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Human skin is a remarkable organ that sustains insult and injury throughout life.The ability of skin to expeditiously repair wounds
is paramount to survival. With an aging global population, coupled with a rise in the prevalence of conditions such as diabetes,
chronic wounds represent a significant biomedical burden. Mesenchymal stem cells (MSC), a progenitor cell population of the
mesoderm lineage, have been shown to be significant mediators in inflammatory environments. Preclinical studies of MSC in
various animal wound healing models point towards a putative therapy.This review examines the body of evidence suggesting that
MSC accelerate wound healing in both clinical and preclinical studies and also the possible mechanisms controlling its efficacy.The
delivery of a cellular therapy to the masses presents many challenges from a safety, ethical, and regulatory point of view. Some of
the issues surrounding the introduction of MSC as a medicinal product are also delineated in this review.

1. Introduction

Chronic wounds represent a significant biomedical burden.
In the USA, more than 6 million Americans are affected by
chronic wounds, with an annual cost estimated at $25 billion
annually [1]. In Europe, almost 2% of health budgets are spent
on managing chronic wounds [2].

Woundhealing is an elaborate process that occurs in three
distinct, yet overlapping, phases: inflammation, cell prolifer-
ation, and remodeling [3]. Adult cutaneous wound repair is
characterized by a highly evolved fibroproliferative response
to injury that quickly restores the skin barrier, thereby reduc-
ing the risk of infection and further injury.The inflammatory
phase is characterized by influx of polymorphonuclear cells
followed by monocytes/macrophages. Macrophages secrete
the growth factors and cytokines necessary forwoundhealing
such as interleukins, TGF-𝛽, and tumor necrosis factors.
Stimulated by these growth factors, healing proceeds to the
proliferative phase,made up of fibroplasia,matrix deposition,
angiogenesis, and reepithelialization. Remodeling is a dyna-
mic phase during which various collagens are continuously
deposited and degraded [4, 5].

Chronic wounds occur when there is a failure of injured
skin to proceed through an orderly and timely process to
produce anatomic and functional integrity. Causative factors
include malnutrition and immunosuppression, and chronic
wounds are commonly seen as a consequence of diabetesmel-
litus and vascular compromise. Current techniques to man-
age chronic wounds typically focus on modification of con-
trollable causative factors: antibiotic treatment of infected
wounds, pressure relief of decubitus areas, revascularization
of ischemic limbs, and compression garments for venous
insufficiency [6, 7]. Surgical debridement and negative pres-
sure wound therapy are commonly employed techniques but
remain a suboptimal treatment due to the lengthy healing
time required for this method. The advent of skin substitutes
has increased our armamentarium for treating this difficult
condition, but to date no ideal therapy is available to treat
troublesome, chronic wounds. Despite huge advances in
medical care and nutrition which have resulted in a com-
mendable change in the outcome of chronic wound man-
agement, new therapies in this area are required to optimize
outcomes for our patients. Stem cells, with their unique prop-
erties to self-renew and undergo differentiation, are emerging
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Figure 1: Multilineage potential of MSCs (mesenchymal stem cells), such as bone-marrow-derived mesenchymal stromal cells and adipose-
derived stromal cells, has the potential to differentiate into various lineages, making them ideal candidates for cell-based tissue engineering
strategies. It has been demonstrated that MSCs can undergo osteogenesis, chondrogenesis, adipogenesis, and myogenesis.

as a promising candidate for cell-based therapy for the treat-
ment of chronic wounds.

The term “stem cell” refers to a myriad of different cell
types that share two key characteristics: self-renewal and the
potential for differentiation into different cell types. Adult
stem cells are not limited to the same extent by low availability
and ethical concerns that limit the use of embryonic stem
cells, thus making them an ideal cell type for tissue regener-
ation applications. Of the numerous types of adult stem cells
that have been described in the literature, two types are of
particular relevance to tissue engineering in the setting of
chronic wounds: bone-marrow-derived mesenchymal stem
cells (BM-MSCs) and adipose-derived stromal cells (ASCs).
Bonemarrowwas the first source that was reported to contain
MSCs [8]. However, the isolation of these cells is fraught with
considerable donor site morbidity and low cell yield. ASCs
represent a similar cell type of multilineage potential. They
are isolated from the stromal vascular fraction of adipose
tissue after a digestion and centrifugation step [9]. In 2001,
Zuk et al. demonstrated that human fat obtained fromhuman
lipoaspirates contained multilineage stem cells, which have
since been shown to have the potential to undergo adipoge-
nesis, osteogenesis, chondrogenesis, and myogenesis in vitro
and in vivo [10–14] (Figure 1).

