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Abstract: This study aims to detect gait events using a smartphone combined with deep
learning and evaluate the remote effects and clinical significance of this method in differ-
ent elderly populations and patients with cerebral small vessel disease (CSVD). In total,
150 healthy individuals aged 20–70 years were asked to attach a smartphone to their thighs
and walk six gait cycles at self-selected low, normal, and high speeds, using an insole
pressure sensor as the reference standard for gait events. A deep learning model was
then established using BiTCN-BiGRU-CrossAttention, and two models (TCN-GRU and
BiTCN-BiGRU) were compared. In total, 48 elderly (25 healthy, 12 with mild cognitive
impairment, 11 with Parkinson’s disease) participated in an online home assessment, com-
pleting single-task and cognitive dual-task walking. Overall, 35 CSVD patients participated
in an offline clinical assessment, completing single-task, cognitive dual-task, and physical
dual-task walking. The BiTCN-BiGRU-CrossAttention model had the lowest MAE for
detecting gait events compared to the other models. All models had lower MAEs for
detecting heel strikes than toe-offs, and the MAE for low and high walking was higher
than for normal speed walking. There were significant differences (p < 0.05) in gait param-
eters (Cadence, Stride time, Stance phase, Swing phase, Stance time, Swing time, Stride
length, and walking speed) between single-task and cognitive dual-task walking for all
online elderly participants. CSVD patients showed significant differences (p < 0.05) in gait
parameters (Cadence, Stride time, Stance phase, Swing phase, Stance time, Stride length,
and walking speed) between single-task and cognitive dual-task and between single-task
and physical dual-task walking.

Keywords: gait analysis; gait event; smartphone; deep learning; mobile health

1. Introduction
Gait analysis relies on accurately determining events occurring during walking, such

as heel strike and toe-off. Identifying these events allows for examining parameters such as
Stance phase, Swing phase, Stride time, and Stride length [1]. Traditional methods, such as
optical motion capture systems, force plates, and electromyography [2], can provide pro-
fessional results but typically require substantial costs and support personnel [3], making
them inaccessible to many users.

Furthermore, with the rapid development of smartphones, their application in the
health field is becoming increasingly widespread, particularly in motion monitoring. Re-
search has shown that built-in smartphone sensors can measure and quantify human
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movement [4]. Additionally, several studies have demonstrated the effective application
of smartphone built-in accelerometers, gyroscopes, and other sensors in gait analysis,
covering various populations such as the elderly [5] and Parkinson’s disease patients [6].
Smartphones provide a portable and inexpensive method that can be applied anywhere,
not limited to specific settings. Many studies have validated the smartphone against stan-
dard equipment [4,7–12], but some studies have only included a small number of young,
healthy individuals [4,7–10] analyzed a relatively limited range of gait parameters [8–10],
did not mention the impact of different walking speeds on the results [4,8,10–12], and
did not evaluate the application of the method in daily home environments [4,7–9,11,12].
Moreover, these studies only reported consistency compared to standard equipment and
did not mention the time error in detecting gait events [4,7–12]. Therefore, this study aims
to explore a method using a smartphone and deep learning to detect gait events at different
walking speeds, with the main highlights as follows:

Gait signals represent a macroscopic manifestation of neuronal network activity in-
volving the coordinated regulation of central pattern generators (CPGs). The mechanisms
of information transmission and processing within neuronal networks can be simulated
using mathematical models. Studies have shown that periodic spiking activity in unidi-
rectionally coupled Hindmarsh–Rose neuronal chains can induce novel slow rhythms,
transitioning from chaotic to regular dynamics along the chain [13]. This phenomenon
bears similarity to the gait rhythms driven by CPGs, providing theoretical support for
understanding the generation mechanisms of complex gait signals and for employing deep
learning methods to identify gait events. Consequently, this study focuses on leveraging
built-in smartphone sensors combined with deep learning to detect gait events from smart-
phone signals in a controlled environment, aiming to provide a portable, low-cost solution
for human behavior monitoring.

(1) This study is the first to employ built-in smartphone sensors combined with deep
learning to detect gait events, providing a novel approach for portable gait analysis.

(2) The proposed model in this study applies to different walking speeds, and the detec-
tion time errors of different deep learning models are compared.

(3) The external application effects of this method are remotely assessed in different
elderly populations in daily home environments.

(4) The clinical significance of this method is evaluated in a population with cerebral
small vessel disease.

