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Abstract
Building a document-level classifier for COVID-19 on radiology reports could help assist providers in their daily clinical 
routine, as well as create large numbers of labels for computer vision models. We have developed such a classifier by fine-
tuning a BERT-like model initialized from RadBERT, its continuous pre-training on radiology reports that can be used on 
all radiology-related tasks. RadBERT outperforms all biomedical pre-trainings on this COVID-19 task (P<0.01) and helps 
our fine-tuned model achieve an 88.9 macro-averaged F1-score, when evaluated on both X-ray and CT reports. To build this 
model, we rely on a multi-institutional dataset re-sampled and enriched with concurrent lung diseases, helping the model to 
resist to distribution shifts. In addition, we explore a variety of fine-tuning and hyperparameter optimization techniques that 
accelerate fine-tuning convergence, stabilize performance, and improve accuracy, especially when data or computational 
resources are limited. Finally, we provide a set of visualization tools and explainability methods to better understand the 
performance of the model, and support its practical use in the clinical setting. Our approach offers a ready-to-use COVID-19 
classifier and can be applied similarly to other radiology report classification tasks.
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Introduction

Transformers [1], which gave birth to BERT [2], are 
now broadly shared through libraries like Hugging Face 
Transformers [3] and have reached new state-of-the-art 
performance.

The recent focus has been on developing BERT-like pre-
trained models that work well on downstream tasks, which 
include various medical or radiology applications. We dis-
tinguish continuous pre-trainings, where model weights 
are initialized from an already pre-trained BERT and then 

further pre-trained on a biomedical dataset [4–6], from the 
from-scratch pre-trainings that seem to be even more prom-
ising but require larger amounts of data [7–9]. Other than 
a recent attempt at continuous pre-training on radiology 
reports [10], no extensive pre-training research has been 
done in this domain. In particular, there exists no radiology 
pre-training that tackles a diagnosis task such as lung disease 
classification.

Many radiology downstream tasks require a fine-tuning 
of these pre-trained models on a task-specific dataset: radi-
ology report summarization [11, 12], generation [13, 14], 
and token-level or document-level classification [15, 16]. 
But these previous works typically do not provide diagnostic 
outputs. Rare attempts to classify lung diseases suffer from 
limited performance. For instance, CheXbert [16] labels 
the presence of 14 types of observations but achieves only 
0.798 of macro-averaged F1-score, which limits its use in 
the clinical setting. To the best of our knowledge, only one 
previous model for COVID-19 classification has been based 
on radiology reports [17]. Their work is limited by a small 
dataset that contained only reports suspicious for COVID-
19. It does not study COVID-19 in the presence of other 
prevalent lung diseases, nor does it rely on modern natural 
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language processing (NLP) techniques such as transformers 
to maximize performance.

Limited data remains the main bottleneck for ML projects 
in medicine due to challenges in de-identification of text 
and the cost of labeling. In addition, most NLP tools for 
radiology reports suffer from low generalizability on multi-
institutional data and are rarely optimized during hyperpa-
rameter tuning, leading to instability or under-performance.

To improve the knowledge retained from the fine-tuning 
step, strategies like ULMFit [18] aim to carefully design the 
fine-tuning process to help the transfer of knowledge, lev-
eraging the learning rate and momentum scheduling or the 
unfreezing of layers. Originally designed to help fine-tune 
LSTM models, we can expect these methods among others 
[7, 19–21] to show similar improvements on the fine-tuning 
of BERT-like models. Similarly, many algorithms have 
been designed to explore the hyperparameter space, such as 
Bayesian optimization or population-based training [22–26].

In this context, we propose new methods to develop a 
COVID-19 document-level classification model for radiol-
ogy reports (see Fig. 1). We release RadBERT, a pre-trained 
BERT model on radiology reports, along with its fine-tuned 
version for the task of COVID-19 classification, using a 
multi-institutional dataset specifically labeled for this task. 
We provide a set of fine-tuning strategies that are helpful 
to better optimize the performance of a BERT model on 
a downstream task. This includes the comparison of sev-
eral pre-trained models for tasks on radiology reports and 
the study of the hyperparameter space of a BERT model on 
radiology reports, thus suggesting methods to improve the 
fine-tuning performance.

COVID-19 classification is a complex task because of the 
need to distinguish COVID-19 from other lung diseases and 
other types of focal or multifocal pneumonia. Models and fine-
tuning strategies that perform well on this task are likely to 
perform well on classification of other diseases. Our solution 
applies to both X-ray and CT reports and therefore represents 

a good benchmark to reuse its pre-processing approaches and 
conclusions on both planar and cross-sectional datasets. We 
study the performance under data and computational con-
straints that we often encounter in medical AI projects, mak-
ing the tools and training strategies we propose reusable for 
other medical text classification tasks.

Materials and Methods

Data Collection and Annotation

Our BERT model for radiology reports was pre-trained 
on 4,056,227 reports from 608,140 unique patients being 
treated at Stanford Health Care from 1992 to 2014. The data-
set includes more than one thousand different exam types 
across all body areas.

