification to identify specific binders, either as individual interactors or as 

multiprotein complexes. With this approach, they discovered that TFIID binds H3K4 tri-methylation 

and recruits the entire transcription initiation complex, thereby providing a functional link between this 

modification and activation of transcription [157]. The approach was extended further to screen all 

major tri-methylation marks on histones and, in combination with ChIP-Seq and BAC-GFP pull-downs, 

to define the comprehensive Lysine trimethyl-interactome [158]. As an additional elaboration of the 

strategy, a SNAP (SILAC Nucleosome Affinity Purification) approach was established where 

recombinant nucleosomes bearing combinations of hPTMs and methylated DNA were used as baits to 

provide a “modification binding profile” for proteins regulated by the contribution of both DNA and 

histone methylations [159]. Similarly, a SILAC-based affinity purification assay was carried out with 

recombinant, uniformly modified chromatin templates [160]. In addition, the CLASPI (Cross-Linking 

Assisted and SILAC-based Protein Identification) approach has been described, which combines 

SILAC with chemical proteomics using photo-crosslinking-based histone peptide probes, to detect 

weak but specific interactions that may escape standard pull-down approaches [161]. Finally, peptide 

arrays and MS have been employed to systematically uncover methyl-Lysine and chromatin-binding 

module interactors, as well as to identify novel H3K23 mono-methylation mark that mediates the 

recruitment of HP1 　eta to heterochromatin [162]. Tandem affinity purification (TAP) was also used 
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to purify and identify chromatin-associated complex: such strategy has been successful employed 

recently to characterize PRC1 (Polycomb Repressive Complex 1) complexes [163]. 

These in vitro studies are very powerful tools for screening the soluble binders of hPTMs, but fall 

short in extracting information on the relative PTM stoichiometry, their combinations, and their 

synergies with histone variants and chromatin modifiers, under physiological conditions. Hence, the 

locus-specific determination of hPTM patterns and their interactions with protein complexes remains a 

very attractive, partially unachieved goal. 

A SILAC-based quantitative proteomics approach was employed to generate a differential profile of 

proteins associated with both euchromatin and heterochromatin, exploiting the different accessibility 

of these regions to MNase, as a consequence of the differential nucleosome packaging. Upon limited 

MNase treatment, the two fractions of chromatin were separated by centrifugation, based on the 

differential density of the nucleosomal stretches; SILAC was used to discriminate the proteins 

associated with these two functional chromatin regions [164]. Another approach developed for 

detection and characterization of proteins associated with specific chromatin domains is mChIP [165], 

where chromatin is isolated, sheared by sonication and then MS analysed. mChIP was successfully 

applied to study the interactomes of H2A (Hta2p) and its variant Htz1p in Saccharomyces cerevisiae. 

However, this study did not provide quantitative information on binding proteins, and thus had limited 

ability to discriminate specific binders from nonspecific chromatin-associated proteins. Recently, an 

approach to characterize the proteins and hPTMs associated with a specific genomic locus was 

described, combining Chromatin Affinity Purification and Mass Spectrometry (ChAP-MS). A single 

genomic LexA DNA binding site was utilized to purify and characterize the GAL1 locus, under 

transcriptionally active and repressive conditions [166]. Building on these approaches, our group has 

recently developed a global, quantitative proteomic strategy, named ChroP (Chromatin Proteomics), to 

characterize functionally distinct chromatin regions [167]. Native and Cross-linked chromatin 

immunoprecipitation, combined with SILAC-based quantitative proteomics, permit global 

investigations of synergies between histone PTMs, variants, and chromatin modifiers associated with 

silent and active chromatin regions, marked by H3K9 tri-methylation and H3K4 tri-methylation. We 

identified previously characterized protein associations and also revealed numerous novel interactions 

suggesting original pathways on chromatin. Among them, the histone variant H2A.X and the 

chromatin remodeling complex WICH were both found enriched in heterochromatin, suggesting that 

their specific recruitment by H3K9me3 may represent an additional level of modulation of the DNA 

damage response (DDR) in this chromatin compartment. The implementation of ChroP is relatively 

straightforward, given the minor modifications to the standard ChIP protocol for ChIP-Seq; hence, it is 

amenable to numerous applications in various functional studies by epigenetics groups, to dissect 

chromatin composition and dynamics in a system-wide fashion. 

