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1  Introduction
Glioma is one of the most common and aggressive primary intracranial tumors in the 
nervous system [1]. According to the World Health Organization (WHO) classifica-
tion, gliomas are categorized into low-grade gliomas (Grade II) and high-grade gliomas 
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Abstract
Recent studies have identified cuproptosis as a novel form of regulated cell death 
(RCD), and long non-coding RNAs (lncRNAs) have been implicated in glioma 
progression and prognosis. However, the role of cuproptosis-associated lncRNAs in 
gliomas has not been systematically assessed. In this study, data from the Cancer 
Genome Atlas (TCGA) and the Chinese Glioma Genome Atlas (CGGA) databases 
were used, and cuproptosis-related genes were obtained from previous research. 
Cuproptosis-associated lncRNAs were identified through co-expression network 
analysis, Cox regression, and Least Absolute Shrinkage and Selection Operator 
(LASSO). A total of 10 cuproptosis-associated lncRNAs were selected to construct a 
prognostic prediction model. The high-risk group was associated with poor overall 
survival (OS) and progression-free survival (PFS). Multivariate Cox regression, Receiver 
Operating Characteristic (ROC) curve analysis, C-index, and nomogram demonstrated 
the accuracy of the 10-lncRNA signature in predicting outcomes in glioma patients. 
Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene 
Set Variation Analysis (GSVA) enrichment analyses revealed a strong association 
between the signature and immune response pathways. Immune cell infiltration 
and Single-Sample Gene Set Enrichment Analysis (ssGSEA) further confirmed that 
the signature is closely linked to immune responses in glioma patients. Further 
investigation revealed significant differences in tumor immune dysfunction and 
rejection (TIDE) scores and half-maximal inhibitory concentration (IC50) values for 
many drugs between low- and high-risk subgroups. This risk signature may serve 
as a prognostic tool and offer valuable insights into treatment strategies for glioma 
patients. Additionally, the expression levels of the 10 signature genes were validated 
by quantitative real-time polymerase chain reaction (qRT-PCR).
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(Grade III-IV). Grade II refers to low-grade glioma (LGG), while Grade III and Grade 
IV are high-grade gliomas (HGG), with Grade IV being the most aggressive, represent-
ing glioblastoma (GBM) [2, 3]. Currently, the standard treatment for gliomas includes 
surgical resection combined with radiotherapy and chemotherapy, primarily temozolo-
mide [4, 5]. The median survival of patients with low-grade gliomas is approximately 5 
years, while patients with glioblastoma have a survival rate of 1 to 2 years [6, 7]. Despite 
advances in treatment, survival rates for glioma patients have not significantly improved, 
mainly due to tumor proliferation, invasion, metastasis, resistance, and tumor heteroge-
neity [8–10]. The tumor microenvironment (TME) is one of the key factors contributing 
to glioma heterogeneity [11, 12]. The TME includes cancer cells and various non-tumor 
cells, such as pericytes, endothelial cells, and immune cells [13, 14]. Additionally, factors 
such as chemokines, cytokines, and growth factors secreted by cells all contribute to the 
formation of the TME [15, 16]. Accurately assessing the individual tumor microenviron-
ment in glioma patients can help better predict patient risk and formulate personalized 
treatment plans. Although the WHO classification system is widely used for glioma typ-
ing, molecular biology advancements have improved glioma classification through the 
application of molecular markers, such as isocitrate dehydrogenase (IDH) mutations 
[17], O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation [18], 
and 1p/19q co-deletion [19]. However, the existing classification systems sometimes fail 
to comprehensively reflect all biological characteristics of gliomas, highlighting the need 
for the development of more precise and comprehensive risk assessment models to bet-
ter understand glioma heterogeneity and provide personalized treatment strategies for 
patients.

Resistant cell death, including accidental cell death (ACD) and regulated cell death 
(RCD), is a hallmark of tumor cells [20]. While ACD is uncontrollable, RCD involves 
regulated mechanisms, with apoptosis being the most studied. Other types of RCD 
include autophagy, pyroptosis, ferroptosis, and immunogenic cell death [20]. Cupropto-
sis, a recently discovered form of RCD, is copper-dependent and closely linked to mito-
chondrial respiration [21–23]. Copper binds to lipoacylated proteins in the tricarboxylic 
acid cycle, causing aggregation and loss of Fe-S cluster proteins, leading to proteotoxic 
stress and triggering cuproptosis [24]. Additionally, copper metabolism maintains cel-
lular homeostasis and influences physiological functions [25, 26]. Copper-induced cell 
death occurs through pathways like ER stress, oxidative stress, autophagy, and mitoph-
agy [27, 28]. Copper also induces necrotic apoptosis via ROS-dependent DNA damage 
[29] and can trigger NLRP3-dependent pyroptosis, contributing to nervous system tox-
icity and inflammation [30, 31]. Moreover, cuproptosis is linked to ferroptosis, a form of 
cell death regulated by redox reactions and metabolism, with potential for anti-tumor 
therapies [32, 33]. Studies have shown that cuproptosis can induce ferroptosis in nerve 
cells, and targeting intracellular copper may enhance tumor sensitivity to treatment [34, 
35]. The interplay between copper and ferroptosis through copper-iron homeostasis 
modulation may also increase radiosensitivity in cancer cells [36]. However, the role of 
cuproptosis in gliomas remains unclear and requires further investigation.