The fine-tuning dataset comprises 19,384 reports col-
lected during 2020 in an academic health system, Penn 
Medicine. A total of 3520 reports were labeled by the radi-
ologists at the time of clinical interpretation as COVID-19, 
4752 as uncertain COVID-19, and 11,112 as no COVID-
19. Radiologists all agreed to a consensus statement on the 
meaning of each label before starting the study. Due to over-
representation of cases uncertain and positive for COVID-
19, we resampled our subset of labeled reports among all 
chest reports. We included additional negative cases with co-
prevalent lung diseases to approximate the actual prevalence 
of COVID-19. The initial dataset contained approximately 
7000 negative cases, which grew to 11,000 reports after 
resampling. The number of reports and their balance vary 
across the sites of the academic health system (see Fig. 2).

Reports from the fine-tuning dataset correspond to both 
X-rays and CTs of the chest: 16,432 X-rays and 2952 CTs. 
We split the fine-tuning data into a training set (16,876 
reports), development set (838 reports), and test set (1654 
reports), ensuring every patient belongs to a single split.

Fig. 1   Our classification task 
consists of consuming the 
text of a radiology report and 
generating one of three labels: 
COVID-19, uncertain COVID-
19, and no COVID-19 
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In addition to our fine-tuning dataset, which includes 
a test set of 1654 reports, we built a test set from a sepa-
rate institution, unseen during training: we collected chest 
X-ray radiology reports from Stanford Health Care from 
April 1, 2020, to December 31, 2020, resulting in a total 
of 66,000 data points.

To label a portion of this test set, we used our baseline 
model described in the “Baseline Model” section to find 
candidate reports for each label with moderate precision 
but correct recall (75.3). This baseline model detected 
a 4% prevalence of COVID-19 cases, which means that 
sufficient statistical significance would require too many 
reports to label, based on a non-inferiority test with sig-
nificance 5% and power 80% [27–29]. Leveraging our 
baseline model, we oversampled COVID-19 and uncertain 
COVID-19 candidates and randomly sampled no COVID-
19 candidates among the remaining reports. This formed 
a test set of 300 reports from Stanford Health Care, which 
was hand-labeled by a radiologist from the same institu-
tion with more than 10 years of experience, after training 
on a data sample and agreeing on a consensus statement 
with a radiologist from Penn Medicine. This test set is 
composed of 41 COVID-19 cases, 154 uncertain COVID-
19 cases, and 105 no COVID-19 cases.

Before being processed by our model, the radiology 
reports are pre-processed into a common format. Using 
rule-based parsers, we formatted the reports in a consistent 
manner and removed institution-specific sections that had 
no relevance to the task (e.g., Contrast). We chose to rely 
on a rule-based model that omits less important sections 
and clinical material to shorten the report below the 512-
token threshold, whenever the reports were too long (see 
Supplementary Fig. 1).

Pre‑training Methods

To handle our COVID-19 classification task, we develop 
a BERT-based approach [2] as it has been successful on 
numerous NLP tasks, and is supported by the availability of 
many pre-trainings [3].

All these BERT pre-trainings, including the ones using 
biomedical and clinical data, can be characterized by four 
main features: the pre-training dataset, the weight initiali-
zation, the vocabulary, and the training techniques. First, 
the pre-training datasets can be distinguished between in-
domain vocabulary and structure, comprised of radiology 
reports, such as [10]; in-domain vocabulary only, containing 
any types of biomedical texts like in the case of BioBERT 
[5] or BlueBERT [6]; and out-of-domain vocabulary cor-
responding for instance to BaseBERT [2]. Second, we iden-
tify two weight initialization approaches, either from-scratch 
pre-trainings that are initialized with random weights or con-
tinuous pre-trainings that use weights from a previously pre-
trained model. Third, each pre-training uses a pre-defined 
vocabulary, which can be freely chosen to correspond to the 
pre-training dataset for all from-scratch pre-trainings, but 
is imposed by the former pre-training vocabulary in case of 
continuous pre-trainings. Fourth, each pre-training can lev-
erage a variety of training strategies: various self-supervised 
objectives [30] or generators [31].

Aside from the in-domain vocabulary and structure data, 
our pre-training is fairly simple, in that it follows the gen-
eral guidelines from [2]. Using a weight initialization from 
BioBERT, itself first initialized from BaseBERT, we further 
pre-train for a few hundred thousand steps. In total, we adjust 
109,493,006 parameters across the embeddings, 12 BERT 
layers (consisting of attention, linear, layer normalization, 

Fig. 2   Our fine-tuning dataset includes radiology reports from 6 sites 
within the same health academic system, Penn Medicine. The left 
graph shows the number of reports provided by each site, dominated 

by three sites. The graph on the right shows that the data imbalance 
remains stable across these three main sites. There is less balance in 
the three remaining sites
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and dropout layers) and a pooler layer with tanh activation. 
Our output hidden dimensions have size 768. We do not 
consider any larger models, as they would not fit on a single 
GPU requiring more work and resources, and would less 
easily compare to other BERT models.

Fine‑Tuning Methods

We assess a variety of fine-tuning strategies discussed below 
and provide supplemental illustrations in the Supplementary 
Material.

Learning Rate Strategies

We measured the impact of several learning rate strategies 
on model performance. Most of these approaches were 
developed by ULMFit when pre-trained LSTMs were the 
standard approach on NLP tasks.