Stem cells offer enormous potential for enhancing tissue
repair and regeneration following injury. The rapidly devel-
oping fields of stem cell biology and skin tissue engineering
have created translational opportunities for the development
of novel stem cell-based wound healing therapies that show
promising results in preclinical and clinical trials for the treat-
ment of chronic wounds. In this review, we evaluate the
current evidence for adult stem cell-based therapies and their
application to chronic wound healing.

2. Methods

2.1. Data Sources and Searches. The topic “mesenchymal stem
cells”AND“cutaneouswoundhealing”was explored to deter-
mine significant issues (conceptual mapping). From this, a
search strategy was devised using the following key terms:
(mesenchymal stem cells OR MSC OR stromal OR adipose
derived) AND (cutaneous wound healing OR wound repair
OR burn). Using these key terms, an electronic bibliographic
search was conducted in MEDLINE and CENTRAL (The
Cochrane Central Register of Controlled Trials) from incep-
tion until November 31, 2012. Limits were placed on each
search to exclude non-English citations. Reference lists of
all relevant publications were searched for additional papers.
Hand searching of key journals was undertaken and relevant
conference proceedings were also examined.

2.2. Study Selection. Inclusion and exclusion criteria for
selection are listed in Table 1. A staged review of article titles
and abstracts was performed to select all studies that met the
inclusion criteria. Studies whose abstracts met the inclusion
criteria were retrieved and the full text was analyzed. Papers,
using animal models, selected for full text review are listed in
Table 2.

2.3. Data Extraction, Synthesis, and Analysis. Data extraction
and quality assessment were performed, with the following
variables being recorded from each study: cell source, char-
acterization technique, recipient, injury model, cell delivery
technique, and wound healing outcome.The papers included
in our final analysis were heterogeneous in their method-
ology and results, thus precluding a formal pooled analysis
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Table 1: Exclusion/inclusion criteria.

Inclusion criteria Exclusion criteria
(1) Original scientific studies (1) Review articles
(2) Studies investigating mesenchymal stem cells in vivo (2) In vitro studies
(3) Studies involving cells derived from bone marrow or adipose tissue (3) Studies involving noncutaneous models
(4) Studies involving cutaneous wounds or burns (4) Studies involving radiation injury models

Potentially relevant articles identified 
n = 920

PubMed n = 920

Retrieved for more detailed 
evaluation
n = 90

Remaining after selection process 
and included in systematic review

n = 56

Articles excluded n = 830

Not in English n = 81

Review articles n = 199

Other models n = 337

In vitro n = 124

Other cell types n = 47

Scaffold based n = 42

Excluded n = 34

After reading title n = 3

After reading abstract n = 12

After reading article n = 19

Figure 2: Prisma flowchart for systematic review. Flowchart demonstrating the selection criteria for research papers included in this review.
Overall 56 papers were evaluated in this systematic review, including 50 using animal models and 6 using human trials.

(Figure 2). Therefore, a narrative summary of results was
undertaken.

3. Results and Discussion

MSCs are nonhematopoietic stromal cells capable ofmultilin-
eage differentiation that show enormous potential for clinical
translation for the treatment of chronic wounds. Adult MSCs
have been isolated from various sites, including bonemarrow,
adipose tissue, and amniotic fluid. Use of adult MSCs pro-
vides an easily accessible source ofmultipotent precursor cells
that could potentially avoid the ethical concerns associated
with other stem cell types, particularly embryonic stem
cells. Additionally, transplantation with postnatal stem cells
bypasses the possibility of immune rejection that could occur
with other cell types [65].

