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Abstract

A hallmark of the human immunodeficiency virus 1 (HIV-1) is its rapid rate of evolution within and among its various
subtypes. Two complementary hypotheses are suggested to explain the sequence variability among HIV-1 subtypes. The
first suggests that the functional constraints at each site remain the same across all subtypes, and the differences among
subtypes are a direct reflection of random substitutions, which have occurred during the time elapsed since their
divergence. The alternative hypothesis suggests that the functional constraints themselves have evolved, and thus
sequence differences among subtypes in some sites reflect shifts in function. To determine the contribution of each of these
two alternatives to HIV-1 subtype evolution, we have developed a novel Bayesian method for testing and detecting site-
specific rate shifts. The RAte Shift EstimatoR (RASER) method determines whether or not site-specific functional shifts
characterize the evolution of a protein and, if so, points to the specific sites and lineages in which these shifts have most
likely occurred. Applying RASER to a dataset composed of large samples of HIV-1 sequences from different group M
subtypes, we reveal rampant evolutionary shifts throughout the HIV-1 proteome. Most of these rate shifts have occurred
during the divergence of the major subtypes, establishing that subtype divergence occurred together with functional
diversification. We report further evidence for the emergence of a new sub-subtype, characterized by abundant rate-shifting
sites. When focusing on the rate-shifting sites detected, we find that many are associated with known function relating to
viral life cycle and drug resistance. Finally, we discuss mechanisms of covariation of rate-shifting sites.
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Introduction

Genomic diversity is a key feature of the Human Immuno-

deficiency Virus type 1 (HIV-1). This high diversity has resulted

in the emergence of several distinct groups of the virus,

characterized by distinct DNA sequences. HIV-1 is traditionally

classified into 3 groups: M (major), O (outlying), and N (new)

[1,2]. The M group accounts for 90% of reported HIV-1

infections, and is further divided into nine subtypes: A, B, C, D,

F, G, H, J, and K, each of which is roughly associated with a

specific geographical location. Subtype C accounts for nearly

half of all new infections, and predominates in eastern and

southern Africa, India, and Nepal. Subtypes A, D, G, H, and K

have been detected in different regions of Africa. Subtype F is

common in central Africa, South America and east Europe,

whereas subtype J is exclusive to Central America. Subtype B is

predominant in the western world (Europe, the Americas, Japan,

and Australia). As such, subtype B is the most widely studied

subtype in the laboratory, despite being responsible for only 12%

of global infections [3].

Different HIV-1 subtypes display as much as 20–30% variation

in their Env nucleotide sequences [4]. On the other hand, the Pol

and Gag sequences of different subtypes display less diversity, since

they encode the three crucial enzymes (protease, reverse

transcriptase (RT), and integrase) and the viral structural proteins,

which are less tolerant to changes. Large differences among

subtypes also exist in the accessory and regulatory proteins Nef,

Vif, Vpr, Vpu, Rev, and Tat. For example, subtype C encodes a

truncated Rev protein and an elongated Vpu protein [5], both of

which are functional.

To date, inconclusive evidence exists on the general effect of the

high genetic diversity of HIV-1 subtypes on protein functionality

(reviewed in [1,3]). Several studies have found positive Darwinian

selection to affect only certain clades in the Env [6,7], protease,

and RT proteins [8,9]. As well, adaptive coevolutionary events

were found to explain some of the variability between subtypes

[10]. Recently, differential conservation of position 31 in the Tat

protein among different subtypes was found to correlate with

different functionality of the this protein in subtype C [11]. On the

other hand, several studies have found little to no differences
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among the subtypes’ responses to drug administration on a short

term basis [12–15], which may mean that there are only negligible

differences among subtypes in the functionality of protease and

RT, the major targets of drug therapy.

In contrast to these specific isolated cases, a widespread study of

the differential patterns at all positions of the HIV-1 proteome

across its different subtypes has not yet been undertaken. Here, we

describe a global study of the differences among group M

subtypes, in an attempt to reveal what drives the evolution of the

different subtypes, and what are the functional differences among

them, if any. Two mechanisms may explain the observed

variability among HIV-1 subtypes. The first, in concordance with

the neutral theory of molecular evolution [16], suggests that

sequence variability across HIV-1 subtypes can be explained solely

by random stochastic changes across its phylogeny, with sequences

that diverged early (e.g., from different subtypes) showing more

variability than sequences that diverged recently (e.g., from the

same subtype). In this scenario, the level of selection operating on a

specific site is constant along all lineages, and only evolutionary

time accounts for the differences observed. The second conjecture

suggests that an additional assumption is required to explain the

observed sequence variability. According to this view, in some sites

the functional constraints have themselves evolved along the

lineages. Thus, some of the observed variability among subtypes

reflects changes in the function of specific protein sites.