Long non-coding RNAs (lncRNAs) are RNA transcripts longer than 200 base pairs 
that play important roles in various biological processes, such as cell differentiation, 
tumorigenesis, metastasis, immune response, and tumor drug resistance [37–39]. 
Recently, tumor prediction models based on multiple lncRNAs have shown greater 
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accuracy compared to single molecular models [40–42]. However, the value of cupro-
ptosis-associated lncRNAs in gliomas has not been systematically evaluated.

This study identified cuproptosis-associated lncRNA signatures that are independently 
related to glioma prognosis, constructed and validated a novel prognostic model, calcu-
lated individualized risk scores, and further analyzed the tumor immune microenviron-
ment and drug sensitivity in patients with different risk stratifications. The study aims 
to identify potential biomarkers and help predict patient prognosis to develop effective 
personalized treatment strategies.

2  Methods
2.1  Data collection and preprocessing

We obtained transcriptome expression profiles, clinical characterization data, mutation 
data, and copy number variation (CNV) data from glioma patients, including 144 GBM 
and 506 LGG samples, from The Cancer Genome Atlas (TCGA, ​h​t​t​p​s​:​/​/​p​o​r​t​a​l​.​g​d​c​.​c​a​n​c​e​
r​.​g​o​v​/​​​​​) database. In addition, transcriptome expression and clinical characterization data 
for glioma patients in the CGGA693 and CGGA325 cohorts, comprising 388 GBM and 
626 LGG samples, were downloaded from the Chinese Glioma Genome Atlas (CGGA, 
http://www.cgga.org.cn/index.jsp) database.

The CGGA693 cohort consists of glioma patients with a broad spectrum of molecu-
lar subtypes, including IDH wild-type and IDH-mutant gliomas, whereas the CGGA325 
cohort includes a more specific subset of glioma patients with distinct clinical features, 
such as specific tumor grades or treatment statuses. These two cohorts were used in par-
allel to ensure comprehensive analysis across different clinical and molecular profiles. 
The specific characteristics of these cohorts, such as tumor grade, molecular subtype 
(e.g., IDH mutation status), and treatment status, are detailed in the original CGGA 
database documentation.

Additionally, we obtained transcriptome expression data of non-tumoral brain sam-
ples from the Genotype-Tissue Expression (GTEx) database ​(​​​h​t​t​p​s​:​/​/​w​w​w​.​g​t​e​x​p​o​r​t​a​l​.​o​
r​g​​​​​)​, which includes tissue samples from healthy individuals. These non-tumoral brain 
samples served as controls to compare against glioma tissues. However, it is important 
to note that although GTEx provides non-tumoral brain tissue, these samples may still 
reflect changes due to other health conditions (such as trauma or epilepsy), which could 
slightly influence the gene expression profiles. Thus, while GTEx non-tumoral samples 
serve as a useful reference for normal brain tissue, they may not perfectly represent 
“normal” brain tissue in the context of glioma pathology. All data was downloaded on 
March 19, 2024. To facilitate subsequent analyses, we normalized the transcriptome 
data using transcripts per kilobase million (TPM), which accounts for both gene length 
and sequencing depth. Following TPM normalization, we further ensured consistency 
across datasets by performing quantile normalization and log transformation to address 
any platform-specific biases and to stabilize variance across samples [43].

The ComBat function from the SVA R package was used to correct batch effects 
between different datasets (TCGA, CGGA, GTEx) to reduce technical variations caused 
by differing sequencing platforms  [44]. To assess the effectiveness of batch effect cor-
rection, we visualized the corrected data using Principal Component Analysis (PCA), 
ensuring that batch effects were adequately removed.

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
http://www.cgga.org.cn/index.jsp
https://www.gtexportal.org
https://www.gtexportal.org
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In addition to the batch effect correction, we performed additional data quality con-
trol by removing low-expression genes (genes with low variance across all samples) and 
identifying potential outlier samples using PCA plots (Supplementary Fig. 1). These out-
liers were excluded from downstream analysis to ensure that only high-quality samples 
were included.

By applying these rigorous QC procedures and normalization methods, we ensured 
the reliability and robustness of the data used in subsequent analyses.

3  Establishment of cuproptosis associated LncRNA signatures
Nineteen CRGs were obtained from previous studies (supplementary Table 1) [21, 
45–48]. The maftools R package was used for Copy Number Variation (CNV) analysis 
of those genes [49]. The co-expression correlation analysis was performed to identify 
cuproptosis-associated lncRNAs (cur-lncRNAs) using limma R package (r > 0.4 & P < 
0.001) [50]. 