2. Materials and Methods
2.1. Software Platform

Given the widespread user base of the WeChat platform, WeChat mini programs
offer a convenient and lightweight user experience without the need for downloading and
installation. Moreover, WeChat mini programs support cross-platform operations, making
them easy to promote [14]. Therefore, this study developed a WeChat mini program as a
software tool for gait analysis and successfully published it on the WeChat platform.

2.2. Participants

The participants in this study were divided into offline and online participants. Table 1
summarizes the demographic details of the participants.

Health: This study recruited 150 healthy individuals offline. The inclusion criteria
are as follows: (1) age greater than 20 years; (2) ability to walk continuously for at least
10 m without assistance from others or walking aids. The exclusion criteria are as fol-
lows: the presence of mental, neurological, or physical impairments and uncorrectable
visual impairments.
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Table 1. Summary of participants.

Participant Feature
Age Range

20~29 30~39 40~49 50~59 60~69 70~79

Health
(N = 150)

Male 11 14 13 16 14 13
Female 11 11 12 13 12 10

Age (years) 25.55 ± 2.60 35.40 ± 2.65 45.08 ± 2.50 55.21 ± 2.61 64.65 ± 2.71 73.96 ± 2.33
Height (cm) 171.55 ± 8.78 169.00 ± 6.23 169.40 ± 8.36 169.38 ± 7.52 167.85 ± 9.57 166.37 ± 9.41
Weight (kg) 63.80 ± 9.50 64.96 ± 6.81 64.86 ± 6.57 63.50 ± 6.03 64.65 ± 2.71 62.96 ± 7.35

Elderly
(N = 48)

Male - - - - 6 20
Female - - - - 10 12

Age (years) - - - - 64.25 ± 2.79 75.31 ± 3.21
Height (cm) - - - - 163.75 ± 7.03 165.25 ± 7.49
Weight (kg) - - - - 67.31 ± 12.82 63.97 ± 9.37

CSVD
(N = 34)

Male - - - 1 7 16
Female - - - 1 3 6

Age (years) - - - 58.50 ± 0.71 64.10 ± 2.69 74.91 ± 2.69
Height (cm) - - - 167.00 ± 7.07 171.00 ± 7.90 169.96 ± 8.22
Weight (kg) - - - 70.00 ± 14.14 69.95 ± 8.19 68.64 ± 8.11

Elderly: This study screened 48 older adults from WeChat mini program users as
online participants. Among them, 25 older adults were in good physical condition, 12 had
mild cognitive impairment, and 11 had Parkinson’s disease.

CSVD: This study recruited 34 patients with cerebral small vessel disease (CSVD) from
the Department of Neurology at the Affiliated Zhongshan Hospital of Dalian University
offline. All patients underwent head magnetic resonance imaging (MRI) examinations.
The Fazekas scoring system was used to grade the burden of white matter lesions [15].
The inclusion criteria are as follows: Fazekas score ≥ 1; confirming the presence of CSVD.
The exclusion criteria are as follows: severe brain diseases; mental disorders; cognitive
impairments; and physical disabilities that affect the examination.

The Research Project Ethics Review Committee of the Affiliated Zhongshan Hospital of
Dalian University approved this study. All offline participants provided written informed
consent, and all online participants read the user guide and agreed to collect personal
information in advance within the WeChat mini program.

2.3. Experimental Design

Health: Previous studies have shown that sensors that are in closer proximity to the
foot-ground contact point are facilitated in gait event detection [16]. Considering the weight
of smartphones, this study prioritized the thigh position for data collection. As shown in
Figure 1, a smartphone (iPhone 13) was attached to the thigh of the participants using a
belt-like Velcro strap, while an insole pressure sensor (M3232L, Roxifsr, China; Sampling
rate: 50 Hz) was used as the reference standard for gait events. Each participant was asked
to walk in a straight line for 6 gait cycles at self-selected [17] normal, low, and high speeds
in a horizontal corridor.

Elderly: Online participants completed 2 rounds of home-based gait assessment trials.
The first round was a single-task walking (STW) trial, i.e., normal walking. The second
round was a cognitive dual-task walking (Verbal Fluency Test, VFT) trial; participants were
asked to name the fruits or animals they knew while walking.

CSVD: Patients completed three rounds of gait trials in a horizontal corridor. The first
round was STW. The second round was a VFT. The third round was a physical dual-task
walking (PTW) trial, which required patients to carry a tray with a water bottle with both
hands to keep it from tipping over during walking.
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Figure 1. System architecture of the WeChat mini program.

