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ABSTRACT

Cancer pharmacogenomics studies provide valuable
insights into disease progression and associations
between genomic features and drug response. Phar-
macoDB integrates multiple cancer pharmacoge-
nomics datasets profiling approved and investiga-
tional drugs across cell lines from diverse tissue
types. The web-application enables users to effi-
ciently navigate across datasets, view and compare
drug dose–response data for a specific drug-cell line
pair. In the new version of PharmacoDB (version 2.0,
https://pharmacodb.ca/), we present (i) new datasets
such as NCI-60, the Profiling Relative Inhibition Si-
multaneously in Mixtures (PRISM) dataset, as well as
updated data from the Genomics of Drug Sensitiv-
ity in Cancer (GDSC) and the Genentech Cell Line
Screening Initiative (gCSI); (ii) implementation of
FAIR data pipelines using ORCESTRA and Pharma-
coDI; (iii) enhancements to drug–response analysis
such as tissue distribution of dose–response metrics
and biomarker analysis; and (iv) improved connectiv-
ity to drug and cell line databases in the community.
The web interface has been rewritten using a mod-
ern technology stack to ensure scalability and stan-
dardization to accommodate growing pharmacoge-
nomics datasets. PharmacoDB 2.0 is a valuable tool
for mining pharmacogenomics datasets, comparing
and assessing drug–response phenotypes of cancer
models.

GRAPHICAL ABSTRACT

INTRODUCTION

With the advent of high-throughput technologies, a vast
amount of genomic data is being generated across various
disease domains. In oncology, genomic and pharmacologi-
cal profiling of cancer cell line models has resulted in a bet-
ter understanding of the relationship between the molec-
ular features of cancers and treatment outcomes. Starting
with a disease-oriented screening model in the late 1980s,
the US National Cancer Institute’s NCI-60 anticancer drug
screen has aided in major discoveries across many fields in-
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cluding anticancer therapy (1). Subsequently, several stud-
ies, including the Genomics of Drug Sensitivity in Can-
cer (GDSC) (2,3), Cancer Therapeutics Response Portal
(CTRP) (4) and Cancer Cell Line Encyclopedia (CCLE) (5),
have generated pharmacogenomic profiles of much larger
panels of cancer cell lines. Collectively, such data can be
used for hypothesis testing and in the discovery or repur-
posing of new anti-cancer therapeutics.

PharmacoDB (version 1.0) was released in 2018 (6) as the
largest database integrating cancer cell line pharmacoge-
nomic datasets, enabling users to efficiently explore data
across the largest published studies. PharmacoDB provided
a unified analysis platform by standardizing statistical mod-
els of dose–response data and harmonizing annotations of
experiments. The website has grown to approximately 500
monthly users and has served as the source of curated and
easily accessible data for numerous published studies. This
includes researchers using the PharmacoDB database to un-
derstand specific compounds or molecular processes and
pathways (7–9), as well as for more global analyses of drug
sensitivity (10,11). PharmacoDB has also empowered ma-
chine learning researchers to develop and publish novel ap-
proaches to drug–response prediction (12,13).

The next generation of PharmacoDB (version 2.0) in-
cludes new datasets such as the US National Cancer Insti-
tute’s NCI-60 (14–19), the Broad’s Profiling Relative Inhi-
bition Simultaneously in Mixtures (PRISM) dataset (20),
GDSC version 2 (GDSC2), and updates to existing datasets
such as the Wellcome Trust Sanger Institute’s GDSC ver-
sion 1 (GDSC1) (21) and the Genentech Cell line Screen-
ing Initiative (gCSI) (22) (Table 1). The cell lines investi-
gated in these studies were screened for drug response and
where available, profiled at the molecular level with mul-
tiple technologies, including RNA sequencing, microarray
single-nucleotide and gene expression profiling, and whole-
exome or whole-genome sequencing. The processing of the
pharmacogenomic data is fully automated and documented
to generate FAIR (findability, accessibility, interoperabil-
ity and reusability) data through the use of ORCESTRA
(https://orcestra.ca/) and PharmacoDI ingestion pipelines.
PharmacoDB 2.0 also provides new visualization of differ-
ential drug dose response across tissues, as well as sum-
maries of gene–drug associations showcasing their strength
and reproducibility across studies. New links to drugs and
cell lines have been added from Reactome (23), Drug Tar-
get Commons (DTC) (24) and Cellosaurus (25) to increase
the connection to PharmacoDB from other databases in the
community. The chemical identifiers are extended to include
ChEMBL (26) IDs (Figure 1A).