4  Modeling and validation of the prognostic cuproptosis-associated LncRNA 
signature
Patients were randomly assigned to either a training group or a testing group in a 1:1 
ratio. In the training cohort, we first performed univariate Cox regression to identify 
cur-lncRNAs associated with patient prognosis. LASSO-Cox regression was then used 
to create the cur-lncRNA signature model [51]. The best model parameters were selected 
via multivariate Cox regression analysis (P < 0.05), and risk scores for each patient were 
calculated using the following formula: Risk score = ∑i Coefficient(i) * Expression(i) 
where Coefficient represents the regression coefficient of lncRNA, and Expression rep-
resents the expression level of the candidate lncRNA. Based on the median risk score 
from the training cohort, all glioma patients were categorized into low-risk and high-risk 
subgroups. Kaplan-Meier survival analysis was performed to compare overall survival 
(OS) or progression-free survival (PFS) between the two subgroups across all cohorts 
(training, testing, and various subgroups). The correlation between the model and clini-
cal features was evaluated using the chi-square test.

5  Construction of the nomogram
We constructed nomograms which combined risk scores with clinical factors, including 
type (Primary or Unprimary), grade (WHO II/III or WHO IV), gender (male or female), 
age, radiotherapy (no or yes), TMZ therapy (no or yes), IDH (Wildtype or Mutant), 
1p19q (Non-codel or Codel), and MGMTp (un-methylated or methylated), to predict 
1-, 3-, and 5- years OS. A time-dependent receiver operating characteristic (time-ROC) 
curve was drawn and the area under the curve (AUC) was calculated to measure the pre-
dictive power of our model [52]. The calibration curve and concordance index (C-index) 
showed the accuracy of the nomogram [53]. 

6  Principal component analysis (PCA) and enrichment pathway analysis
PCA was used on all sample to assess patterns associated with all genes, cuproptosis, 
all cur-lncRNAs, and cur-lncRNA signatures in our model [54]. Moreover, the differen-
tially expressed genes (DEGs) between the low- and high-risk subgroups were identi-
fied (|logFC| > 1, FDR < 0.05). Then, both Gene Ontology (GO) and Kyoto Encyclopedia 
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of Genes and Genomes (KEGG) analyses were performed to find significantly enriched 
biological processes and pathways using the clusterProfiler R package [55]. 

6.1  The tumor mutation burden (TMB) analysis and immune analysis

After extract the mutation data from TCGA database by Pearl programming language, 
the maftools R package was performed to examined and integrated TMB, and the dif-
ferences in TMB between the low- and high-risk subgroups was analyzed. Then, the 
differences in Stromal, Immune, and ESTIMATE scores based on the ESTIMATE algo-
rithm between the two subgroups were explored [56]. By using the limma, GSVA, and 
GSEABase R packages for single sample gene-set enrichment analysis (ssGSEA), we ana-
lyzed differences in 28 types of immune cell infiltration and immune-related functions 
between the two risk subgroups [57]. Then, heatmap was ploted to visalize the results.

7  Tumor immune dysfunction and exclusion (TIDE) score and drug sensitivity 
analysis
We obtained the TIDE scoring file, which includes components such as TIDE, Dysfunc-
tion, Exclusion, and Microsatellite Instability (MSI), from the TIDE website ​(​​​h​t​t​p​:​/​/​t​i​d​e​
.​d​f​c​i​.​h​a​r​v​a​r​d​.​e​d​u​​​​​) to assess which risk subgroup in glioma shows better outcomes [58]. 
The TIDE score reflects the overall likelihood of a tumor responding to immune check-
point therapy. It consists of three key components: Dysfunction, Exclusion, and MSI. 
Dysfunction represents the inability of T cells to effectively recognize and kill tumor 
cells, which can be indicative of a tumor’s resistance to immune responses. Exclusion 
refers to the inability of immune cells to infiltrate the tumor microenvironment, often 
due to factors like physical barriers or immune evasion mechanisms. MSI indicates the 
degree of genetic instability in tumor cells, which may affect how the tumor interacts 
with immune surveillance. A higher TIDE score suggests a poor response to immune 
checkpoint therapy and may predict a worse survival outcome following immunother-
apy. The risk subgroups in our study were defined based on the risk score calculated 
from the key genes (risk cuproptosis-lncRNAs) identified in prior analyses. Addition-
ally, we used the pRRophetic R package to calculate the half maximal inhibitory con-
centration (IC50) value, which helps predict drug sensitivity in the low- and high-risk 
subgroups.