In the equations that follow, � is the learning rate, mod-
eled as a function of time t (the number of training steps or 
epochs so far) and the layer index l.

Discriminative learning rate consists of varying the learn-
ing rate across layers, enabling layers at the top to easily 
adjust their weights for the fine-tuning objective while pre-
venting layers at the bottom to forget pre-training knowledge:

with 0 ≤ l the layer index from top to bottom, and 0 < 𝛿 ≤ 1 
parameterizing the method.

One-cycle triangular scheduling enables a quick conver-
gence to an interesting region of the parameter space before 
refining the weights:

with tmin ≤ t ≤ tmax the training time and 1 ≪ 𝛾 parameter-
izing the method.

Slanted triangular scheduling speeds up the convergence 
to a region of interest in the parameter space:

Final decay adds a few extra training steps to choose the 
best parameters in a small neighborhood where the perfor-
mance is satisfying:

with tmax < t , t − tmax ≪ tmax and 1 ≪ 𝛽 parameterizing the 
method.
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In parallel, we also use slanted triangular momentum, 
which is similar in every aspect to the learning scheduling 
except that the variations are reversed, as found empirically 
(see Supplementary Fig. 2, [32]).

Unfreezing Scenarios

To avoid catastrophic forgetting phenomena and fine-tune 
each layer only to the extent that is needed, we include 
unfreezing methods in our general fine-tuning approach. We 
distinguish several scenarios: fine-tuning only the weights 
of the task-specific head, fine-tuning all the weights for the 
same duration, or fine-tuning different layers for different 
amounts of time. The latter can correspond either to the 
original gradual unfreezing approach suggested by [18] or 
to our own approach: training only the head at the beginning 
and then the entire transformer (see Supplementary Fig. 3).

Regularization Techniques

Following the ideas of [33] and [34], we try to use higher 
values of the learning rate at least at the beginning of the 
fine-tuning phase, then relying on our triangular scheduling 
with final decay to stabilize the convergence at the end of the 
training. As suggested by the authors, this could help speed 
up the convergence and fight overfitting not only by lever-
aging the dropout probability, but also the learning rate and 
the batch size. We suspect that higher values of the learning 
rate prevent the model from falling into local minima. Larger 
batch sizes smooth the gradient descent, thus achieving a 
similar effect as directly increasing the dropout (see Sup-
plementary Fig. 4).

Hyperparameter Optimization

The exploration of the hyperparameter space relies on two 
components: a search algorithm and a trial scheduler [35]. 
The search algorithm uses the previously acquired knowl-
edge, that is to say pairs of sets of hyperparameters and 
validation score, to suggest the next set of hyperparameters 
to try (hopefully converging to the ideal set of hyperparam-
eters). The trial scheduler helps speed up this exploration 
by either prioritizing certain trials, early stopping others, or 
merging them.

For the search algorithm, we choose to rely on Bayesian 
optimization [24] using a Tree-structured Parzen Estimator 
[22], which has the advantage of working well on continuous 
search spaces not too dimensionally heavy and being robust 
to stochastic noise. This estimator uses the validation score 
obtained on each hyperparameter set (viewed as a point of 
the hyperparameter space) to update its empirical distribu-
tions, then used to suggest the next hyperparameter set to 
try. More specifically, it models a distribution of good trials 
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ℙ̂score<y∗ and a distribution of bad trials ℙ̂score>y∗ with y ∗ 
being a percentile of the total distribution of trials ℙ̂ . Then, 
the ratio of these distributions is used to suggest the next 
of hyperparameters with maximal expected improvement:

with the empirical densities being estimated using Parzen 
windows (see Fig. 3).

For the trial scheduler, we use a FIFO scheduler and 
avoid any early stopping techniques like with ASHA [26], 
which can give an unfair advantage to models that learn 
quickly over the first epochs without building solid long-
term knowledge.

Explainability Methods

Our own use-case, for a COVID-19 classifier, aims at provid-
ing explanations on the model’s decision for each input report 
(local), using if necessary additional computations (post hoc), 
being as correct as possible (both sensitivity and implementa-
tion invariance) and relying on the words used in the input 
reports, which are easily interpretable by clinicians (feature 
importance) [36] propose a method called integrated gradi-
ents, which fulfills all these requirements, is gradient-based, 

argmaxx∈X
ℙ̂score<y∗(x)

ℙ̂score>y∗(x)

and provides explanations that we display visually using sali-
ency maps. In particular, we do not use attention-based meth-
ods, which ignore the weights from the other layers of the 
model, thus inaccurately depicting the relations between inputs 
and outputs.

Integrated gradients consist of examining the input in com-
parison to a pre-defined baseline input (in our case the dummy 
text made out of [PAD] tokens only). Then, following a straight 
line in the space of the input, we accumulate the gradients of 
the model going from the baseline input to the input. This 
measures how much and in which direction the model changes 
its decision, when going from a neutral text (the baseline input) 
to the text of interest (the input). We take the gradients rela-
tively to each word to get scores for each one of them. This 
gives IG(w) the degree of importance of each word w and the 
direction of its impact (positive or negative) on the decision 
of the model:

with T being the input text, T0 the baseline input text, and 
w0 the word corresponding to w in the baseline T0 . As such, 
integrated gradients are often classified as a path method 
which follows the straight line, thus preserving linearity and 
symmetry along the path [36].