What is the contribution of each mechanism to the observed

variability of HIV-1 sequences? If only stochastic changes explain

the variability in HIV-1 sequences, then this variability should be

distributed evenly throughout the phylogeny. On the other hand,

functional changes characterizing specific subtypes will display

unique sequence patterns across the subtypes’ phylogeny. Such

functional changes in a protein are reflected by shifts in its

evolutionary rate [17–23]. Accordingly, any of the protein sites

may change its rate of evolution across the phylogenetic tree, a

process previously termed ‘‘heterotachy’’ [24] or ‘‘covarion-like’’

evolution [25]. This is reflected when one subclade of the tree

displays one certain pattern (e.g., a low rate of evolution), while the

second subclade displays a different pattern (e.g., a high rate of

evolution). Sites displaying such a pattern are indicative of either

gain of function in a previously unconstrained site, or equivalently

loss of function in a previously constrained site, in specific lineages.

A second, similar pattern reflecting rate shifts is when one

subclade of the tree is conserved at a certain position with a certain

set of amino acids, while the complementary subclade is also

conserved at the same position, yet with a different set of amino

acids. This type of pattern is usually termed a content shift, but in

essence it often reflects a rate shift. Consider the case in which one

subclade is conserved for character ‘‘A’’ while the complementary

subclade is conserved for character ‘‘B’’. Clearly, if we ignore the

branch connecting the two sublcades, this position evolves with a

zero rate. However, in the branch connecting the two subclades, at

least one change must have occurred. Thus, especially if this

branch is short, this indicates high rate of substitution per unit

evolutionary time. Hence, content shift in this case implies rate

shift along the branch separating the two subclades. In general,

both these types of rate shifts reflect specialization of a site for a

certain function. Such a site is hereby termed a specificity

determinant.

Several methods exist for the detection of sites which undergo

functional shifts. Some of these methods rely on computing the

ratio of non-synonymous to synonymous substitutions (Ka/Ks)

across different lineages [7,26,27]. The aim of these methods is to

detect positive Darwinian selection operating on specific sites and

lineages. Alternatively, there are methods which contrast evolu-

tionary rates of amino-acid replacements across different lineages

(e.g., [17,18,23,28–31]). These methods are not limited to

detecting positive Darwinian selection but are rather more suitable

for detecting general changes in selective constraints. For example,

a site which entirely evolves under neutral evolution in one

subtree, while in the complementary subtree it has gained a novel

function and is now conserved, will most likely go undetected by

methods of positive selection. Furthermore, the advantage of

methods searching for rate shifts on the amino-acid level is that

they are expected to be less sensitive to biases caused by saturation

[32] of synonymous substitutions or by selection operating on

silent sites [33].

Here, we describe a method for the detection of rate-shifting

sites in a protein across all lineages in the phylogeny. This method,

hereby termed RASER (RAte Shift EstimatoR) is based on the

likelihood framework, combined with empirical Bayesian infer-

ence. One of the main novelties of RASER is that as opposed to

previous methods, it does not require pre-specification of the

lineages in which the suspected rate shifts have occurred. The

method is based on an evolutionary model, which incorporates

both among-site rate variability and among-site variability of rate

shifts, based on the premise that some sites experience more rate

shifts than others. Hence, the underlying evolutionary model of

RASER allows more than one rate shift to occur in a site along the

phylogeny. The model can be used to perform a likelihood ratio

test (LRT) to determine whether the data significantly support

rate-shifting sites. Furthermore, using a Bayesian framework,

RASER can detect sites with a high posterior probability of rate

shift. For these sites, it determines the lineage or lineages in which

a rate shift has most probably occurred.

RASER was used in order to test whether the observed

variability in HIV-1 sequences can be explained by random

patterns of evolution alone or by functional considerations, and

was applied to the entire HIV-1 proteome. In all of the nine open

reading frames (ORFs) of HIV-1, an abundance of sites were

inferred to have experienced a shift in their evolutionary rate,

suggesting functional specialization occurred in these proteins.

Author Summary

The AIDS epidemic, inflicted by the human immunodefi-
ciency virus (HIV), has already claimed 25 million lives, thus
posing a global threat. Since its discovery, several HIV
subtypes have emerged, characterized by distinct genomic
sequences and variable geographic locations. Here, we
investigate the nature of the genetic differences among
the subtypes. The neutral theory of evolution suggests
that most genetic differences marginally affect the
function of the encoded proteins (hence neutral) and thus
occur randomly. Alternatively, changes in protein function
are reflected by a pattern of nonrandom genetic
differences. To address this issue, we developed a
computational method, which studies the differences
between sequences of different HIV subtypes, and
estimates which of the explanations is more likely. Using
a large sample of HIV protein sequences, we discovered
that part of the variability among the subtypes is not
random and possibly reflects different functional con-
straints imposed on the subtypes during the course of
their evolution. An in-depth inspection of these nonran-
dom changes revealed a correlation with biological traits,
such as drug resistance and mechanisms facilitating viral
entry into the host cell. Interestingly, nonrandom changes
are also characteristic of a viral strain that recently
emerged in the former Soviet Union.