3. Experiments and Results
3.1. Data Collection and Processing

The smartphone captures triaxial acceleration data (Ax, Ay, Az) and triaxial angular
velocity data (Gx, Gy, Gz) at a sampling rate of 50 Hz, as well as the smartphone’s rotation
angles (Yaw, Pitch, Roll) around the ZXY axes in three-dimensional space, as depicted in
Figure 2. During the smartphone data collection phase, the raw sensor data may be affected
by noise due to factors such as body tremors and device deviations. Kalman filtering
and low-pass filters are used to remove noise. When walking, the overall variation in
acceleration Az, angular velocity Gx, and rotation angle Pitch was relatively small; these
three features were excluded.
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3.2. Building Dataset

Input–output data pairs are constructed using a sliding window approach [18]. The
input X represents the sensor data collected by the smartphone, and the output Y repre-
sents the corresponding reference gait events for X. The first input–output data pair is
X1, X2, . . ., Xω and Yω+1; the t input–output data pair is Xt, Xt+1, . . ., Xω+1 and Yω+t+1;
and the last input–output data pair is Xn−ω, Xn−ω+1, . . ., Xn−1 and Yn, where ω is the
window length (ω = 40). From the 150 healthy individuals aged 20–70 years across six age
groups, the input–output data pairs from participants in each age group were divided into
60% for the training set, 20% for the validation set, and 20% for the test set.

3.3. Deep Learning Models

This study proposes a BiTCN-BiGRU-CrossAttention model that integrates the tem-
poral convolutional properties of TCN, the bidirectional temporal modeling capabilities
of BiGRU, and the key feature focusing ability of CrossAttention. Specifically, TCN
extracts local features from time series data through multi-layer residual connections;
BiGRU captures long-term dependencies via forward and backward gating mechanisms;
and CrossAttention enhances the identification of critical gait events through attention
weights (Figure 3). This study also compares two different models: TCN-GRU and
BiTCN-BiGRU.
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Figure 3. The structure of BiTCN-BiGRU-CrossAttention.

All the models use the Adam optimizer and Mean Absolute Error as the loss func-
tion. The best model is determined by minimizing the validation set error by training for
50 epochs.

3.4. Error Measurement

The time difference between the gait events detected by the model and the reference
standard gait events, i.e., the Mean Absolute Error (MAE, unit: milliseconds), was used
as an evaluation metric for model performance on the test set. A smaller time difference
indicates a higher model accuracy in detecting gait events. Figure 4 shows an example of
the output of the BiTCN-BiGRU-CrossAttention model and the truth label.

3.5. Calculation of Gait Parameters

For online elderly participants and CSVD patients, spatiotemporal gait parameters
were calculated based on gait events detected by the best deep-learning model. To accu-
rately estimate walking distance at different walking speeds, this study adopted a linear
regression model based on walking speed to achieve an adaptive estimation of walking
distance [19]. Figure 5 is a schematic diagram of a gait cycle.
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3.6. Result

Table 2 shows the MAE (Mean ± SD) of heel strike and toe-off detection using all
models at different walking speeds for healthy participants. The results indicate that the
BiTCN-BiGRU-CrossAttention model has lower MAEs when detecting heel strike and
toe-off at all three walking speeds compared to the other models. Furthermore, all models
have a lower MAE when detecting heel strike compared to toe-off; the MAE at normal
speed is lower than at low and high speeds Figure 6.

Table 2. MAE for the detection of gait events across models and walking speeds.

Gait Events Speed
Model

TCN-GRU BiTCN-BiGRU BiTCN-BiGRU-CrossAttention

Heel strike
Normal 47.87 ± 1.99 45.47 ± 1.64 42.53 ± 1.25

Low 66.80 ± 3.14 62.93 ± 1.86 58.40 ± 1.07
High 65.20 ± 1.92 61.73 ± 1.99 56.93 ± 1.22

Toe-off
Normal 49.60 ± 2.15 47.73 ± 1.62 45.47 ± 1.45

Low 73.06 ± 2.28 67.73 ± 1.79 59.20 ± 1.13
High 72.00 ± 2.14 65.46 ± 1.97 58.27 ± 1.09
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Figure 6. Bland–Altman plots show the difference (model detection—truth label) between various
walking speeds (low, normal, and high). The dashed gray line represents the overall mean difference
across all conditions, while the dashed red lines provide the limits of agreement (±1.96 SD) based on
the pooled data.

Table 3 shows significant differences (p < 0.05) in gait parameters (Cadence, Stride
time, Stance phase, Swing phase, Stance time, Swing time, Stride length, and walking
speed) between the STW and VFT conditions for online elderly participants. For CSVD
patients, significant differences (p < 0.05) in gait parameters (Cadence, Stride time, Stance
phase, Swing phase, Stance time, Stride length, and walking speed) existed between the
STW and VFT conditions, as well as between the STW and PTW conditions.
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Table 3. T-test comparison between single-task and dual-task walking.