8  Quantitative real-time PCR
Tissue samples of 10 GBM and 10 brain tissues were obtained in the Guizhou Provincial 
People’s Hospital for qPCR. They were approved by the Ethics Committee of Guizhou 
Provincial People’s Hospital. All patients have written informed consents. Total RNA 
from tissues or cells was extracted using RNAiso Plus (TaKaRa, Beijing, China). The 
concentrations of these RNA samples were then measured using a spectrophotometer 
and cDNA were synthesized from the RNA specimens using the Primescript RT reagent 
Kit (TaKaRa). Amplification conditions were as follows: 95 °C for 30 s, followed by 40 
cycles at 95 °C for 15 s, and 60 °C for 45 s. The relative fold changes in mRNA levels were 
calculated according to the relative quantification method (2 − ΔΔCt).

http://tide.dfci.harvard.edu
http://tide.dfci.harvard.edu
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9  Results
9.1  Prognosis-Related LncRNAs with coexpression of cuproptosis

Our study found significant differences in cuproptosis genes between glioma and normal 
brain tissue (Fig. 1A). The investigation of CNV alterations showed that the amplifica-
tion and deletions in copy number were not universally prevalent. The primary CNV 
deletions on genes were CDKN2A, ATP7B and DLST (Fig.  1B). Figure  1C shows the 
location of the copper death gene CNV alteration on the chromosome. Next, we found 
336 lncRNA in glioma associated with CRGs (|R| > 0.4 & P < 0.001)). Pyecharts visu-
alization co-expression relationship (Fig.  1D). Subsequently, 153 cur-lncRNAs were 
obtained by univariate cox regression analysis in the training cohort (Supplementary 
Fig. 2). Finally, using Lasso and multivariate Cox analysis, we identified 10 prognostic 
related cur-lncRNAs, including FAM66C, AC062021.1, RFPL1S, AP000439.1, SMCR5, 

Fig. 1  Landscape of genetic and expression variation of cuproptosis-related genes in glioma and Establishment of 
Cuproptosis-associated lncRNA signatures. (A) Cuproptosis-related genes expressed in tumor and normal samples. 
(B) The frequency of CNV variation of Cuproptosis-related genes in TCGA-GBM and TCGA-LGG cohorts. green dot 
represented deletion frequency; red dot represented amplification frequency. (C) The location of CNV alteration 
of Cuproptosis-related genes on 23 chromosomes using TCGA-GBM and TCGA-LGG cohorts. (D) Sankey relation-
ship diagram showed the co-expression of cuproptosis genes and cuproptosis-associated lncRNAs. (E) Partial like-
lihood deviance for each independent variable. (F) LASSO regression screened of cuproptosis-related lncRNAs. 
Dotted vertical lines were drawn at the optimal values by using the minimum criteria (G) Correlations between 
cuproptosis-related genes and cuproptosis-associated lncRNAs in our risk models using Spearman analysis. Blue 
represented negative correlation and positive correlation with red represented positive correlation. The asterisks 
represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001)
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LINC00334, SFTA1P, WDFY3-AS2, PVT1, and CPB2-AS1 (Fig.  1E, F; Supplementary 
Table 2). The correlation relationship between the CRGs and the 10 cur-lncRNAs was 
showed in a heatmap (Fig. 1G).

9.2  Construction of the predictive model based on cuproptosis-related LncRNA

We constructed predictive model by calculating risk score using formula: risk score 
= FAM66C × (−0.2834) + AC062021.1 × (−0.2339) + RFPL1S × (−0.2052) + AP000439.1 
× (−0.2151) + SMCR5 × (−0.5676) + LINC00334 × (−0.4595) + SFTA1P × (−0.2462) 
+ WDFY3-AS2 × (−0.2598) + PVT1 × (0.1411) + CPB2-AS1 × (−0.2484). KM curve 
showed that the prognosis of low-risk subgroup was significantly better than that of 
high-risk subgroup in all glioma patients, training and testing cohort (Fig. 2A-C). Most 
of the patients in low-risk subgroup were in survival state, while most in high-risk sub-
group were in death state (Fig. 2D and Supplementary Fig. 3 A, B). In the high-risk sub-
group, only PVT1 expression was low, while the other 9 prognostic-related cur-lncRNAs 
were all highly expressed. The opposite is true in low-risk subgroup.

Fig. 2  Kaplan–Meier survival analyses of patients and predicting the performance of characteristics. (A-C) Survival 
analyses for patients high risk and low risk groups in the all cohort (A), training cohort (B) and testing cohort (C) 
using Kaplan-Meier curves (P < 0.001, Log-rank test). (D) The risk score, survival status, and expression profile of 10 
cuproptosis-related lncRNAs prognostic signature in each patients in all cohort
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9.3  Construction and validation of the prognostic model

In the total sample group, univariate cox regression analysis displayed that the risk 
score was prognostic risk factor with HR was 1.587 (p < 0.001) (Fig.  3A). Multivariate 
cox regression analysis revealed that tumor type, grade, age, TMZ therapy, 1p19q codel, 
MGMTp methylated, and risk score [HR = 1.308 95%CI (1.204 − 1.422), p < 0.001] were 
independent prognostic factors (Fig.  3B). In order to evaluate the predictive ability of 
risk score, we drew a time-dependent ROC curve, and AUC was 0.761 at 1 year, 0.837 at 
2 year, and 0.858 at 5 year (Fig. 3C). In addition, we also compared the predictive abil-
ity of risk score and other clinical features. The 1-, 3-, and 5-year AUC of risk score was 
higher than the AUC of other clinical features (Fig. 3D-F). Furthermore, the C-index val-
ues of risk scores from 1 to 10 years were higher than those of other clinical features 
(Fig.  4A). Moreover, we created a nomogram according to clinical features and risk 
score, which can accurately predict the survival of glioma patients (Fig. 4B). Calibration 
curves for OS confirmed that the prediction results were in good consistency with the 
actual outcomes (Fig. 4C). Meanwhile, In different clinical subsets, the low-risk group 
still showed significantly better prognosis (Supplementary Fig. 4).