Functional Shifts in HIV Subtypes
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The corresponding lineages in which these rate shifts occurred

were determined, and were found to highly correlate with the

branching patterns of the different subtypes of HIV-1 group M.

Furthermore, many of these inferred rate-shifting sites have been

previously shown to be functionally important for the viral life

cycle and are involved in drug resistance. These results support the

hypothesis that some of the variability observed among the

different subtypes is a direct result of differing functionality of

protein sites. We discuss the importance of the shift in rates in the

context of differences in protein functionality of each subtype.

Results

We developed an evolutionary model and method, RASER, for

the detection of sites that have undergone a shift in their

evolutionary rate. The heart of the model is based on the

previously developed site-specific-rate variation (SSRV) model

[25]. The model was used to analyze a total of 182 HIV-1 genome

sequences from seven HIV-1 subtypes of group M (A, B, C, D, F,

G, and J). For subtypes H and K no reliable genomic sequences

were found (see Methods). Each of the nine ORFs of HIV-1 was

analyzed separately. Our results clearly show that all of these nine

ORFs significantly support rate shifts as compared to a null model,

which does not allow for rate shifts (all P-values,10210, well below

the significance threshold of 0.0056 after Bonferroni correction;

Table 1). This suggests that much of the HIV-1 sequence

variability is also driven by functional considerations, and cannot

be explained merely by stochastic substitutions across the

phylogeny under a constant selective regime.

In order to ascertain the validity of the rate shift model to

differentiate between a random pattern of evolution and evolution

driven by functional considerations, we conducted simulation

studies. To this end, 100 datasets were simulated under the

assumption that all the variability in the sequences is due to

stochastic substitutions along the phylogeny. By applying LRT, we

used RASER to test in how many datasets rate shift was inferred,

thus giving an indication of the false positive error rate of the rate

shift method on the gene level. We reject the null hypothesis and

infer rate shift if the LRT P-value is below a= 0.05. Using this

cutoff level, the error rate was found to be 3%. At a cutoff level of

a= 0.01, the error rate was reduced to zero (note that the maximal

P-value obtained in the HIV-1 dataset was 10210). We next tested

the error rate on the site level, by testing how many sites displayed

rate shifts in our simulated data, i.e., how many sites displayed a

posterior probability higher than 0.95 in favor of a rate shift (see

Methods). Here, we obtained a zero error rate in all of the datasets

simulated. All in all, the simulation studies strongly support the

notion that the variability across the HIV-1 phylogeny of the

different subtypes is functionally driven, and cannot be explained

by genetic drift alone.

After establishing that rate shift events are characteristic of all

HIV-1 ORFs, we next aimed at identifying the specific sites that

contribute to this pattern. Rate-shifting sites were defined as sites

displaying a posterior probability higher than 0.95 in favor of a

rate shift. A total of 225 rate-shifting sites were detected

throughout the HIV-1 proteome (summarized in Table S1).

Specifically, Vpu, Rev, and Tat showed an exceptionally high

proportion of rate shifts (Table 1). The lowest proportion of rate-

shifting sites was observed in Pol and Gag. This is somewhat

expected, due to the high level of purifying selection these two

genes undergo. Nevertheless, a total of 70 sites displayed

significant rate shift in both these genes.

Using the available protein structures of the HIV-1 proteins we

explored where rate-shifting sites tend to occur. For the RT

protein (Protein Data Bank (PDB) [34] ID 1rtd): 15 of 416 surface

sites and only one out of 138 buried sites were found to be rate-

shifting (the sites are detailed in Table S1). This difference is

statistically significant (P-value,0.05; G-test), suggesting that the

solvent accessible surface of RT is enriched with rate-shifting sites.

In all other protein structures, no significant trend was found for

the rate-shifting sites.

We next asked whether this pattern of rate shifts throughout all

the nine ORFs can be ascribed to the temporal pattern across the

phylogeny, which also represents the divergence into the different

subtypes. We thus developed a method based on a Bayesian

approach to map significant rate-shifting sites to specific lineages.

The method also reports whether a rate shift corresponds to an

acceleration or deceleration of the rate at the inferred lineage.

Figure 1 shows the top ten lineages for which the most rate-shifting

sites were found. The majority of these lineages are ones that

separate between different subtypes. Together with the above

described results, this result conclusively points to the fact that the

sequence-based differences among the subtypes cannot be

attributed to random stochastic changes alone, but are, at least

in part, a consequence of functional requirements that arose

following the emergence of the subtypes. Accordingly, each

subtype is characterized by specific specificity determinant sites

which display a unique pattern as compared to other subtypes.

Table S2 summarizes all the rate-shifting sites for each subtype,

according to accelerations and decelerations.