DNA methylation also plays a pivotal role in mediating the epigenetic inheritance of specific 

expressions pattern on the genome, and the study of the interacting proteins is critical for a deep 

understanding of the molecular basis of its function. This has been achieved using immobilized 

oligonucleotides in combination with quantitative proteomics, in a setup very similar to protein-based pull 

down assays: DOC-1 (Deleted in Oral Cancer-1) and RBP-J (recombination signal binding protein for 

immunoglobulin kappa J region) were found to bind methylated CpG regions with this strategy [168–170]. 

In line with studies that aim to link the genome features with their associated protein interactome, two 
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recent studies found a novel protein interactor of a single nucleotide polymorphism at the IGF2 locus, 

which may provide an explanation for the phenotypic effects of this polymorphism [171,172].  

Finally, given the increasing importance of RNA in the epigenetics field [173,174], the combination 

of RNA-pull-downs with quantitative proteomics enable investigations at both the RNA-protein 

interactome and protein-protein interactions mediated by the presence of non-coding RNAs [175,176]. 

Typically, protein UV cross-linking followed by immunoprecipitation (CLIP) or RNA-binding protein 

immunoprecipitation (RIP) in combination with microarray hybridization or sequencing provide 

transcriptome-wide identification of interacting RNAs [177]. Alternatively, mass spectrometry can be 

employed to screen systematically for proteins specifically bound to a specific RNA recognition 

element (RRE) within a longer RNA fragments. This quantitative approach has been used to 

characterize proteins binding to the 3’-untranslated region (3´-UTR) of HDAC2 [175] and of the viral 

gene DENV-2 [178]. Recently, purification of cross-linked MS2-tagged ribonucleoproteins, using 

SILAC for unambiguous discrimination of genuine binders, has also been described [179]. The 

extension of such protein-centric approaches to other RNA-centric methods will allow the  

genome-wide detection of novel RNA-binding proteins (RBP) for distinct RNAs species. 

5. Conclusions  

Mass spectrometry-based proteomics has emerged as a powerful analytical method for the analysis 

of histone proteins, their post-translational modifications and variants, as well as their associated 

“writers” and “readers”. The method is therefore able to provide information that is in line with, and 

highly complementary to, other commonly used techniques, such as ChIP-Seq. In this review we have 

provided an overview of various MS-based proteomics approaches that enable novel insights into 

chromatin biology. In recent years, the advances in the dynamic range and sensitivity of MS 

instruments have allowed for improved detection of sub-stoichiometric histone PTMs. Furthermore, 

the novel chromatin interactomics' studies described in this review have led to the identification of 

regions specific modifications, variants and non-histonic associated proteins. 

Detecting the combinatorial aspect of the histone code, however, remains a daunting task. The 

“Bottom Up” approach is efficient for amino acid sequencing and improved throughput for complex 

samples, however, it offers only a partial view of the complex cross-talks occurring among different 

hPTMs. In this respect, advances in “Middle Down” and “Top Down” approaches suggest that only a 

combination of the three MS approaches will provide the comprehensive solution to crack the histone 

code. At present however two major limitations limit the applicability of protein–centric approaches: 

first, the lack of straightforward “Middle Down” or “Top Down” analytical workflows, from sample 

preparation and protein separation, to MS detection and data processing, compatible with large-scale 

analyses; secondly, the bioinformatics tools available do not effectively handle the higher complexity 

of tandem mass spectra.  

The global and quantitative profiling of hPTMs and the cognate interactomes by MS may have a 

strong impact in cancer epigenetics research. In fact, while for a long time much effort has been 

invested in identifying genetic mutations in cancer, in recent years the scientific community has 

progressively recognized that, in some cancers, epigenetic components may predominate over the 

genetic ones, with genetic and epigenetic determinants of cancer initiation and progression intricately 
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entwined. In this light, the deep understanding of the epigenetic aberration in cancer is essential to 

recognize better why cancers arise (because the factors that could cause genetic damage might not be 

the same as those that could cause epigenetic damage) and why some cancers may respond better to 

certain types of therapies, as some types of therapies may be more efficient on epigenetically-damaged 

cancers. In this light, strategies based on the combination of high-resolution MS and quantitative 

proteomics for the analysis of chromatin, represent reliable, comprehensive and sensitive tools for the 

detection of changes in PTM abundances during the transition from a healthy condition to the tumor, 

offering an essential contribution to the understanding of epigenetic phenomena in cancer biology. 
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