Participant Task and p

Gait Parameters

Cadence
(Steps/min)

Stride
Time

(s)

Stance
Phase

(%)

Swing
Phase

(%)

Stance
Time

(s)

Swing
Time

(s)

Stride
Length

(m)

Walking
Speed
(m/s)

Elderly
(Health)

STW 100.08 ± 3.79 1.18 ± 0.07 64.19 ± 1.52 35.81 ± 1.52 0.76 ± 0.06 0.42 ± 0.02 1.21 ± 0.17 1.04 ± 0.16
VFT 84.27 ± 7.10 1.44 ± 0.13 68.40 ± 1.44 31.60 ± 1.44 0.98 ± 0.10 0.45 ± 0.04 1.02 ± 0.14 0.72 ± 0.12

STW/VFT 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.000 *

Elderly
(MCI)

STW 96.47 ± 5.78 1.22 ± 0.07 65.64 ± 2.24 34.36 ± 2.24 0.80 ± 0.07 0.42 ± 0.02 1.15 ± 0.14 0.94 ± 0.14
VFT 78.37 ± 8.40 1.55 ± 0.21 69.47 ± 2.16 30.53 ± 2.16 1.08 ± 0.15 0.47 ± 0.06 0.96 ± 0.16 0.63 ± 0.10

STW/VFT 0.000 * 0.002 * 0.000 * 0.000 * 0.002 * 0.003 * 0.000 * 0.000 *

Elderly
(PD)

STW 96.23 ± 6.76 1.20 ± 0.10 65.00 ± 1.98 35.00 ± 1.98 0.78 ± 0.09 0.42 ± 0.02 1.00 ± 0.13 0.84 ± 0.15
VFT 77.63 ± 13.88 1.57 ± 0.39 69.63 ± 3.32 30.37 ± 3.32 1.10 ± 0.34 0.47 ± 0.06 0.86 ± 0.15 0.58 ± 0.18

STW/VFT 0.000 * 0.003 * 0.000 * 0.000 * 0.003 * 0.015 * 0.000 * 0.000 *

CSVD

STW 93.97 ± 8.98 1.29 ± 0.12 67.72 ± 2.65 32.28 ± 2.65 0.87 ± 0.10 0.42 ± 0.04 0.85 ± 0.17 0.67 ± 0.16
VFT 80.18 ± 10.85 1.53 ± 0.22 72.19 ± 3.257 27.81 ± 3.26 1.11 ± 0.191 0.42 ± 0.05 0.66 ± 0.17 0.44 ± 0.15
PTW 85.87 ± 11.46 1.41 ± 0.18 70.43 ± 3.48 29.57 ± 3.48 1.00 ± 0.16 0.41 ± 0.05 0.72 ± 0.21 0.52 ± 0.18

STW/VFT 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.532 0.000 * 0.000 *
STW/PTW 0.000 * 0.000 * 0.000 * 0.000 * 0.000 * 0.779 0.000 * 0.000 *

* p < 0.05.

4. Discussion
This study addresses gait discovery from smartphone signals in the context of intelli-

gent detection and the control of human behavior. The experimental results demonstrate
that the proposed method exhibits good reliability and validity, particularly at normal
walking speeds. Additionally, the method effectively detects changes in gait parameters
under dual-task conditions in different groups of older adults and CSVD patients. This
study addresses how to achieve gait event detection using low-cost devices combined with
deep learning.