ASCs and BM-MSCs share many common charac-
teristics, including multilineage differentiation potential
(Figure 1), morphology, telomerase activity, and gene expres-
sion [14]. In addition, they share a similar cell surface marker
phenotype; however, a definitive profile that allows for the
prospective isolation ofMSCshas not beenfirmly established.
In general, ASCs are considered to beCD45−CD235a−CD31−
CD34+, with the addition of positivity for CD106 and CD36
distinguishing them from BM-MSCs [66, 67]; however, we
found a variety of cell surface markers used to define these
cells in the papers we examined.

3.1. Cutaneous Wound Models and Cell Processing Technique.
Rodent models were used in 78% of the papers assessed, with
incisional, excisional, and burnwounds used to assess healing
(Figure 3). The majority of studies measured healing based
on gross examination of wound area. Rodents are typically
used as animal models for preclinical wound healing studies.
Rodents are attractive candidates for wound healing studies
because of their availability, low cost, and ease of handling.
However, rodent models have been criticized because the
major mechanism of wound closure is contraction, whereas
in humans reepithelialization and granulation tissue forma-
tion are the major mechanisms involved [68].The advent of a
novel wound splinting model, utilizing a silicone splint in
rodents, has allowed for an accurate, reproducible model of
wound healing that facilitates “humanized” wound healing
through the processes of granulation and reepithelialization
[68].

Thirty-five articles were identified that harvested BM-
MSCs and 22 that used ASCs. One of the drawbacks to direct
comparison between papers was the lack of uniform cell
isolation and delivery methods used in the studies. In terms
of cell isolation, studies employed various techniques using
either freshly isolated cells, with or without prospective isola-
tion for subpopulations using flow cytometry, or periods of in
vitro expansion. The lack of a standard cell profile phenotype
and standard cell isolation protocol is one of the major
limitations that is hindering translation of adult stem cell
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Figure 3: Studies in cutaneous wound healingwere performed in a diverse range of animalmodels. Animalmodels used for cutaneous wound
healing studies are not standardized. (a) Most studies of cutaneous wound healing were performed using excisional wound models in 65%
of studies. Other models included incisional wounds and burn models. (b) Most studies were carried out in mouse models (55% of studies)
with other models including rat, human, pig, and rabbit models.

therapies. Of note, adult stem cells represent a heterogeneous
cell population and interestingly subpopulations within these
compartments are absent in certain conditions, such as
diabetes, in which functional stem cells are required to ade-
quately treat conditions [69, 70]. Additionally, it is important
to note that cell surface phenotype can undergo significant
phenotypic drift following a period of in vitro culture expan-
sion and thus alter the ability to prospectively isolatemultipo-
tential subpopulations, perhaps altering their differentiation
potential of cells in vivo [71]. Therefore, it is important that
standardized protocols are developed to allow for clinical
translation of these studies.

In addition to variations in cell isolation techniques, cell
delivery methods for adult stem cells are also nonstandard-
ized in the literature. Both topical and systemic delivery
methods have been shown to be effective. For the purposes of
this review, we considered topical, intradermal, and subcuta-
neous delivery as “local” and intramuscular, parabiotic, and
intravenous delivery as “systemic” (Table 2). Local applica-
tionwith syringe-spray systems is the approach being utilized
in current clinical trials [72, 73]. It is important to know
that the choice of biomimetic scaffold plays a pivotal role
in driving appropriate tissue regeneration in vivo. Since the
extracellularmatrix (ECM) plays a key role in guiding various
biological processes, creating a scaffold that mimics the
normal ECM should enhance tissue regeneration. As a result,
advances in bioengineering have resulted in a myriad of cell
delivery mechanisms and various scaffolds that again make
comparison between methods difficult [55, 74, 75]. The local
environment, including neighboring cells, soluble signaling

molecules, ECM, mechanical forces, oxygen tension, and
other factors, is crucial to enable stem cells to maintain
their regenerative potential [76]. Ongoing research continues
to identify novel techniques to deliver cellular therapeutics
to specific locations in order to enhance cell survival and
function, in what is typically a hostile wound environment
[77, 78].