ADDITION OF NEW DATASETS

The current release of PharmacoDB includes significant up-
dates to the GDSC1000 (renamed GDSC1 following the
Wellcome Trust Sanger Institute’s nomenclature) and gCSI
datasets (Table 1). In addition, the NCI-60, PRISM and
GDSC2 datasets have been included in this new release
of PharmacoDB. The numbers of entities such as drugs,
cell lines, tissues, gene–drug associations and experiments
in PharmacoDB 2.0, and the previous version is shown in

(Figure 1B). The newly standardized tissue curation is ex-
plained in Supplementary Data.

The NCI-60 screen includes over 55 000 small molecules
assayed on 60 core (and 102 additional) cell lines rep-
resenting 15 tumor types. PharmacoDB 2.0 includes
percentage of treated cell growth (PTC) values, down-
loaded from the NCI Developmental Therapeutics Pro-
gram (https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-
60+Growth+Inhibition+Data), for 4 557 787 experiments
that included at least four measured doses required for
curve fitting (Supplementary Data). The PRISM Repur-
posing dataset employs a molecular barcoding method to
screen drugs against cell lines in pools (20,27). The bar-
coded cell lines from different lineages are assayed for rel-
ative mRNA abundance after treatment with a drug or
chemical perturbagen to estimate cell viability. PRISM drug
screening involves a 2-stage screening strategy: (i) Screen-
1 includes 4518 compounds and 578 cell lines that were
assayed in triplicate at a single dose and (ii) Screen-2 in-
cludes 1448 drugs that were re-screened against 499 cell
lines in triplicate in an 8-point dose response (20). Phar-
macoDB 2.0 includes the Screen-2 dose–response data with
biological replicate-collapsed log-fold change values, down-
loaded from the Dependency Map Data Portal (https://
depmap.org/repurposing/). After processing, these data in-
cluded 726 814 experiments with at least 4 dose measure-
ments (Supplementary Data).

The GDSC2 dataset was generated using a new screen-
ing platform from the Wellcome Trust Sanger Institute’s
Genomics of Drug Sensitivity in Cancer project (28,29).
The dataset, previously included as GDSC1000 in Pharma-
coDB, has been renamed to GDSC1 and updated to in-
clude more experiments (323 032 GDSC1 versus 225 480
GDSC1000), reflecting the updated data available from the
GDSC project. The GDSC2 dataset represents a different
screening approach (using the same cellular viability assay
as the Broad and Genentech studies, and an increase in bi-
ological replicates) on a similar set of cell lines as GDSC1,
with both overlapping and new compounds, and a total of
215 780 experiments which were included in PharmacoDB
2.0. More information on the protocol differences between
the GDSC1 and GDSC2 data can be found on the GDSC
website at https://www.cancerrxgene.org/. Finally, Pharma-
coDB 2.0 includes significant updates to Genentech’s gCSI
dataset. The number of experiments available has increased
from 6455 to 16 688, primarily through the inclusion of ad-
ditional 35 compounds and extensive biological replicate in-
formation.

For all new additions and updates to the database,
drug annotations were curated by mapping drugs to Pub-
Chem (30) identifiers such as compound identifiers (CID),
SMILES and InChIKeys using the PUG-REST API (31).
Whenever possible, PubChem index names were used as
the standard name in PharmacoDB. Most exceptions oc-
curred in the NCI-60 dataset, where a large proportion of
PubChem index names followed IUPAC nomenclature and
were difficult for humans to read. For these, we followed
the process described in Supplementary Figure S1 to de-
cide when to prefer the NCI-60 dataset ID as the stan-
dard name for PharmacoDB. Cell lines were annotated us-
ing Cellosaurus (25), an online cell line knowledge resource

https://orcestra.ca/
https://wiki.nci.nih.gov/display/NCIDTPdata/NCI-60+Growth+Inhibition+Data
https://depmap.org/repurposing/
https://www.cancerrxgene.org/


D1350 Nucleic Acids Research, 2022, Vol. 50, Database issue

T
ab

le
1.