9.4  PCA and biological enrichment pathway analysis

In addition, we performed PCA to explore the distribution of patients in low- and high-
risk subgroups for four expression profiles, including total genes, cuproptosis genes, cur-
lncRNAs, and risk cur-lncRNAs. And the results indicated that these risk cur-lncRNAs 
can make a clear distinction of glioma patients and be credibly used to construct prog-
nostic model (Fig. 5A-D). In order to detect differences between the low- and high-risk 
subgroups, we dentified 2007 DEGs between the two subgroups (Supplementary Table 
3). GO analysis found that these DEGs enriched in regulation of trans-synaptic signal-
ing, extracellular matrix/structure organization, synaptic membrane, endoplasmic 

Fig. 3  The prognostic value of the signature for glioma. (A, B) The forest figure for Univariate (A) or Multivariate (B) 
Cox regression analysis showed that the risk score was independently associated with OS. (C) 1-, 3-, and 5-year area 
under the ROC curve (AUC) of risk score in the all cohort. (D-F) Prediction of 1- (D), 3- (E), and 5- (F) years ROC curves 
for the riskscore compared with other clinical characteristics
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reticulum lumen, and glycosaminoglycan binding (Fig. 5E). KEGG analysis revealed that 
ECM-receptor interaction, Phagosome, Focal adhesion, and Proteoglycans in cancer, 
were mainly enriched (Fig. 5F). Furthermore, the heatmap showed that immuno-related 
functions were significantly different in two risk groups, and all immune functions were 
significantly more active in the high-risk subgroup (Fig.  6A). In addition to VTCN1 
expression, the rest of checkpoint genes and Chemokines showed significant differences 
in two risk groups (Fig. 6B). Besides, vioplot showed that stromal scores, immune scores 
and ESTIMATE scores were significant higher in high-risk group (Fig. 6C). This results 
obviously suggested that there is a significant correlation between TME and risk score. 
Based on ssGSEA algorithms, the boxplot showed the more infiltration of immune cell 
populations in high-risk subgroup (Fig. 6D).

Fig. 4  Nomogram and clinical subgroups for predicting glioma outcomes. (A) C-index curve of the risk score 
compared with other clinical characteristics. (B) Prognostic nomogram combining clinical variables and risk scores 
predicts 1-, 3-, and 5-years OS in patients with glioma. (C) Calibration curves for 1, 3, and 5 years showed the agree-
ment between actual and predicted outcomes at 1, 3, and 5 years
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Fig. 6  Differences in the tumor immune microenvironment between the low- and high-risk groups. (A) ssGSEA 
scores of Immune-related functions in the low- and high-risk groups. (B) Immune checkpoint genes and Chemo-
kines expression in the low- and high-risk groups. (C) Violin plots comparing StromalScore, ImmuneScore and ES-
TIMATEScore between the low- and high-risk groups, respectively. (D) The infiltration of 28 immune cells between 
low- and high-risk groups. The asterisks represented the statistical p value (*P < 0.05; **P < 0.01; ***P < 0.001)

 

Fig. 5  PCA in both groups of patients and GO and KEGG analysis. (A-D) PCA analysis depicted the distribution of 
patients based on all genes (A), cuproptosis (B), all cuproptosis-associated lncRNAs (C), and Cuproptosis-associated 
lncRNA signatures in our model (D). (E) Gene Ontology (GO) enrichment analysis of the different expressed genes 
between two risk groups demonstrated the richness of molecular biological processes (BP), cellular components 
(CC), and molecular functions (MF). (F) KEGG enrichment analysis of the different expressed genes between two 
risk groups
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9.5  TMB analysis and therapeutic drug sensitivity

The somatic mutation data was analyzed to observe changes in mutations in the dif-
ferent risk subgroups. In low-risk subgroup, EGFR (36%), SPTA1 (29%), PTEN (14%), 
TP53 (14%), MUC16 (14%), FLG (7%), PIK3R1 (7%), PCLO (7%), and IDH1 (7%) were 
top 9 mutated genes, while in high-risk subgroup, TP53 (33%), PTEN (29%), TTN (27%), 
EGFR (21%), MUC16 (14%), NF1 (10%), PIK3CA (10%), FLG (9%), RYR2 (9%), SPTA1 
(9%) were top 10 mutated genes (Fig. 7A, B). But, difference of TMB between the two 
subgroups was no significant. In addition, the high TMB group had a better prognosis 
than the low TMB group, but there was no significant difference in prognosis between 
the groups after adding risk score(Fig. 7C-E). In addition, TIDE algorithm was used to 
estimate the diference in sensitivity to immune checkpoint therapy between two risk 
subgroups. The TIDE score, Exclusion score, and Dysfunction score, was higher in high-
risk subgroup, while MSI was higher in low-risk subgroup (Fig. 7F). To further explore 
the applicability of these findings, we conducted a subgroup analysis for both IDH-
wildtype and IDH-mutant gliomas. The results showed that, regardless of whether the 
gliomas were IDH-wildtype or IDH-mutant, the findings remained consistent with the 