3.2. Wound Healing Results. All of the articles included in
this study evaluated time to healing using adult stem cells
in wound healing. All of studies demonstrated accelerated
wound closure and enhanced histological parameters in
wounds treated with MSC therapies, irrespective of cell
isolation or delivery method.

Despite a lack of a standardized histological scale for eval-
uating cutaneous wound healing, collagen deposition, neo-
vascularization, and cellular infiltration are considered repre-
sentative features. All studies that reported histological find-
ings identified enhanced wound healing in wounds treated
with MSCs compared to control treatment [17, 31, 47, 55, 57,
79, 80]. Specific features observed included increased recruit-
ment of macrophages [21], increased angiogenesis [55, 62],
and restoration of sebaceous glands and hair follicles [55].

A number of studies sought to evaluate the persistence of
MSCs in the wound environment after transplantation and
demonstrate thatMSCs persist in the wound for up to several
weeks following transplantation [17, 31, 33, 44]. Various
mechanisms have been investigated to enhance cell survival
following transplantation and typically involve alterations in
biomimetic scaffold delivery systems [55].
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3.3. Preclinical Studies. Themajority of studies evaluating the
role of MSCs in wound healing have been carried out in
preclinical animal models. Exogenous application of MSCs
during injury repair has been shown to be therapeutic in
animal models. Several studies examining local injection of
murineMSCs into a mouse model of incisional full thickness
wound healing have consistently shown accelerated time to
wound closure [21, 62, 81] with increased angiogenesis, reepi-
thelialization, and recruitment of myeloid cells into the
wound. Genetic manipulation of MSCs to overcome the hos-
tile wound environment is emerging as a novel technique to
enhance cell survival and proliferation, ultimately accelerat-
ing wound healing in animal models [82].This is particularly
important in the setting of diabetic and vascular wounds, in
which local cytokine levels are inadequate to achieve normal
wound healing.

Systemic delivery of adult stem cells has also been demon-
strated to accelerate wound healing in cutaneous wound
models. Once-daily administration of 2 × 106 cells over 4 days
after wounding resulted in significantly increased wound
breaking strength at days 7 and 14 [49]. In one study, MSC-
treated wounds regained 52% of normal dermal tensile
strength while untreated controls regained 31% of tensile
strength compared to unwounded skin at 80 days following
transplantation [17].

While systemic delivery of MSCs has been shown to
deposit cells at the injury site, cell engraftment and survival
have been limited. This has led to the majority of studies
looking at novel mechanisms to locally deliver adult stem
cells to enhancewoundhealing.Ultimately, this has generated
significant collaborations between stem cell researchers and
bioengineers and has resulted in the emergence of a plethora
of cell delivery systems to enhance wound healing. Ideally, to
identify the best strategy for cell delivery, direct comparison
of various cell delivery systems is required.

3.4. Clinical Studies. Currently, there are four published clin-
ical studies using MSC in cutaneous wound healing [24, 83–
85] and a handful of single case studies [86]. Preclinical and
early human trials identified in this review demonstrated that
MSCs accelerated wound closure, increased tensile strength,
and promoted cytokine production and angiogenesis. In
2007, Falanga et al. demonstrated accelerated healing of acute
surgical wounds in human subjects (𝑛 = 5) when treated
with BM-MSC delivered in a fibrin spray [24]. Wounds
were biopsied and histology suggested that at least some
MSCs migrated into the upper layers of the wound bed and
differentiated into a fibroblast phenotype. Chronic venous
and diabetic ulcer wounds were also examined (𝑛 = 6) and a
significant decrease in size at 16 weeks following three topical
applications of MSCs was observed.

The first randomized study in humans was produced by
Dash et al. in 2009, who compared intramuscular/subcutane-
ous injection of BM-MSCs to standardwound care in chronic
nonhealing wounds [84]. A significant decrease in ulcer size
was observed in the treated group. Yoshikawa et al. intro-
ducedMSCs impregnated onto a collagen sponge topically to
20 chronic wounds and recorded complete closure in 13 cases

[87]. Another case series examined 3 patients with chronic
cutaneous ulcerations [83]. In this study, patients received
local BM aspirate in addition to 3 additional treatments with
cultured BM-MSC. All patients showed clinical improvement
in their wounds within days following administration of bone
marrow aspirate or cultured bone marrow cells. Wounds
showed a steady overall decrease in wound size, and an
increase in the vascularity of the dermis and in the dermal
thickness of the wound bed was histologically suggested. No
adverse events related to the delivery of bonemarrow aspirate
or the cultured cells were noted [83]. Arising from these early
clinical studies, several trials are currently recruiting, which
will examine long-term efficacy of BM-MSC therapy on dia-
betic and venous ulcers [73, 88, 89].