D
et

ai
ls

of
ne

w
an

d
up

da
te

d
da

ta
se

ts
in

P
ha

rm
ac

oD
B

2.
0

D
at

as
et

D
es

cr
ip

ti
on

P
Se

t
M

ol
ec

ul
ar

D
at

a
#

C
el

ll
in

es
#

D
ru

gs
#

T
is

su
es

A
ss

ay
D

os
e–

re
sp

on
se

so
ur

ce
O

R
C

E
ST

R
A

U
S

N
at

io
na

lC
an

ce
r

In
st

it
ut

e
60

an
ti

ca
nc

er
dr

ug
sc

re
en

(N
C

I-
60

)

N
C

I-
60

da
ta

se
t

co
ns

is
ts

of
m

ol
ec

ul
ar

pr
ofi

le
s

as
w

el
la

s
th

e
do

se
–r

es
po

ns
e

da
ta

fr
om

sc
re

en
in

g
sm

al
lm

ol
ec

ul
es

in
cl

ud
in

g
ap

pr
ov

ed
an

d
in

ve
st

ig
at

io
na

ld
ru

g
co

m
po

un
ds

R
N

A
-s

eq
is

of
or

m
s

R
N

A
-s

eq
co

m
po

si
te

M
ic

ro
ar

-
ra

y
M

ic
ro

R
N

A

16
2

54
77

4
15

Su
lfo

rh
od

am
in

e
B

co
lo

ri
m

et
ry

ht
tp

s:
//w

ik
i.n

ci
.n

ih
.g

ov
/

do
w

nl
oa

d/
at

ta
ch

m
en

ts
/

14
71

93
86

4/
D

O
SE

R
E

SP
.z

ip
?

ve
rs

io
n=

1&
m

od
ifi

ca
ti

on
D

at
e=

16
22

83
07

43
00

0&
ap

i=
v2

ht
tp

s:
//o

rc
es

tr
a.

ca
/p

se
t/

10
.5

28
1/

ze
no

do
.5

57
06

29

T
he

P
R

IS
M

R
ep

ur
po

si
ng

da
ta

se
t

(P
R

IS
M

)

T
he

P
R

IS
M

da
ta

se
t

co
ns

is
ts

of
do

se
–r

es
po

ns
e

da
ta

fr
om

as
se

ss
in

g
th

e
an

ti
-c

an
ce

r
ef

fe
ct

s
of

no
n-

on
co

lo
gy

dr
ug

s
on

hu
m

an
ca

nc
er

ce
ll-

lin
es

us
in

g
th

e
P

R
IS

M
ba

rc
od

in
g

m
et

ho
d

de
ve

lo
pe

d
by

B
ro

ad
In

st
it

ut
e

of
M

IT
an

d
H

ar
va

rd

*R
N

A
-s

eq
M

ic
ro

ar
-

ra
y

M
ut

at
io

n
C

N
V

**
48

0
14

37
22

P
R

IS
M

(L
um

in
ex

)
ht

tp
s:

//n
do

w
nl

oa
de

r.
fig

sh
ar

e.
co

m
/fi

le
s/

20
23

77
57

ht
tp

s:
//o

rc
es

tr
a.

ca
/p

se
t/

10
.5

28
1/

ze
no

do
.5

57
07

57

G
en

om
ic

s
of

D
ru

g
Se

ns
it

iv
it

y
in

C
an

ce
r

(G
D

S
C

1)

G
en

om
ic

s
of

D
ru

g
Se

ns
it

iv
it

y
in

C
an

ce
r

(G
D

SC
)

P
ro

je
ct

is
pa

rt
of

a
co

lla
bo

ra
ti

on
be

tw
ee

n
W

el
lc

om
e

T
ru

st
Sa

ng
er

In
st

it
ut

e
an

d
th

e
M

as
sa

ch
us

et
ts

G
en

er
al

H
os

pi
ta

l
C

an
ce

r
C

en
te

r.
B

ot
h

G
D

SC
1

an
d

2
da

ta
se

ts
co

nt
ai

ns
do

se
re

sp
on

se
as

w
el

la
s

m
ol

ec
ul

ar
da

ta
fr

om
sc

re
en

in
g

an
ti

-c
an

ce
r

th
er

ap
eu

ti
cs

ac
ro

ss
ge

ne
ti

ca
lly

ch
ar

ac
te

ri
ze

d
hu

m
an

ca
nc

er
ce

ll
lin

es

R
N

A
-s

eq
M

ic
ro

ar
-

ra
y

M
ut

at
io

n
M

ut
a-

ti
on

(E
xo

m
e)

C
N

V
F

us
io

n

11
04

30
3

29
R

es
az

ur
in

or
Sy

to
60

ft
p:

//f
tp

.s
an

ge
r.

ac
.u

k/
pu

b/
pr

oj
ec

t/
ca

nc
er

rx
ge

ne
/r

el
ea

se
s/

re
le

as
e-

8.
2/

G
D

SC
1

pu
bl

ic
ra

w
da

ta
25

F
eb

20
.

cs
v

ht
tp

s:
//o

rc
es

tr
a.

ca
/p

se
t/

10
.5

28
1/

ze
no

do
.3

90
54

85

G
en

om
ic

s
of

D
ru

g
Se

ns
it

iv
it

y
in

C
an

ce
r

(G
D

S
C

2)

R
N

A
-s

eq
M

ic
ro

ar
-

ra
y

M
ut

at
io

n
M

ut
a-

ti
on

(E
xo

m
e)

C
N

V
F

us
io

n

11
04

19
0

29
C

el
lT

it
er

G
lo

ft
p:

//f
tp

.s
an

ge
r.

ac
.u

k/
pu

b/
pr

oj
ec

t/
ca

nc
er

rx
ge

ne
/r

el
ea

se
s/

re
le

as
e-

8.
2/

G
D

SC
2

pu
bl

ic
ra

w
da

ta
25

F
eb

20
.

cs
v

ht
tp

s:
//o

rc
es

tr
a.

ca
/p

se
t/

10
.5

28
1/

ze
no

do
.3

90
54

81

T
he

G
en

en
te

ch
C

el
l

L
in

e
Sc

re
en

in
g

In
it

ia
ti

ve
(g

C
S

I)

T
he

gC
SI

da
ta

w
er

e
ge

ne
ra

te
d

an
d

sh
ar

ed
by

G
en

en
te

ch
as

pa
rt

of
th

e
G

en
en

te
ch

C
el

lL
in

e
Sc

re
en

in
g

In
it

ia
ti

ve
.g

C
SI

da
ta

se
t

in
cl

ud
es

do
se

–r
es

po
ns

e
da

ta
as

w
el

la
s

an
d

m
ol

ec
ul

ar
pr

ofi
le

s
fr

om
sc

re
en

in
g

dr
ug

s
on

in
de

pe
nd

en
tl

y
ch

ar
ac

te
ri

ze
d

ce
ll

lin
es

R
N

A
-

se
q

M
ut

at
io

n
C

N
V

78
8

44
27

C
el

lT
it

er
G

lo
ht

tp
://

re
se

ar
ch

-p
ub

.g
en

e.
co

m
/

gC
SI

G
R

va
lu

es
20

19
/

gC
SI

G
R

da
ta

v1
.3

.t
sv

.t
ar

.g
z

ht
tp

s:
//o

rc
es

tr
a.

ca
/p

se
t/

10
.5

28
1/

ze
no

do
.4

73
74

37

A
n

ov
er

vi
ew

of
th

e
ne

w
an

d
up

da
te

d
da

ta
se

ts
,t

yp
es

of
m

ol
ec

ul
ar

pr
ofi

le
s

in
cl

ud
ed

in
ea

ch
da

ta
se

t,
nu

m
be

r
of

ce
ll

lin
es

,d
ru

gs
,a

nd
ti

ss
ue

ty
pe

s
in

ea
ch

da
ta

se
t,

an
d

th
e

as
sa

y
ty

pe
us

ed
fo

r
m

ea
su

ri
ng

th
e

do
se

–r
es

po
ns

e
va

lu
es

.T
he

lin
k

to
bo

th
th

e
so

ur
ce

of
ra

w
do

se
–r

es
po

ns
e

da
ta

an
d

th
e

co
rr

es
po

nd
in

g
P

Se
ts

on
O

R
C

E
ST

R
A

is
pr

ov
id

ed
in

th
e

ta
bl

e.
N

ot
e:

T
he

nu
m

be
r

of
dr

ug
s

is
re

po
rt

ed
ba

se
d

on
th

e
P

Se
ts

’u
ni

qu
e

dr
ug

ID
s

(S
up

pl
em

en
ta

ry
D

at
a)

.
*C

el
ll

in
es

ar
e

di
re

ct
ly

ob
ta

in
ed

fr
om

th
e

C
el

lB
ro

ad
-N

ov
ar

ti
s

C
an

ce
r

C
el

lL
in

e
E

nc
yc

lo
pe

di
a

(C
C

L
E

)
pr

oj
ec

t.
M

ol
ec

ul
ar

pr
ofi

le
s

ar
e

ac
ce

ss
ib

le
fr

om
C

C
L

E
da

ta
se

t
on

O
R

C
E

ST
R

A
(h

tt
ps

://
or

ce
st

ra
.c

a/
ps

et
/1

0.
52

81
/z

en
od

o.
39

05
46

2)
.