Fig. 7  TMB, TIDE, and Chemotherapeutic Sensitivity. (A, B) Waterfall plots of top 15 mutation genes in glioma for 
the low-risk (A) and high-risk groups (B). (C) TMB between the low-risk and high-risk groups. (D) Survival curves 
between the high- and low-TMB groups. (E) Survival curves for the high-TMB and low-TMB groups in GBM and a 
combined risk score. (F) TIDE, Dysfunction, Exclusion and MSI scores between the low- and high-risk groups
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overall results, supporting the robustness of our model across different glioma subtypes 
(Supplementary Fig. 5). The drug sensitivity analysis showed that the many drugs’ IC50 
values were significantly different in low- and high-risk subgroups, indicating that the 
sensitive drugs of each subgroup were different (Supplementary Fig. 6, 7).

9.6  The expression of 11 signatures in GBM

We examined mRNA levels of 10 signatures in GBM tissues compared to normal brain 
tissues. FAM66C, AC062021.1, RFPL1S, SMCR5, LINC00334, and CPB2-AS1 expres-
sion was higher in GBM compared to normal, while AP000439.1, SFTA1P and PVT1 
expression was lower in GBM compared to normal, which were consistent with the 
results of our bioinformatics analysis (Fig. 8).

10  Discussion
Gliomas are the most common central nervous system tumors and are classified into 
different grades based on their pathological features. Despite significant advancements 
in the diagnosis and treatment of gliomas, the heterogeneity and aggressiveness of these 
tumors continue to present considerable challenges. The molecular heterogeneity of 
gliomas is a fundamental factor contributing to their complexity, which complicates 
treatment strategies [59]. Over the past few years, molecular subtyping has emerged 
as a strong predictor of prognosis and treatment response in glioma patients [60–63]. 

Fig. 8  q-PCR analysis of 10 lncRNAs in glioma tissues in GBM and normal brain tissues. (A) FAM66C expression was 
lower in GBM tissues (GBM) compared to brain tissues (Normal). (B) AC062021.1 expression was lower in GBM com-
pared to Normal. (C) RFPL1S expression was lower in GBM compared to Normal. (D) AP000439.1 expression was 
lower in GBM compared to Normal. (E) SMCR5 expression was higher in GBM compared to Normal. (F) LINC00334 
expression was higher in GBM compared to Normal. (G) SFTA1P expression was higher in GBM compared to Nor-
mal. (H) WDFY3-AS2 expression was higher in GBM compared to Normal. (I) CPB2-AS1 expression was higher in 
GBM compared to Normal. (J) PVT1 expression was higher in GBM compared to Normal. (* P < 0.05, ** P < 0.01, *** 
P < 0.001)
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However, the longstanding WHO classification system still has limitations in accurately 
predicting clinical outcomes. Identifying novel biomarkers, particularly through multi-
biomarker approaches to construct predictive models, holds significant promise for 
improving prognostic accuracy and developing more tailored treatment strategies for 
glioma patients.

Programmed cell death (PCD) plays a crucial role in glioma initiation, progres-
sion, and metastasis [64, 65]. PCD encompasses various regulated cell death pathways, 
including apoptosis, ferroptosis, autophagy, necrosis, and pyroptosis [66, 67]. The rela-
tionship between PCD and resistance to immunotherapy, as well as the immunosup-
pressive tumor microenvironment (TME), remains complex and poorly understood 
[64]. Recently, Tsvetkov et al. proposed cuproptosis as a novel form of PCD linked to 
mitochondrial respiration and copper metabolism [21]. Copper, an essential metal, is 
involved in various cellular processes; however, its dysregulation can lead to cellular tox-
icity and death [68, 69]. Studies have shown that copper can inhibit glioma cell growth, 
and copper ionophores, such as Disulfiram (DSF), have been tested in clinical trials as 
potential therapeutic agents for glioma treatment [70–72]. Despite this progress, the 
role of cuproptosis in glioma remains incompletely understood.