Two lineages with abundant rate shifts are not associated with

subtypes, and are within subtype A. According to the phylogeny

they clearly distinguish between two divergent groups within this

subtype (Figure 1). The larger clade is composed mainly of

sequences originating from Africa, and the smaller clade is

composed exclusively of sequences originating from the former

Soviet Union, where an outbreak of subtype A infections has been

reported in injecting drug-users [35–38]. We found a total of 25

rate-shifting sites in the lineage leading to this variant, termed

IDU-A [39], of which 20 are decelerations. In line with the low

genetic diversity reported in IDU-A [38,39], these sites may be

viewed as specificity determinants of this variant, and may

represent gain of function of these sites in this variant. All in all,

this strengthens the notion that subtype A is in fact composed of

two functionally distinct clades, and it may be proposed that this

represents an emergence of a novel sub-subtype.

Table 1. Maximum log-likelihood (LL) values for the analysis of
the nine HIV-1 ORFs under the rate shift and null models.

HIV-1
ORF

Rate Shift
Model LL

Null
Model LL 2DLL

P-Value

(X2
3)

Proportion of
Rate-Shifting
Sites

Env 294,304.3 294,782.9 957.2 ,10220 0.08

Gag 228,692.7 228,867.7 350 ,10220 0.06

Nef 219,049.6 219,142.1 185 ,10220 0.07

Pol 240,157 240,364.6 415.2 ,10220 0.04

Rev 210,598.5 210,712.9 228.8 ,10220 0.16

Tat 29,846.7 29,936 178.6 ,10220 0.15

Vif 213,406.2 213,509.7 207 ,10220 0.09

Vpr 26,177.1 26,208.2 62.2 ,10210 0.08

Vpu 29,511.4 29,624.3 225.8 ,10220 0.30

doi:10.1371/journal.pcbi.1000214.t001

Functional Shifts in HIV Subtypes
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Correspondence between Functional Sites and Rate-
Shifting Sites

To exemplify possible effects of rate shift on the function of

HIV-1, we mapped the inferred rate-shifting sites onto an

annotation of all functional elements in the HIV-1 genome

(available at the Los Alamos HIV sequence database; http://www.

hiv.lanl.gov), and performed an additional manual literature

search for known functional sites. To the best of our knowledge,

there is no database summarizing all literature data on HIV-1

sequence positions, and thus the functional annotation we related

to here is non-comprehensive. Nevertheless, 25 rate-shifting sites

map to a variety of functional elements at the protein level

(summarized in Table 2).

Interestingly, three rate-shifting sites at Gag (sites 12, 381, and

390) and two at Protease (sites 35 and 36) were previously reported

to be involved in drug-resistance. These three sites at Gag are non-

cleavage sites (i.e., are not cleaved by protease), which contribute

to the development of drug resistance against protease inhibitors

[38]. These sites display a clear rate shift: sites 12 and 381 are

relatively conserved across six of the seven subtypes, and variable

in the remaining subtype (for Gag 12 - subtype B is variable, and

for Gag 381 - subtype C is variable), while site 390 is conserved

across subtypes A and G and variable in the rest of the tree. At site

35 of protease, a mutation from glutamic acid to aspartic acid has

been reported as resulting in drug resistance to amprenavir,

ritonavir [40], and tipranavir [41] in combination with other sites.

Interestingly, aspartic acid completely dominates subtypes A and

F, while it is less frequent in all other subtypes (Figure 2A).

Similarly, at site 36 of protease, a mutation from methionine to

isoleucine contributes to resistance to ritonavir, nelfinavir, and

other drug combinations [42]. Once again, isoleucine prevails in

almost all subtypes other than subtype B (Figure 2B). Thus, our

results suggest caution when administering such drugs since some

subtypes may have a predisposition for resistance.

Another interesting example of a rate shift at a functional

position is site 34 of Rev, which is part of the Rev response

element (RRE) binding domain (sites 33–46) [43]. This region in

the Rev protein binds the intron-containing viral RNAs, and thus

the ribonucleoprotein complex is exported from the nucleus to the

Figure 1. Phylogenetic tree of all nine concatenated datasets of
the ORFs. The different subtypes are marked at each subclade of the
tree. Branches in red are the top scoring lineages for which rate shifts
were found. Arrows mark the two distinct clades of subtype A (see text
for details).
doi:10.1371/journal.pcbi.1000214.g001

Table 2. Rate-shifting sites for which functional annotation is available.

ORF Encoded Protein Protein Sitea Annotation

Vpr S77 Mutation implicated in long-term survival [73]

Gag matrix E12 Drug resistance associated [74]

p7 nucleocapsid G381 Drug resistance associated [74]

V390 Drug resistance associated [74]

p6 E460 Binding region of Vpr to p6 [75]

R490 Binds Vpr, in order to incorporate Vpr into virion nucleocapsid [76]

Pol protease E35 Drug resistance associated (e.g., [40,77])

M36 Drug resistance associated [42]

Env gp120 11 sites dispersed in the V2–V4 loops

I277 CCR5 binding [78] (Part of V3 loop)

F287 CCR5 binding [78] (Part of V3 loop)

V342 CCR5 binding [46]

R414 CCR5 binding [46]

gp41 Q32 Luecine/isoleucine Zipper-like sequence, which may be involved in the fusion
process to membrane fusion of gp41 [79]

Rev T34 Part of the RRE binding site [43]

Nef E62 Acidic region at sites 62–65 (EEEEE)

E64

aProtein coordinates are given according to the encoded protein, apart from the p7 and p6 for which the Gag coordinates are given.
doi:10.1371/journal.pcbi.1000214.t002

Functional Shifts in HIV Subtypes
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cytoplasm. This process is crucial for expression of viral late phase

genes that are necessary for viral particle formation [44]. Site 34 in

Rev displays a high level of conservation, with threonine encoded

at this position throughout the majority of the subtypes (Figure 3).