IG(w) = (w − w0)∫
1

�=0

�M(T0 + �(T − T0))

�w

Fig. 3   The Tree-structured Parzen Estimator builds empirical distributions on the hyperparameter space and suggests points that are highly 
likely under the distribution of good trials while being highly unlikely under the distribution of bad trials
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Results

Training Details

Experiments were conducted using private compute infra-
structures. The pre-training takes 4 days on a single GPU 
NVIDIA Tesla V100 leading to an estimated 5.76 kgCO2 eq 
of total emissions.

For the fine-tuning, each training on the full train set of 
∼17k reports takes 2:30 min per epoch if training only the 
head and 8 min per epoch if training the full model (not 
counting ∼ 2 min of initialization of the training) on a sin-
gle GPU NVIDIA Quadro P5000. During hyperparameter 
optimization, we explore 100 hyperparameter sets and train 
as many models. Using 3 GPUs NVIDIA Quadro P5000, 
this averages to 51 h of total training, i.e., 17 h when paral-
lelized across the 3 GPUs (see see Supplementary Notes on 
implementation and Supplementary Table 1).

The total emissions to run all fine-tuning experiments 
are estimated to be 40.06 kgCO2eq. These estimations were 
conducted using an online tool [37].

Baseline Model

We develop a simple baseline approach that we evaluate on 
the same test set as the other models, providing context and 
elements of comparison for the results.

The baseline relies on a frequentist approach that starts by 
compiling all the words found in the reports of the training 
set. Then, it computes the frequency of each word among the 
reports of each category (COVID-19, uncertain COVID-19, 
and no COVID-19) and builds an empirical distribution of 
the vocabulary within each category. So that for each input 
report of the test set, the baseline assigns the category to 
which the report is the most likely to belong, according to 
the empirical distributions of the vocabulary.

In addition, we also compare our results with the scores 
of CheXbert [16], especially on its pneumonia task. That 
task is easier than ours as it does not require distinguishing 
among several types of pneumonia.

Evaluation Metrics

The experiments are evaluated on a test set from the same 
academic health system as the training data and on a test 
set from a different academic health system. On each test 
set, we report F1-score, recall, and precision on each of the 
three categories, namely COVID-19, uncertain COVID-19, 
and no COVID-19. To compare models across these three 
categories, we rely on macro-averaged metrics, which do not 
bias the scores towards the majority class (no COVID-19) 

as micro-averaged metrics would. Non-parametric bootstrap 
with 1000 bootstrap samples is used to compute both 95% 
percentile confidence intervals and two-tailed paired-sample 
Wilcoxon tests with significance level 0.05. We include the 
Bonferroni correction whenever testing multiple hypotheses.

Experimental Results

The results of our best model are shown in Table 1. It is 
trained on the full dataset of X-rays and CTs and uses both 
our continuous pre-training on radiology reports and all the 
fine-tuning methods that we presented in the “Fine-tuning 
Methods” section, parameterized as described in the “Train-
ing Details” section, and optimized following the Tree-
structured Parzen Estimator scheme. When we evaluate it 
on the test set from the same institution as the training set 
comprising both X-rays and CTs, this model obtains a macro-
averaged F1-score of 88.9 (class-wise F1-scores: COVID-19 
87.6, uncertain COVID-19 84.2, and no COVID-19 94.9), 
with 95% confidence interval [87.5; 90.3]. The performance 
on X-rays only is slightly higher, with a macro-averaged 
F1-score of 90.5, and lower on CTs only, 79.4. This can be 
explained by the fact that CT reports are longer, contain more 
elaborate descriptions of disease, and are less prevalent in the 
training set than X-ray reports.

We can leverage the confidence thresholds of the best 
model and choose to not retain the 10% fraction of the 
reports where the model is the least confident: in the clini-
cal setting, this would mean that the model handles 90% 
of the radiology reports and asks for additional help from 
a radiologist for the remaining 10%. This is very helpful 
for the model and helps it achieve 93.0 of macro-average 
F1-scores on the test set with both X-rays and CTs (all class-
wise F1-scores are around 90 or more). Notice that this does 
not make the model less competent: we control the reports 
dropped by the model and ensure that it does not only drop 
COVID-19 reports, which are what we are interested in. 
When the threshold is chosen to be 10%, we can measure in 
the test set that the model drops 15% of COVID-19 reports, 
14.5% of uncertain COVID-19, and 6.5% of no COVID-19. 
Dropping more or less reports allows adjustment of perfor-
mance for the trade-off that best suits its use case.

If we compare these results with our frequentist baseline 
model, the latter achieves a macro-averaged F1-score of 72.6 
on the test set from the known health system. CheXbert [16], 
which was trained on a classification task of several lung 
diseases including pneumonia using hundreds of thousands 
of reports, achieves a weighted F1-score of 83.5. The use 
of the weighted F1-score metric gives an advantage to the 
model as more weight is given to the majority class that is 
easier to classify—the reports with no symptoms. In addi-
tion, their dataset includes only X-rays, which are easier to 
classify than CTs. In comparison, our best model achieves 
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a weighted F1-score of 92.2 on X-rays only, which cor-
responds to an almost +10 improvement, on a task that is 
likely more difficult. Finally, our model needs only 1+3 
epochs (1 epoch training the head only, 3 epochs the full 
model) compared to 8 epochs for CheXbert. This shows not 
only the superiority of our approach on the COVID-19 clas-
sification task, where there exists no other reliable model 
(to the best of our knowledge), but also its potential when 
applied to the classification of other lung diseases.