3.5. Mechanism of Action. The true mechanism of action of
MSCs in accelerating wound closure is not fully understood.
The current thinking is that MSCs can enhance wound heal-
ing through two main mechanisms: by providing the neces-
sary cues for wound healing through the release of inflam-
matory mediators, together with key cytokines and growth
factors, in addition to the cells themselves participating in the
process of wound healing, ultimately differentiating into the
cell types required for closure of the wound (Figure 4).

Studies carried out in vitro and in vivo studies have demo-
nstrated that transplantedMSCs can differentiate into cells of
the residing tissue, repair damaged tissue, and at least parti-
ally restore its normal function [90]. Ma et al. demonstrated
in vitro differentiation of MSCs into a multilayered epider-
mis-like structure which expressed the epidermal markers
cytokeratin-10 and filaggrin [91]. In their clinical study, Sheng
et al. demonstrated recovery of sweat gland function follow-
ingMSC transplantation into excision wounds in rodent skin
[57]. In addition to their differentiation capacity, increasing
evidence points to the ability of MSCs to secrete paracrine
factors that modulate the local environment and stimulate
wound healing [92]. Specifically, MSCs have been shown to
significantly decrease the production of proinflammatory
cytokines in the acute periodwhenhigh levels can be deleteri-
ous to tissue and to upregulate them in the later regeneration
phase [93]. Protein arrays have demonstrated that condi-
tioned media from MSC cultures contain various cytokines
and chemokines such as IL-8, IL-6, TGF-𝛽, and VEGF, all of
which are essential to normal wound healing [94].

MSCs have been shown to enhance wound healing
through increased angiogenesis, reepithelialization, and gra-
nulation tissue formation (Figure 4). MSCs express keratino-
cyte-specific markers and high levels of vascular endothelial
growth factor and angiopoietin-1, suggesting that MSCs pro-
mote wound healing by differentiation and release of proan-
giogenic factors. Yet, other studies have demonstrated that
intravenous (IV) injection in mice induced MSC transdiffer-
entiation into keratinocytes, endothelial cells, and pericytes
in cutaneous wounds. When human BM-MSCs were applied
to full thickness skin defects in mice in conjunction with IV
MSC administration, all wounds healed without a scar or
retraction [95].
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Figure 4:MSCs and ASCs act to promote cutaneous wound healing
through a variety of mechanisms. MSCs and ASCs influence wound
healing through a variety of mechanisms, including angiogenesis,
promoting epithelialization, and enhancing collagen deposition and
granulation tissue formation. In addition, various studies have
demonstrated that transplanted cells engraft into the wound to
participate in wound healing. Blue bars represent studies examining
BM-MSCs and orange bars represent studies evaluating ASCs.

A recent hypothesis is thatMSCs are pericytes, a support-
ing cell for blood vessels [65]. This hypothesis raises an inter-
esting connection between these cells and angiogenesis, a key
component in wound repair [65].

3.6. Safety and Regulation. Despite the rapid progress in eval-
uating the efficacy of MSCs in wound healing, many issues
still need to be addressed. A lack of standardized isolation and
delivery mechanisms for MSCs exists. Uncertainties remain
as to how to best identify an ideal subpopulation of MSCs
and whether freshly isolated cells are superior to cells that
undergo a period of culture expansion in vitro.

All of these findings from animal transplantation studies
demonstrate that MSCs can contribute to wound repair and
may provide the cell source for regenerative therapy. How-
ever, further studies are necessary to extensively study not
only MSCs but also the critical factors that make up the mic-
roenvironment that supports the survival and differentiation

of these cells. This would allow us to determine the extent to
which MSCs in the wound environment act as multipotent
cells or a source of secreted factors. This research would also
divide this heterogeneous cell type into more distinct and
functional subpopulations.