Yet, in subtypes J and the African clade of subtype A, serine is

prevalent. Since the two amino acids are quite similar in nature,

one might argue that interchanging them has no functional

consequence. If so, we would expect both amino-acids to prevail

throughout all subtypes. However, it is evident that entire subtypes

still ‘‘chose’’ to encode a specific amino-acid at that position. Thus,

the shift between the two amino-acids displayed in the above-

mentioned clades is likely to represent a genuine functional

difference among the subtypes, and in fact may play a role in the

binding properties of this region in Rev.

Intriguingly, several sites in gp120 that are involved in the co-

receptor CCR5 binding were detected as rate-shifting (Table 2),

pointing at possible adaptations of different subtypes to different

alleles of CCR5. For instance, the CCR5 D32 mutation is known

to confer reduced susceptibility to the virus in Europe and western

Asia [45], and this might affect the pattern of selection pressure

acting on these sites. One example of a rate-shifting site affecting

CCR5 binding is at position 414 of gp120, which was shown to be

involved in CCR5 binding [46]. This site displays several rate

shifts across a few of the subtypes (Figure 4), with threonine

prevalent at subtypes C, F, J, and G, arginine prevalent at variant

IDU-A, and relatively high variability in the rest of the subtypes.

Clearly, at this site differing selection constraints operate at each

subtype. One may speculate that these subtypes infect patients

where a certain allele of CCR5 is more common, and the virus has

adapted the gp120 protein to obtain enhanced binding. Future

research is required to determine whether rate-shifting positions at

subtypes correlate with the populations they infect.

Discussion

HIV-1 strains were identified more than 20 years ago, and a

classification system dividing them into distinct groups and

subtypes was formalized in the year 2000 [47]. However, the

functional significance of this classification still remains unclear.

Since the various subtypes correlate with geographic location, it is

natural to postulate that the observed sequence variability is a

direct result from stochastic changes among independent lineages

(that is, HIV-1 genomes from two different subtypes are variable

only because of the long time elapsed since their divergence). Our

goal was to test the hypothesis that the sequence divergence also

reflects functional divergence. To this end, we developed a

methodology for detecting proteins that underwent evolutionary

rate shifts, the specificity determinant rate-shifting sites within

these proteins, and lineages in which most of these shifts had

occurred. Indeed, our method revealed extensive rate shifts among

HIV-1 group M subtypes. This strongly suggests that the high

variability among the different subtypes is not exclusively a result

of stochastic changes, which occurred since the time the subtypes

diverged, but also has significant functional consequences.

What is the source of these observed functional shifts? One

explanation is that different subtypes are subject to different

external (environmental) selective constraints, which are related to

their geographical distribution. An example for such an environ-

mental constraint is the selection force exerted by the host adaptive

immune system response, coordinated by CTLs and neutralizing

antibodies. The CTL response is mediated by human leukocyte

Figure 2. The rate-shifting patterns at sites 35 (A) and 36 (B) of protease, displayed on the phylogenetic tree of all seven subtypes.
Each leaf (HIV-1 sequence) is color-coded according to the amino-acid it encodes at this position. Each leaf is labeled by its accession number,
subtype (A, B, C, D, F, G, or J), and the encoded residue. The different subtypes are marked at each subclade of the tree. These sites are associated
with drug resistance in combination with other sites.
doi:10.1371/journal.pcbi.1000214.g002

Functional Shifts in HIV Subtypes
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antigens (HLAs), which present viral peptides on the surface of

infected cells. Different HLA alleles present different peptides, and

thus escape-mutations of the virus are expected to correlate with

HLA genotypes. Since these genotypes often correspond to

different human subpopulations [48,49], it has been previously

suggested that polymorphisms within HIV-1 are associated with

HLA genotypes [8,50–52]. However, several of the associations

between subtypes and HLA were recently shown to be a result of a

founder effect of the subtype [53]. Further complicating this issue

is evidence showing there is a fitness cost to the virus due to the

escape-mutation at the epitope itself, and that, often, escape will be

achieved via a mutation at the region flanking the epitope

(affecting antigen processing) (e.g., [54]).

Common to all the explanations for functional requirements is

that there is a specific adaptation of the virus to maximize its

fitness to its natural human host subpopulation. However, a non

adaptive explanation for functional shifts in HIV-1 subtypes can

also be suggested: both the function and the fitness of the protein

as a whole remain the same, yet different positions in the protein

assume different roles in different subtypes, in order to maintain

this similar function. If we consider the sequence space as a fitness

landscape, there may be two hills with the same or similar fitness.