Similar studies have used a single commercial IMU or smartphone to detect gait events
and report the time error. Fadillioglu et al. proposed a gait events detection method using
a gyroscope attached to the right shank with a rule-based algorithm, reporting an MAE of
11 ± 3 ms and 29 ± 11 ms for heel strike and toe-off [20]. Gonzalez et al. presented a gait
events detection method using an IMU attached at the waist; the lowest MAE for heel strike
and toe-off events using a rule-based method was 15 ms and 9 ms [21]. McCamley et al.
proposed a gait events estimation method based on Gaussian CWT using an accelerometer
on the waist, with an MAE of 19 ms and 32 ms for heel strike and toe-off [22], respectively.
Arshad et al. used a single waist-worn sensor with a CNN-BiGRU-SelfAttention deep
learning model, achieving an MAE of 6.239 ms and 5.24 ms for heel strike and toe-off event
predictions, respectively. To our knowledge, one study used a smartphone attached at the
lower back and hip, employing three different heel strike event detection methods using
acceleration data, with errors for heel strike recorded at 0.012 ± 0.056 s, 0.005 ± 0.051 s, and
0.005 ± 0.050 s; however, these results were limited to a small sample of 11 young, healthy
individuals and did not mention toe-off moment errors or the influence of different walking
speeds on gait event detection [23]. Although the MAE obtained by the model proposed in
this paper are not as low as those in previous studies, they are still within an acceptable
range. The data quality acquired by built-in smartphone sensors is difficult to compare
with commercial IMUs. Built-in smartphone sensors are prone to accumulating more noise
at low speeds. At high speeds, there are higher requirements for the sampling rate. The
WeChat mini program platform limits the maximum sampling rate of sensors, such as
accelerometers and gyroscopes, to 50 Hz, but high-sampling-rate smartphone sensors can
record data more frequently and capture rapidly changing motions more accurately, which
may introduce more noise [24].

In online elderly participants and offline CSVD patients, gait parameters were nega-
tively affected by the addition of dual tasks, which may have implications for assessing
older adults, as the addition of dual tasks may expose deficits not observed in single-task
assessments [25]. The finding that individuals with cognitive decline exhibit gait impair-
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ments, particularly under dual-task conditions, may be explained by the neuropathological
changes in specific brain regions involved in motor planning and execution, which occur in
the early stages of dementia [26]. Patients with Parkinson’s disease are affected by dual-
task walking as spatiotemporal gait parameters deteriorate when walking is combined
with a secondary task [27]; patients may experience symptoms such as freezing [28] and
falling [29]. CSVD is associated with cognitive [30] and motor impairments [31,32], and
patients may not have overt clinical symptoms [33,34]. However, CSVD patients have lower
gait speed [35] and are likelier to exhibit abnormal gait characteristics [36] under dual-task
activities. Therefore, quantitative gait analysis using a smartphone can detect changes in
gait parameters in the early stages of cognitive decline and patients with neurodegenerative
diseases, serving as a non-invasive biomarker for disease detection and enabling the timely
implementation of targeted interventions.

Compared to existing studies, this research is the first to propose a method for detect-
ing gait events using built-in smartphone sensors combined with deep learning, validating
the model’s adaptability across different walking speeds, and achieving remote gait assess-
ment in home environments through a software application without incurring additional
hardware costs, thereby addressing a gap in the field’s practical applications. Notably,
the BiTCN-BiGRU-CrossAttention model employed in this study represents a novel deep
learning approach, distinguished by its integration of TCN, BiGRU, and CrossAttention.
This model effectively extracts both local and global temporal features from gait signals,
demonstrating good adaptability in multi-speed gait detection compared to traditional
methods, such as rule-based algorithms or single neural network architectures. Future im-
provements should focus on optimizing the weight distribution of the attention mechanism
to enhance model performance further.

The present study has several limitations. This study constructed a dataset for detect-
ing gait events using deep learning, encompassing participants aged 20 to 70 years across
different age groups. However, the dataset primarily included healthy individuals, which
may not fully capture the gait characteristics of populations with neurological or motor
function impairments. Furthermore, although the gender distribution within the healthy
cohort’s age groups was relatively balanced, the age distribution may not entirely repre-
sent older populations susceptible to gait-related disorders, such as Parkinson’s disease
or cerebral small vessel disease. This could lead to class imbalance issues in the dataset,
potentially affecting the model’s performance and generalizability. Class imbalance is a
common challenge in machine learning and deep learning research, and non-representative
datasets or overly complex model configurations may introduce bias in the results [37]. The
study’s gait trial environment was limited to level straight-line walking, which can mostly
meet gait analysis needs. However, walking environments in daily life have uncertainties,
such as uneven surfaces, turns, and avoidance. Future research should further expand
the types of participants, covering more types of patients with neurological diseases or
motor impairments.

5. Conclusions
This study combines smartphone built-in sensors and deep learning to detect gait

events. The experimental results show that the BiTCN-BiGRU-CrossAttention model
demonstrates higher accuracy in detecting heel strike and toe-off, especially at normal
walking speeds. Furthermore, this method can effectively differentiate gait differences
between healthy older adults, individuals with mild cognitive impairment, Parkinson’s
disease, and cerebral small vessel disease patients during single-task and dual-task walking.
The smartphone-based gait analysis method proposed in this study is easy to operate, has a
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low cost, and promotes detection, showing promise for applications in remote rehabilitation
management, clinical assessment, and other fields.
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