As seen in Table 1, when evaluated within a new health 
academic system (Stanford Health Care), our best model 
achieves 62.6 macro-averaged F1-score on X-rays, with 
recall around 88 on both COVID-19 and no COVID-19 
reports but much lower recall, 39.0, on uncertain COVID-
19 reports. A radiologist from the same institution as the 
training data, Penn Medicine, also achieves only 82.0 macro-
averaged F1-score on this test set, with the lowest recall 
being on uncertain COVID-19 reports. Whereas the model is 
able to maintain correct performance on COVID-19 and no 
COVID-19 reports, we observe a significant drop of perfor-
mance due not only to a shift of vocabulary and report struc-
ture, but also hypothetically to a shift of definition of uncer-
tain COVID-19. In this sense, we measured that 84% of the 
model mistakes were on uncertain COVID-19 reports, and 
leveraging confidence thresholds help improve performance 
on the first two classes (confidence threshold of p=0.9 leads 
to ∼ 95 recall on both of them) but do not mitigate the low 
performance on uncertain COVID-19 reports.

Our best model is based on our continuous pre-training 
on radiology reports, which was the best performing pre-
training method compatible with our task, as described in 
Table 2. When evaluating on both X-rays and CTs, our pre-
training achieves a macro-averaged F1-score of 88.9, which 
is approximately 1 point of F1-score higher than all other 
pre-trainings (P<0.01). Notice that we outperform both other 
continuous pre-trainings (BioBERT, BlueBERT, P<0.01) 
and from-scratch pre-training (PubMedBERT, P<0.01). The 
latter achieved the best performance on CTs only (P<0.01) 
but was beaten by RadBERT on X-rays (P<0.01): not seeing 
any radiology reports at pre-training time offsets its advan-
tage of being a from-scratch pre-training.

To assess which types of reports to include in the training 
set, we evaluate the performance of the model trained on dif-
ferent compositions of the fine-tuning dataset, as depicted in 
Table 3. The drop in performance accounts for the fact that 
all fine-tuning datasets have the size of the smallest of them 
all, the CT dataset, which contains only 2952 reports before 
the split. The model trained on both X-rays and CTs achieves 
similar performance to the model trained on X-rays only 
when evaluating on X-rays only, but higher performance per-
formance to the model trained on X-rays only when evaluat-
ing on CTs only (P<0.01); the model trained on CTs only 
performs poorly when evaluated on X-rays only (P<0.01). 

Therefore, we choose to always train on both X-rays and CTs 
regardless of the composition of the test set.

Finally, we study the impact of the fine-tuning strate-
gies on the performance of the model and report the results 
in Table  4. We compare two approaches, based on the 
same pre-training (RadBERT): standard, where we use no 
advanced fine-tuning strategies as described in the “Fine-
tuning Methods” section and optimize with a small grid; 
ours, where we use all fine-tuning strategies and the Tree-
structured Parzen Estimator. When evaluated on both X-rays 
and CTs, the standard approach achieves a macro-averaged 
F1-score of 86.9 whereas ours scores 88.9 (P<0.01), in 
the setting where we are using the full training set with no 
computational constraints. If we restrict the training set 
to 1000 reports and limit the number of epochs to 2, our 
approach now outperforms the standard approach by 3 points 
of F1-score (P<0.01). This underlines that our fine-tuning 
approach has an even bigger advantage when constrained 
and generally converges faster. When the task becomes more 
difficult, such as the classification on CTs only, we observe 
a gap of 6 points of F1-score (P<0.01); the harder the task 
and the stronger the constraints, the better our fine-tuning 
approach.

Figure 4 provides another view in which we observe the 
validation loss for 500 trained transformers, with or with-
out our fine-tuning approach. The yellow runs that leverage 
these fine-tuning methods almost always achieve low valida-
tion scores, use higher values of the learning rate, and reach 
the lowest validation loss values of all runs, compared to the 
blue runs that follow a standard fine-tuning approach. Our 
fine-tuning approach provides faster and more stable train-
ing, which leads to the best performing models on the task.

Discussion

Pre‑Training Results

As observed in the “Experimental Results” section, our pre-
trained model on radiology reports performs best on the 
COVID-19 classification task among the other biomedical 
pre-trainings: its superiority is due to the inclusion of radiol-
ogy reports in the pre-training dataset. In general, accord-
ing to the BLURB benchmark [8], the best pre-training on 
biomedical tasks is PubMedBERT, as it is a from-scratch 
pre-training with a biomedical vocabulary. The fact that 
RadBERT outperforms PubMedBERT on the X-rays and 
X-rays+CTs tasks, though RadBERT is a continuous per-
training with general vocabulary, shows the importance of 
understanding well the structure of radiology reports on 
radiology-related tasks. We notice that PubMedBERT out-
performs RadBERT on the CT-only task: the pre-training 
dataset of RadBERT contains mostly X-rays, and the small 
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number of CTs seen is probably not large enough to yield 
an advantage over PubMedBERT. This shows the potential 
of from-scratch pre-training with radiology vocabulary and 
pre-trained on radiology reports: such a model would get the 
best of both worlds and probably dominate on radiology-
related tasks.