As a simplified example, in the first hill, amino-acid A is fixed in a

certain position i, allowing the amino acid at position j to vary. In

the second, equally-fit, hill, amino-acid B is fixed at position j,

which allows position i to vary. In essence, this type of process was

originally defined as a ‘‘covarion’’ process [55]. Under this

covarion model, the only way to neutrally move from one hill to

the other is via A and B at both positions i and j 2 a relatively rare

event. Most likely, this covarion process will involve several sites

which can interchange with a complex terrain of fitness. Thus,

dependencies among (two or more) positions might introduce

apparent rate shifts that do not change the fitness of the protein,

nor do they reflect adaptation at the whole virus level. However,

Figure 3. The rate-shifting pattern at site 34 of Rev, displayed on the phylogenetic tree of all seven subtypes. Each leaf (HIV-1
sequence) is color-coded according to the amino-acid it encodes at this position. Each leaf is labeled by its accession number, subtype (A, B, C, D, F, G,
or J), and the encoded residue. The different subtypes are marked at each subclade of the tree. This site is part of the RRE binding domain.
doi:10.1371/journal.pcbi.1000214.g003

Functional Shifts in HIV Subtypes
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they do reflect functional differences at the single site level, since

different sites assume different roles. This explanation is in line

with the relative paucity of known functional differences among

HIV-1 subtypes, for instance in the context of drug resistance.

Nevertheless, lack of evidence for differing functionality on the

protein level does not mean such differences do not exist – perhaps

not as overwhelming functional differences but as more subtle

effects, such as differing inter-molecular interactions. Currently, it

is unclear which of the explanations – the ‘‘protein adaptation’’

theory or the ‘‘position covarion’’ theory prevails in the context of

HIV-1 subtypes. Most likely, both play an important role in the

evolution of these strains.

The rate shift methodology developed here is based on a robust

probabilistic framework and can be used to reveal both temporal

and spatial evolutionary rate shifts in specific genes, sites, and

lineages. One main advantage of the RASER method is that it is

statistically based, and the strength of the signal and the sample

size are inherently accounted for by taking into account the

phylogeny, the number of sequences in each subclade, and the

length of the branch separating them. RASER is generic and may

be applied to various types of sequence data, ranging from

different viral populations, through different phylogenetic taxa, to

duplicated genes. For example, an analysis of the rate-shifting sites

in avian and human influenza strains could provide valuable

information as to the evolution of influenza strains, and therefore

their functional adaptations and virulence. As such, RASER can

be used to link phenotypic changes with sequence variability.

While the vast majority of sequence variability is neutral or slightly

deleterious, our method can extract the signal associated with the

phenotypic change from the large background stochastic noise.

Materials and Methods

An Evolutionary Markov Model for the Detection of Site-
Specific Rate Shifts

The most common practice to account for among-site rate

variation (ASRV) is to assume that the evolutionary rate r at each

site is independently sampled from a gamma distribution [56,57].

A discrete approximation with k rate categories is used [58] in

order to employ the gamma distribution in the ASRV model.

However, this ASRV model assumes that the evolutionary rate is

fixed along the phylogeny for a given site. In the SSRV model [25]

this assumption is alleviated by allowing the rate at a given site to

switch between rate categories rather than being constant. Let n
represent the rate at which a site switches between rate categories.

This parameter reflects the rate of substitution-rate. The SSRV

model is represented as a continuous time Markov process, defined

by the instantaneous rate matrix Q, where the rate of substitution

from state i to state j (Qij) is defined as follows:

Q x,rið Þ, y,rj

� �� �

~

ri|M x,yð Þ ,x=y i~j character� substitution

n:P rj

� �
,x~y i=j rate� shift

0 ,x=y i=j simultaneous changes

of both character and rate

8>>>><
>>>>:

where M is any standard rate matrix over any alphabet

(nucleotides, amino acids, or codons), ri and rj are rates sampled

from the discrete gamma distribution, x and y are alphabet

characters, and P(rj) is the prior probability of rate rj. The diagonal

elements of Q are determined so that the sum of entries in each

row is zero.

In the SSRV model, the u parameter is assumed to be constant

across all sites. Thus, it is implicitly assumed that all sites are

potentially rate-shifting sites, and the extent of rate shift is

homogenous across all sites. Biological intuition suggests that most

sites do not undergo rate shift. However, those few that do,

experience this phenomenon at various degrees (i.e., a site may

have experienced one or more rate shifts across the phylogeny).

Thus, we develop here a model, RASER, in which the rate of rate

shifts itself varies among sites, i.e., we assume a distribution over

the parameter n. We note that when n = 0, the SSRV model

collapses to the ASRV model, and when nR‘ the SSRV model

collapses to an equal rates (homogenous) model in which all sites

have the same evolutionary rate. In order to account for these two

extremes, we use a discretized general gamma distribution (as

opposed to the ASRV model, the expectation of the gamma

distribution here is not set to 1), with two extra categories to

describe n = 0 and nR‘ (in practice, n = 20 was found to

approximate homogenous rates well enough, and was used here).