In the present study, we identified 19 cuproptosis-related genes and 336 long non-cod-
ing RNAs (lncRNAs) associated with cuproptosis. Using Lasso-Cox regression, we iden-
tified 10 independent prognostic cuproptosis-related lncRNAs: FAM66C, AC062021.1, 
RFPL1S, AP000439.1, SMCR5, LINC00334, SFTA1P, WDFY3-AS2, PVT1, and CPB2-
AS1. Several of these lncRNAs have been implicated in various cancers. For example, 
FAM66C inhibits glioma cell proliferation through the Hippo pathway [73–76], while 
AC062021.1 is associated with poor prognosis in glioma [77]. RFPL1S has shown predic-
tive value in melanoma models [78], and SMCR5 is linked to carboplatin resistance in 
ovarian cancer [79]. SFTA1P regulates PCD and may serve as a target for cancer therapy 
[80], while WDFY3-AS2 and CPB2-AS1 are associated with prognosis in glioma and fer-
roptosis regulation [81, 82]. PVT1 is involved in gemcitabine resistance and glioma stem-
ness [83, 84], and its expression is higher in GBM than in LGG, correlating with poor 
prognosis [81, 85]. These findings, along with our own, suggest that cuproptosis-related 
lncRNAs play pivotal roles in glioma progression.While these associations support the 
biological relevance of our findings, it is important to note that they are correlative, and 
further functional validation is needed to elucidate their mechanistic roles in cupropto-
sis and glioma biology. However, further experimental validation is required to fully elu-
cidate their mechanisms and assess their potential as therapeutic targets. In addition to 
identifying prognostic lncRNAs, we applied the TIDE algorithm to investigate immune 
response differences between low- and high-risk subgroups. Our analysis revealed sig-
nificant variations in the sensitivity of these subgroups to immune checkpoint therapy. 
Specifically, the low-risk subgroup exhibited greater sensitivity to immunotherapy, while 
the high-risk subgroup demonstrated resistance. This discrepancy may be linked to dis-
tinct features in the TME of these two subgroups. The higher TIDE scores in the high-
risk subgroup suggest immune dysfunction and exclusion, both of which are commonly 
associated with resistance to immune checkpoint inhibitors. In contrast, the low-risk 
subgroup showed a more robust immune response, likely contributing to its enhanced 
sensitivity to immunotherapy. These findings suggest that risk stratification based on 
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cuproptosis-related lncRNAs could serve as an effective biomarker for predicting the 
efficacy of immunotherapy in glioma patients.

In our study, we systematically identified 19 cuproptosis-related genes and 336 associ-
ated long non-coding RNAs (lncRNAs). Using Lasso-Cox regression analysis, we further 
refined a 10-lncRNA signature—including FAM66C, AC062021.1, RFPL1S, AP000439.1, 
SMCR5, LINC00334, SFTA1P, WDFY3-AS2, PVT1, and CPB2-AS1—that was associ-
ated with patient prognosis. Some of these lncRNAs have been reported in previous 
cancer studies. For instance, FAM66C has been implicated in glioma cell proliferation 
via the Hippo pathway [73], while AC062021.1 is linked to poor glioma prognosis [77]. 
RFPL1S and SMCR5 have been associated with outcomes in melanoma and ovarian can-
cer, respectively [78, 79], and SFTA1P has been noted to regulate PCD and could poten-
tially serve as a therapeutic target [80]. Other components of our signature, such as 
WDFY3-AS2, CPB2-AS1, and PVT1, have also been associated with glioma progression 
or drug resistance [81–85]. While these associations support the biological relevance of 
our findings, it is important to note that they are correlative, and further functional vali-
dation is needed to elucidate their mechanistic roles in cuproptosis and glioma biology.

To further explore the clinical implications of this signature, we applied the Tumor 
Immune Dysfunction and Exclusion (TIDE) algorithm to evaluate predicted responses 
to immunotherapy across different risk subgroups. The analysis revealed that patients in 
the low-risk group had lower TIDE scores, suggesting a more favorable immune micro-
environment and potentially greater responsiveness to immune checkpoint inhibitors. 
In contrast, the high-risk group exhibited higher TIDE scores, indicative of increased 
immune evasion and dysfunction, which may contribute to reduced immunotherapeutic 
efficacy. These observations suggest a potential association between the lncRNA-based 
risk signature and immune response in glioma. However, since TIDE is a predictive 
model based on bulk transcriptomic data, these findings should be interpreted with cau-
tion until validated by experimental or clinical data. The results nonetheless provide a 
computational framework that may assist in identifying patients more likely to benefit 
from immunotherapy.