In addition, we notice that BERT-base achieves surpris-
ingly high scores on the X-ray-only task: unlike RadBERT 
or PubMedBERT, it is capable of leveraging the weights of 
an additional linear layer in the classification head to make 
up for its limited pre-training knowledge and improve medi-
ally by 1 point of F1-score. Nevertheless, this is not enough 

Fig. 4   Five hundred transformers using our pre-training on radiol-
ogy reports and fine-tuned for the COVID-19 classification task. 
The yellow points, using our fine-tuning approach, perform better 

than the blue points in the vast majority of cases, using a standard 
fine-tuning procedure. This visualization was obtained using the 
Weights & Biases platform [39]

Fig. 5   The red, yellow, and blue lines reflect the preponderance of 
COVID-19 as detected in radiology reports, all from the same health 
academic system, by our model. The green line represents the num-

ber of positive cases in the same county (data from the CDC COVID 
Tracker [40])
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to handle CTs, which have much more medical content, and 
its performance on this task is much lower compared to Rad-
BERT and PubMedBERT.

Fine‑Tuning Approach

Out of the four unfreezing scenarios presented in the 
“Unfreezing Scenarios” section, the best unfreezing strat-
egy consists of training the classification head for one 
epoch (along the pooler layer of the BERT model) and 
then unfreezing the rest of the transformer for the remain-
ing epochs. Compared to always training the full model, 
the absolute best score is slightly higher with this method, 
although by less than 1 point of F1-score. The major differ-
ence is in training stability: the median of all the trainings 
following our method is 5 points of F1-score higher com-
pared to the naive approach. Including the pooler layer in 
the first training epoch increases the median slightly, by 1 
point of F1-score.

Comparing the other fine-tuning techniques, such as the 
triangular learning rate with final decay and the discrimi-
native learning rate, we notice that all these methods help 
the training in three ways: stability, absolute performance, 
and speed of convergence. When running many models with 
these methods, we measure an improvement of 30 points 
of median F1-score across runs, compared to the standard 
approach. This improvement is mainly because the stand-
ard setting is much more sensitive to the value of the fixed 

learning rate, whereas the triangular scheduling relies on a 
range of values and can temporally reach higher values of the 
learning rate, without preventing it from converging. With 
this stability comes higher absolute performance, which 
achieves 2 additional points of F1-score when training on 
the full dataset, with no computational constraint and evalu-
ating on both X-rays and CTs (see Table 4). Finally, under 
a limit of 2 training epochs, this set of methods achieves 3 
more points of F1-score compared to the standard approach, 
as it allows for higher values of the learning rate (at least 
temporarily). Our best model uses learning rates up to 6e-05 
compared to the traditional 2e-05 value recommended for 
BERT models, dividing by more than 2 the number of 
epochs required, compared to CheXbert.

The stability of the performance is a strong advantage, 
in particular in settings where the number of trainings is 
limited. Standard strategies can reach acceptable results too, 
though this remains less frequent and not as accurate as the 
best results of our approach. The fact that these methods 
allow for higher values of the learning rate is very beneficial 
for faster convergence, and may explain the superiority in 
settings where the data is limited, which happens frequently 
in the medical domain. We experimented the same approach 
on CheXpert dataset labeled with 14 lung diseases [38] and 
observed similar improvements compared to the standard 
fine-tuning approach. Providing a more exhaustive study of 
fine-tuning methods for BERT models, evaluated on a set of 
diverse tasks, using various optimization algorithms, could 
be helpful for the field and the subject of future work.

Fig. 6   For each report and model output, integrated gradients underline in green the words that contributed positively to the decision of the 
model and in red the ones that contributed negatively
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We found that with triangular scheduling, the variation of 
the learning rate must be controlled: when there is a smaller 
number of batches, the gap between the extreme values of 
the learning rate must be reduced to keep the training sta-
ble. The use of an additional linear layer in the classification 
head was in most cases useless if not counterproductive, los-
ing 1 point of F1-score. Only when relying on BERT-base (a 
pre-training without biomedical knowledge) was this setting 
helpful. Finally, using a continuous hyperparameter space was 
very helpful during the hyperparameter optimization phase, 
compared to a discrete space.

Aside from the metrics provided in the “Experimental 
Results” section, we can assess the performance of our 
model by running it on a large database of clinical reports to 
visualize the prevalence of disease over time. If we compare 
the COVID-19 presence in reports on Fig. 5 (red line) with 
the data from the viral tests of the same county (green line), 
both superimpose well. The difference in absolute values is 
due to the difference of scales, but probably also because 
COVID-19 presence in radiology reports is not directly pro-
portional to the number of positive tests. Running similar 
models on medical reports from populations can be useful 

Table 1   Our best model Test set COVID-19 Uncertain COVID-19 No COVID-19 Macro-average
F1 (R., P.) F1 (R., P.) F1 (R., P.) F1 (R., P.)