The proportions of these two extra categories, P(n = 0) and

P(nR‘), are estimated from the data. Furthermore, to avoid n
values which are near these two extremes of 0 and ‘, the gamma

distribution is estimated using five fixed categories between 0 and

2 (0.4, 0.8, 1.2, 1.6, 2). We note that using ten fixed categories

across the same range yielded essentially the same results and was

discarded due to computational considerations. We further use

four fixed rate categories (0.25, 0.75, 1.25, 2) to model the among-

site rate variation. The use of fixed rate categories was performed

in order to avoid the detection of mild rate shifts between similar

rate categories, which may occur if rate values are estimated from

the data.

Figure 4. The rate-shifting pattern at site 414 of gp120,
displayed on the phylogenetic tree of all seven subtypes. Each
leaf (HIV-1 sequence) is color-coded according to the amino-acid it
encodes at this position. Each leaf is labeled by its accession number,
subtype (A, B, C, D, F, G, or J), and the encoded residue. The different
subtypes are marked at each subclade of the tree. This site is involved in
CCR5 binding.
doi:10.1371/journal.pcbi.1000214.g004
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Substitution Matrix
The evolutionary model we develop is general and may

incorporate any substitution matrix M into it. In this study, the

ProtTest software [59] was used to determine the substitution

matrix that best fits the data under the Akaike Information

Criterion, and this was found to be the HIVb matrix [60].

Testing for Significant Rate-Shifting Sites
Our methodology for assessing significant rate shifts is similar to

the approach for the detection of positive selection at sites in

proteins [61]. We first test whether the data significantly support

the RASER model using LRT. If so, we report positions

supporting rate shift with a posterior probability higher than

some cutoff value, here 0.95. As a final stage, we also report the

most likely branches at which the rate shift occurred, i.e. the

branches with the highest posterior probability of a rate shift

occurring there. The details are elaborated in the following

sections.

Likelihood Ratio Test versus a Null Model
To test whether RASER fits the data significantly better than a

null model, LRT was performed between the two models.

Formally,

H0 : P n~0ð ÞzP n??ð Þ~1 No rate shift

H1 : P n~0ð ÞzP n??ð Þƒ1 RASER : rate shift enabled

Under RASER, five parameters are assumed (a for the gamma

rate distribution, a and b for the gamma distribution over n,

P(n = 0), and P(nR‘)), whereas in the null model only two

parameters are assumed (a for the rate distribution, and P(n = 0)).

All parameters are estimated using standard maximized likelihood

techniques [62]. Branch lengths are optimized using an expecta-

tion-maximization (EM) algorithm. The regularity conditions for

the x2
3 approximation of the LRT are not satisfied, since in essence

the parameters P(n = 0)+P(nR‘) reach a boundary condition. Self

and Liang [63] proposed in this case to use a 50:50 mixture of

point mass 0 and x2. However, to avoid errors obtained by small

samples, we prefer to be conservative and use x2
3 as an

approximation.

Inferring Lineages in Which Rate Shifts Occurred
For sites with a high posterior probability of rate shift, our aim is

to detect the lineage or lineages where a rate shift occurred. Thus,

we report the three branches which are the most probable

candidates at which the rate shift occurred, i.e., those branches

with the highest posterior probability of a rate shift. Branches

which lead to a leaf in the tree are excluded. To this end, we

calculate the posterior probability that a rate shift occurred at each

branch. Let us assume a branch which begins with node A and

ends in node B. The posterior probability of a rate shift at this

branch will then be:

X
r Að Þ=r Bð Þ

P r Að Þ,r Bð Þ Djð Þ~

X
X Að Þ[S

X
X Bð Þ[S

X
r Að Þ=r Bð Þ

P X Að Þ,X Bð Þ,r Að Þ,r Bð Þ Djð Þ~

~
X

X Að Þ[S

X
X Bð Þ[S

X
r Að Þ=r Bð Þ

P X Að Þ,X Bð Þ,r Að Þ,r Bð Þ,Dð Þ
P Dð Þ

ð1Þ

where r(A) and r(B) represent the rates at nodes A and B,

respectively, X(A) and X(B) represent the character states at these

nodes, S represents the alphabet of the data (in this study, amino

acids), and D represents the data. The denominator in Equation 1,

P(D), represents the likelihood of the data, and is calculated using

standard methodology [62], and the numerator is calculated in a

manner similar to that described previously (e.g., [7,64,65]).

Equation 1 can further be used to compute the probability of a

rate acceleration or a deceleration at a lineage simply by summing

over r(A),r(B) or r(B),r(A), respectively. For each rate-shifting site,

in order to determine whether a rate acceleration or deceleration

occurred, we report the larger of the two probabilities. We note

that since here we use an unrooted tree, a rate acceleration can

also be interpreted as a rate deceleration, and vice-versa. Thus, in

this study the terms rate acceleration and rate deceleration have

meaning only in relation to one another.