A major obstacle to clinical translation of cellular ther-
apies is safety and regulation of their use. Safety concerns
are apparent at all stages from isolation to administration
(Figure 5 details the isolation workflow). Transitioning from
preclinical research in terms of in vivomodels to the clinical
arena represents a major step. The manipulation of MSCs for
therapeuticmodalitiesmust be done in accordancewith good
manufacturing practices and the regulations of the FDA and/
or European Medicines Agency. Other obstacles that must
be addressed include the need for development of suitable
serum-free media for these cells as fetal bovine serum is
not recommended for clinical therapies due to the risk of
contamination and infection [96].

3.7. Future Directions. Other approaches have concentrated
on the delivery ofMSC transfected with genes or in a suspen-
sion with plasmids or growth factors such as ectodysplasin,
basic fibroblast growth factor (bGFG), or human hepatocyte
growth factor [97–100]. The loss of sweat glands and thermal
regulation after severe thermal injury has been a problematic
area in tissue regeneration due to the multiple germ layers
involved. TransplantedMSC transfectedwith ectodysplasin, a
gene implicated in the development of sweat gland structures,
into scalded paws of mice was shown to be beneficial in sweat
gland regeneration [97]. Eachmouse received a full thickness
burn on each posterior paw and after 30mins received a sub-
cutaneous injection of 1 × 106 human BM-MSCs transfected
with ectodysplasin. Treated animals expressed sweat gland
phenotypes, cytokeratin-14, and carcinoembryonic antigen
(CEA) and tested positive for perspiration [97].

As knowledge in tissue regeneration expands, researchers
are exploring the synergistic effects of combining various
approaches, such as augmenting cellular therapy, with other
growth factors in combination with a delivery scaffold which
can control the release rate of both the cells and factors into
the wound [48, 50, 101].

4. Conclusion

Stem cells possess a distinct ability to self-renew and dif-
ferentiate, making them a more attractive cell for cell-based
therapies. Ethical concerns have limited the use of embryonic
stem cells in regenerative medicine, and current focus for
clinical translation lies with adult stem cells. Adult stem cells
are an exciting source for wound healing applications, owing
mostly to their relative ease of harvest and the ability to
yield large quantities of cells. In this review, we identify that
adult stem cells demonstrate huge promise in the treatment of
chronic wounds. Studies evaluating the role of BM-MSCs and
ASCs in treating chronic wounds demonstrate accelerated
wound healing through a variety of mechanisms.

With every new scientific advancement, it is the respon-
sibility of scientists and physicians to guide and educate the
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Figure 5: Work flow of cell-based regenerative therapy. An ideal regenerative medicine strategy requires three components: an ideal cell
type, biomimetic scaffold, and factors to create the desired biological response in vivo. Cutaneous wounds represent a harsh environment
for cellular therapy due to their hypoxic environment and low pH which can affect the survival and potential of transplanted cells. The
niche microenvironment can be manipulated with the use of scaffolds and growth factors to enhance cellular survival, promote cellular
differentiation, and ultimately enhance wound healing in the clinical setting. Reproduced with permission from the authors: McArdle, Paik,
Chung, Hu, and Walmsley et al. (2013) Manipulation of Stem Cells and their Microenvironment for Tissue Engineering. Surgery Curr Res
3 : 134.

public on the advantages and disadvantages of any proposed
therapy. Overstating potential benefits based on incomplete
evidence can only serve to erode the public’s trust in themed-
ical profession and, more concerning, compromise the safety
of our patients [102]. Currently, clinical translation of adult
stem cells for the treatment of chronic wounds is hindered
by a lack of standardized protocols for cell characterization,
isolation, and transplantation.

Areas that deserved further attention include establishing
a more comprehensive understanding of the signaling net-
work that reliably leads to robust new tissue formation,
together with the identification of a definitive cell surface
marker profile.

Despite the current limitations to widespread clinical use,
BM-MSCs andASCs are highly promising cell sources for the
treatment of chronic wounds.
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