We also observed significant differences in drug sensitivity between the high- and low-
risk subgroups, particularly with chemotherapy and targeted therapies. While no sig-
nificant differences were found for temozolomide (TMZ) and EGFR inhibitors between 
the two subgroups, we identified notable variations in sensitivity to other drugs, such as 
Bortezomib, Saracatinib, PF-562,271, and AKT inhibitor VIII. High-risk patients showed 
lower sensitivity to Saracatinib, which may be attributed to a more aggressive TME that 
promotes drug resistance mechanisms. Conversely, high-risk patients exhibited greater 
sensitivity to Bortezomib, PF-562,271, and AKT inhibitor VIII, indicating that their 
tumors may possess a more favorable microenvironment for therapeutic intervention. 
The association between lower TIDE scores and better responses to these drugs further 
suggests that a more functional immune system in the low-risk subgroup enhances the 
effectiveness of these therapies. These results have important implications for person-
alized treatment strategies. In high-risk patients, however, immune dysfunction and a 
more resistant TME may necessitate novel treatment strategies, potentially including 
combination therapies or immune checkpoint inhibitors, to overcome the observed 
resistance. The use of immune checkpoint inhibitors in high-risk patients may hold 
promise, though their efficacy will likely depend on overcoming the immune exclusion 
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mechanisms indicated by the TIDE scores. Moreover, some of the drugs identified, 
including Bortezomib, Saracatinib, PF-562,271, and AKT inhibitor VIII, have already 
been tested in clinical trials for glioma, showing varying degrees of success [86–89]. 
However, their effectiveness is often dependent on the patient’s molecular profile. For 
example, the tumor microenvironment in high-risk glioma patients may influence how 
well these drugs, particularly AKT inhibitor VIII, exert their therapeutic effects. The 
next step will involve validating these findings in clinical settings, particularly within the 
context of clinical trials, to determine how best to integrate these risk stratifications into 
treatment planning. Such validations are crucial for confirming the potential of TIDE-
based risk stratification as a tool for personalizing glioma treatment and ultimately 
improving patient outcomes.

We also observed differences in predicted drug sensitivity between the high- and low-
risk subgroups, particularly in response to several chemotherapy and targeted agents. 
While no significant differences were predicted for temozolomide (TMZ) and EGFR 
inhibitors, varying sensitivities were noted for other agents, including Bortezomib, 
Saracatinib, PF-562,271, and AKT inhibitor VIII. High-risk patients were predicted to 
exhibit lower sensitivity to Saracatinib, potentially reflecting a more treatment-resis-
tant tumor microenvironment (TME). In contrast, higher predicted sensitivity to Bort-
ezomib, PF-562,271, and AKT inhibitor VIII was observed in the high-risk subgroup, 
suggesting differential drug response patterns that may relate to underlying molecular 
characteristics [86–89]. These computational findings, derived using the pRRophetic R 
package, may inform the development of stratified therapeutic approaches. The associa-
tion between lower TIDE scores and enhanced predicted sensitivity to certain agents in 
the low-risk group further suggests that immune function may influence drug efficacy, 
although this remains to be confirmed experimentally. It is important to note that these 
predictions are based on in silico models and require validation in biological systems 
and clinical contexts. Some of the drugs identified—such as Bortezomib, Saracatinib, 
PF-562,271, and AKT inhibitor VIII—have been previously evaluated in glioma clini-
cal trials with mixed outcomes. Their clinical utility likely depends on patient-specific 
molecular profiles, including features of the TME. In particular, the efficacy of AKT 
inhibitor VIII may be modulated by immune infiltration and stromal characteristics, 
which were not directly assessed in this study. Moving forward, prospective studies and 
functional assays will be essential to determine the translational value of these predic-
tions. Integration of risk stratification models with experimental validation could sup-
port more personalized therapeutic decision-making for glioma patients.

However, there are several limitations to our study. First, although we used data from 
the TCGA and CGGA cohorts, we did not include verification from other databases 
such as GEO due to the limitations of commercial microarray sequencing, which hin-
dered the accurate acquisition of lncRNA information. To address this, we randomly 
divided the cohort into a training group and a validation group for model construction 
and validation. Furthermore, the potential of the identified lncRNAs as biomarkers has 
been supported by previous studies. Additionally, we acknowledge that gliomas exhibit 
significant molecular and spatial heterogeneity, which may limit the accuracy of TIDE 
scores. Since TIDE scores are based on bulk tumor data, they might not fully capture 
the immune landscape in distinct tumor regions where immune cell infiltration can 
vary substantially, potentially affecting the prediction of immune responses. Another 
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limitation is the lack of experimental validation. While the TIDE score provides useful 
theoretical predictions based on model data and algorithms, we did not conduct experi-
mental validation (such as immunohistochemistry for immune markers) to confirm the 
predicted immune responses in glioma samples. This represents an important direction 
for future studies. Lastly, we did not perform survival analysis due to the limited sample 
size, but we plan to conduct further validation in future work. Additionally, the specific 
relationship between the identified lncRNAs and cuproptosis, as well as the detailed 
mechanisms by which cuproptosis-associated lncRNAs contribute to glioma progres-
sion, have not been clearly elucidated in this study. These will be key areas for future 
research.

11  Conclusion
In conclusion, this study identified ten cuproptosis-related lncRNAs associated with 
glioma prognosis, providing a basis for risk stratification and the exploration of tumor 
subtypes. Through computational analyses, we investigated their potential relationships 
with the immune microenvironment and drug sensitivity, offering insights into possible 
mechanisms linking cuproptosis to glioma progression. While these findings contribute 
to understanding the molecular complexity of glioma, they remain hypothesis-generat-
ing and require further experimental validation. Future studies are needed to confirm 
the clinical relevance of these lncRNAs and to elucidate their roles in tumor biology and 
treatment response.
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