Simulations
Simulations were used in order to infer the false positive level of

rate shift inference. To this end, we simulated 100 datasets under

the assumption that no rate shift occurs by using the null model in

this study (P(n = 0)+P(nR‘) = 1). In order to emulate realistic

biological data, datasets’ length and null-model parameters were

based on the inference of the vpr protein. Each site was simulated

along the tree of all subtypes used in this study (see section Dataset)

using the JTT matrix [66]. For each dataset, the existence of rate

shift was inferred with RASER using the LRT procedure

described above, and rate-shifting positions were inferred

computing posterior probabilities as described above.

Structural Analysis
All available HIV-1 protein structures were obtained from the

BioAfrica website (http://www.bioafrica.net). Thus, the following

structures were used: Gag derived proteins: matrix p17, capsid

p24, nucleocapsid p7 (PDB IDs: 1tam, 1e6j, 1a1t, respectively); Pol

derived proteins: protease p10, reverse transcriptase p51, RNase

p15, integrase p31 (PDB IDs: 1aaq, 1rtd, 1o1w, 2itg, respectively);

Vpr p12/p10 (PDB ID: 1m8l); Tat p16/p14 (PDB ID: 1mnb); Rev

p19 (PDB ID: 1etf); Vpu p16 (PDB ID: 1vpu); Env derived

proteins: gp120, gp41 (PDB IDs: 1gc1, 1env, respectively); Nef

p27/p25 (PDB ID: 2nef). For NMR determined structures the

average over all models was used.

The accessible surface area (ASA) of each structure was

computed using the Surface Racer program [67], with a probe

radius of 1.4Å. Any residue was defined exposed to the solvent if its

ASA exceeded 5% of its maximal (theoretical) ASA. The maximal

ASA value of a residue was calculated in an extended GXG

theoretical tripeptide, where G denotes glycine and X denotes the

residue in question [68]. Secondary-structure assignments were

obtained according to the dictionary of secondary structure of

proteins [69]. G-test was used in order to determine whether rate-

shifting sites are enriched with surface residues or certain

secondary structure elements.

Functional Analysis
Functional annotations of sites were retrieved from the Los

Alamos sequence database (http://www.hiv.lanl.gov), as well as

following a limited manual literature search.

Dataset
Full genome sequences belonging to the nine subtypes (A, B, C,

D, F, G, H, J, K) of HIV-1 group M were downloaded from the

Los Alamos HIV sequence database (http://www.hiv.lanl.gov).

Only sequences annotated as non-recombinants were selected,
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since recombinant sequences scramble the signal of the phylogeny

(i.e., in recombinant sequences, different positions in the sequence

have different phylogenies). Furthermore, the DSS method [70]

for the detection of recombination was used to analyze the nine

datasets, and no recombination was detected in any of the data.

Sequences for which there was missing annotation for one of the

nine ORFs of HIV-1 were removed. Furthermore, genomes for

which one of the ORFs was annotated as either a pseudogene or a

truncated sequence were removed. This yielded 64 A sequences,

147 B sequences, 224 C sequences, and 32 sequences from

subtypes D, F, G, and J (no sequences of subtypes H and K were

retained after the filtering process). Due to computational

limitations, we sampled the 50 most distant sequences from

subtypes A, B, and C. The genome of the reference sequence

HXB2 was added on manually, and all sites described in this

manuscript use this sequence as a reference. The genomes were

separated into the 9 HIV-1 ORFs (see Table 1). Each ORF was

aligned using the PRANK program version 080709 using the 2F

option [71]. At this stage, sequence AY901971 was removed due

to poor alignment quality of the Vpu sequence. In total, this

yielded 182 sequences. In order to reconstruct the phylogeny of

these sequences, the alignments were concatenated. The recon-

struction was performed with PhyML program version 2.4.5 [72]

using among-site rate variation with 4 discrete rate categories, and

the HIVb model [60] of sequence evolution, which was found to

be the best-fit model for our dataset (see above). The phylogeny

obtained showed that all seven subtypes were monophyletic,

further validating that no recombinant viruses were erroneously

obtained. In order to enhance the quality of the alignment, each

ORF was next re-aligned with PRANK [71] using the phylogeny

obtained as a guide tree.

Implementation
RASER was implemented in C++. The program and source

code are available at http://www.tau.ac.il/~penn/raser.html.

Supporting Information

Table S1 A list of all inferred rate-shifting sites, with information

regarding secondary structure and exposed/buried classification.

Found at: doi:10.1371/journal.pcbi.1000214.s001 (0.04 MB XLS)

Table S2 A list of all rate-shifting sites according to subtype,

sorted according to acceleration/deceleration.

Found at: doi:10.1371/journal.pcbi.1000214.s002 (0.06 MB XLS)
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