Best model, known academic health system
X-rays 89.1 (90.7, 87.5) 87.1 (88.1, 86.1) 95.3 (94.3, 96.2) 90.5 (91.0, 90.0)
CTs 83.9 (86.9, 81.1) 61.7 (65.9, 58.0) 92.5 (88.5, 96.9) 79.4 (80.4, 78.7)
X-rays and CTs 87.6 (89.7, 85.7) 84.2 (85.6, 82.8) 94.9 (93.5, 96.3) 88.9 (89.6, 88.3)

Best model with threshold, known academic health system
X-rays and CTs 91.9 (93.7, 90.2) 89.9 (89.9, 89.9) 97.3 (96.7, 97.8) 93.0 (93.4, 92.6)

Baseline, known academic health system
X-rays and CTs 68.6 (75.3, 63.0) 65.8 (68.8, 63.0) 83.5 (79.3, 88.2) 72.6 (74.5, 71.4)

Best model, new academic health system
X-rays 64.9 (87.8, 51.4) 53.3 (39.0, 84.5) 69.7 (87.6, 57.9) 62.6 (71.5, 64.6)

Table 2   Pretraining strategies Pretraining COVID-19 Uncertain COVID-19 No COVID-19 Macro-average
F1 (R., P.) F1 (R., P.) F1 (R., P.) F1 (R., P.)

X-rays
BERT 88.6 (88.0, 89.2) 86.6 (89.2, 84.3) 95.1 (94.1, 96.2) 90.1 (90.4, 89.9)
BlueBERT 87.1 (87.5, 86.7) 86.9 (87.5, 86.3) 95.6 (95.2, 96.0) 89.9 (90.1, 89.7)
BioBERT 87.8 (91.7, 84.3) 87.2 (88.9, 85.6) 95.2 (93.2, 97.2) 90.1 (91.3, 89.0)
PubMedBERT 86.9 (89.4, 84.6) 85.4 (86.1, 84.7) 94.4 (93.3, 95.5) 88.9 (89.6, 88.3)
RadBERT (ours) 89.1 (90.7, 87.5) 87.1 (88.1, 86.1) 95.3 (94.3, 96.2) 90.5 (91.0, 90.0)

CTs
BERT 81.1 (84.5, 78.0) 59.8 (65.9, 54.7) 91.6 (86.3, 97.6) 77.5 (78.9, 76.8)
BlueBERT 82.5 (78.6, 86.8) 54.4 (63.6, 47.5) 90.8 (88.5, 93.2) 75.9 (76.9, 75.8)
BioBERT 79.0 (78.6, 79.5) 57.1 (68.2, 49.2) 91.6 (86.3, 97.6) 75.9 (77.7, 75.4)
PubMedBERT 86.7 (85.7, 87.8) 64.1 (75.0, 55.9) 92.1 (87.8, 96.8) 81.0 (82.8, 80.2)
RadBERT (ours) 83.9 (86.9, 81.1) 61.7 (65.9, 58.0) 92.5 (88.5, 96.9) 79.4 (80.4, 78.7)

X-rays and CTs
BERT 86.4 (87.0, 85.9) 83.5 (86.6, 80.6) 94.6 (92.9, 96.4) 88.2 (88.9, 87.6)
BlueBERT 85.9 (85.0, 86.7) 82.9 (84.9, 80.9) 94.9 (94.2, 95.6) 87.9 (88.0, 87.8)
BioBERT 85.4 (88.0, 83.0) 83.4 (86.6, 80.5) 94.7 (92.2, 97.2) 87.8 (88.9, 86.9)
PubMedBERT 86.9 (88.3, 85.5) 82.8 (84.9, 80.7) 94.1 (92.5, 95.6) 87.9 (88.6, 87.3)
RadBERT (ours) 87.6 (89.7, 85.7) 84.2 (85.6, 82.8) 94.9 (93.5, 96.3) 88.9 (89.6, 88.3)



Journal of Digital Imaging	

1 3

to gain insights on the propagation of diseases and their 
seasonal patterns. Other visualizations can also help com-
pare the performance of different pre-trained and fine-tuned 
classifiers (see Supplementary Notes on transformer hidden-
states visualization and Supplementary Fig. 5).

To compensate for the lack of interpretability of deep-
learning models like BERT and to help providers in their 

decision process, we provide reports with post hoc expla-
nations as computed by integrated gradients. As seen on 
Fig. 6, the presence of observations like “bilateral airspace 
opacities” or “multifocal pneumonia” are considered as good 
indicators of COVID-19, whereas “stable” lowers the con-
fidence of the model in this decision (see Supplementary 
Notes on error analysis).

Table 3   Fine-tuning datasets Dataset COVID-19 Uncertain COVID-19 No COVID-19 Macro-average
F1 (R., P.) F1 (R., P.) F1 (R., P.) F1 (R., P.)

X-rays
Only X-rays 85.9 (81.5, 90.7) 83.6 (87.2, 80.3) 94.1 (93.6, 94.6) 87.9 (87.4, 88.6)
Only CTs 51.9 (37.0, 87.0) 23.9 (18.3, 34.4) 83.1 (98.0, 72.1) 53.0 (51.1, 64.5)
Both X-rays and CTs 85.3 (88.4, 82.3) 82.7 (86.1, 79.5) 93.7 (91.0, 96.5) 87.2 (88.5, 86.1)

CTs
Only X-rays 66.3 (67.9, 64.8) 32.9 (27.3, 41.4) 83.7 (87.1, 80.7) 61.0 (60.7, 62.3)
Only CTs 86.3 (82.1, 90.8) 63.6 (77.3, 54.0) 92.9 (89.2, 96.9) 80.9 (82.9, 80.5)
Both X-rays and CTs 71.7 (73.8, 69.7) 47.7 (59.1, 40.0) 84.9 (77.0, 94.7) 68.1 (70.0, 68.1)

X-rays and CTs
Only X-rays 80.1 (77.7, 82.6) 79.1 (80.7, 77.6) 92.5 (92.6, 92.4) 83.9 (83.7, 84.2)
Only CTs 63.7 (49.7, 88.7) 30.3 (24.8, 39.2) 84.3 (96.7, 74.7) 59.4 (57.1, 67.5)
Both X-rays and CTs 81.5 (84.3, 78.8) 78.2 (83.2, 73.8) 92.5 (88.9, 96.2) 84.1 (85.5, 83.0)

Table 4   Fine-tuning strategies Strategy COVID-19 Uncertain COVID-19 No COVID-19 Macro-average
F1 (R., P.) F1 (R., P.) F1 (R., P.) F1 (R., P.)

X-rays
Constrained
    Standard 82.5 (88.4, 77.3) 71.8 (61.1, 87.0) 91.9 (96.2, 87.9) 82.1 (81.9, 84.1)
    Ours 84.3 (89.8, 79.5) 80.1 (82.8, 77.6) 93.0 (90.0, 96.2) 85.8 (87.5, 84.4)

Full
    Standard 86.6 (83.8, 89.6) 85.9 (87.2, 84.6) 95.0 (95.2, 94.8) 89.2 (88.7, 89.7)
    Ours 89.1 (90.7, 87.5) 87.1 (88.1, 86.1) 95.3 (94.3, 96.2) 90.5 (91.0, 90.0)

CTs
Constrained
    Standard 76.6 (85.7, 69.2) 31.2 (22.7, 50.0) 87.9 (89.2, 86.7) 65.3 (65.9, 68.6)
    Ours 74.9 (83.3, 68.0) 42.4 (40.9, 43.9) 83.2 (78.4, 88.6) 66.8 (67.6, 66.8)

Full
    Standard 80.9 (85.7, 76.6) 51.5 (59.1, 45.6) 88.6 (81.3, 97.4) 73.7 (75.4, 73.2)
    Ours 83.9 (86.9, 81.1) 61.7 (65.9, 58.0) 92.5 (88.5, 96.9) 79.4 (80.4, 78.7)

X-rays and CTs
Constrained
    Standard 80.8 (87.7, 74.9) 67.9 (56.9, 84.2) 91.3 (95.2, 87.8) 80.0 (79.9, 82.3)
    Ours 81.6 (88.0, 76.1) 76.2 (78.2, 74.4) 91.6 (88.3, 95.1) 83.1 (84.8, 81.9)

Full
    Standard 84.9 (84.3, 85.5) 81.7 (84.2, 79.4) 94.1 (93.2, 95.2) 86.9 (87.2, 86.7)
    Ours 87.6 (89.7, 85.7) 84.2 (85.6, 82.8) 94.9 (93.5, 96.3) 88.9 (89.6, 88.3)
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Conclusion

We have developed a COVID-19 document-level classifier on 
radiology reports, along with RadBERT, its continuous pre-
training on radiology reports. First, we propose an in-domain 
vocabulary and structured pre-training for any radiology-related 
downstream task, and show its superiority over other biomedi-
cal pre-trainings on the specific COVID-19 classification task. 
Second, we develop a set of fine-tuning and hyperparameter 
optimization methods leading to more stable results, faster 
convergence, and better absolute performance, especially 
under data and computational constraints. Third, using these 
strategies, we further fine-tune RadBERT and achieve 88.9 of 
macro-averaged F1-score on the COVID-19 document-level 
classification task, on both X-rays and CTs. Fourth, we rein-
force fine-tuned RadBERT to resist distribution shifts using a 
multi-institutional dataset and evaluating it in a new institution.

We hope that our COVID-19 classifier can offer intelli-
gent assistance to radiologists and providers, as well as help 
monitor the spread and the evolution of the disease within 
the clinical setting. Our model could also serve as a weak 
labeler for computer vision models to detect COVID-19 on 
X-rays and CT scans. We believe that RadBERT can help 
improve the performance on all radiology-related down-
stream tasks, such as report generation, summarization, 
and classification. Finally, we aim for our fine-tuning and 
hyperparameter optimization approach to be reused to cre-
ate successful classifiers for other lung diseases, even in the 
presence of a small amount of labeled data.1

In the future, we will be gathering a much larger dataset of 
unlabeled radiology reports across multiple institutions and 
experiment with from-scratch pre-training approaches. Given 
the known superiority of from-scratch approaches in other 
settings and the potential of radiology pre-training, we believe 
this could further boost all text-based transformer models on 
radiology-related tasks.2
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