**
19

ou
t

of
49

9
or

ig
in

al
ce

ll
lin

es
fa

ile
d

th
e

ST
R

fin
ge

rp
ri

nt
in

g
co

m
pa

ri
so

n
te

st
s

an
d

w
er

e
no

t
in

cl
ud

ed
in

th
e

P
Se

t.

https://wiki.nci.nih.gov/download/attachments/147193864/DOSERESP.zip?version=1&modificationDate=1622830743000&api=v2
https://orcestra.ca/pset/10.5281/zenodo.5570629
https://ndownloader.figshare.com/files/20237757
https://orcestra.ca/pset/10.5281/zenodo.5570757
ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-8.2/GDSC1_public_raw_data_25Feb20.csv
https://orcestra.ca/pset/10.5281/zenodo.3905485
ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-8.2/GDSC2_public_raw_data_25Feb20.csv
https://orcestra.ca/pset/10.5281/zenodo.3905481
http://research-pub.gene.com/gCSI_GRvalues2019/gCSI_GRdata_v1.3.tsv.tar.gz
https://orcestra.ca/pset/10.5281/zenodo.4737437
https://orcestra.ca/pset/10.5281/zenodo.3905462


Nucleic Acids Research, 2022, Vol. 50, Database issue D1351

Figure 1. PharmacoDB 2.0 overview. (A) The new version of PharmacoDB includes updated and new large-scale pharmacogenomic datasets. The web-
application contains enriched annotations for drugs and cell lines via connectivity to external databases. PharmacoDB 2.0 includes new analytical methods
for tissue-specific and pan-cancer biomarker discovery. The new web-interface ensures scalability and simplifies maintenance. PharmacoDB 2.0 is made
fully reproducible through the use of the ORCESTRA platform and automated data ingestion pipelines. (B) Bar plots showing previous (Version 1) and
current (Version 2) database statistics.

that documents cell lines used in biomedical research. On-
coTree (32) was used to re-label the tissues of cancer cell
lines profiled into an externally defined ontology.

IMPLEMENTATION OF REPRODUCIBLE PIPELINES

With large amounts of pharmacogenomic data released
from multiple studies, the reproducibility of computational
pipelines used to process these multimodal data is essen-
tial. This includes adhering to the FAIR data principles,
along with ensuring that there is a standardized manner in
which the pipelines are executed and the data is hosted. To

address this important issue, we used ORCESTRA (https:
//orcestra.ca/), a platform that allows researchers to process
biomedical data into unified data objects in a reproducible
and transparent manner, where data provenance is tracked
(33). At the heart of ORCESTRA is Pachyderm (https:
//www.pachyderm.com/), an open-source data versioning
tool used to execute pipelines processing the molecular and
compound screening data, and packaging the datasets into
R objects called PharmacoSets (PSets), which are imple-
mented by the PharmacoGx package (34). At the end of
each PSet processing pipeline, the created object is auto-
matically deposited on Zenodo and assigned a digital ob-

https://orcestra.ca/
https://www.pachyderm.com/
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ject identifier (DOI). Once the highly curated and stan-
dardized PSets are released via ORCESTRA, they need to
be preprocessed into tables which match the PharmacoDB
Entity Relationship Diagram (ERD) before being loaded
into the database. To ensure that the data ingestion stan-
dards in PharmacoDB adhere to FAIR data principles, the
Pharmaco-Data Ingestion (PharmacoDI) project was initi-
ated to create an Extract Transform Load (ETL) pipeline
which adheres to modern data engineering best practices
(35,36).

The PharmacoDI project consists of three major compo-
nents. First, the rPharmacoDI (https://github.com/bhklab/
rPharmacoDI) R package provides an interface to down-
load and export PSets in a Python compatible for-
mat. Second, the PharmacoDI (https://pypi.org/project/
PharmacoDI) Python package contains a set of func-
tions for transforming the exported raw PSet data into ta-
bles which match the PharmacoDB schema, leveraging the
Python Datatable package to allow larger than memory
data processing. Finally, the Snakemake workflow man-
agement tool is used to integrate ORCESTRA, rPharma-
coDI, PharmacoDI and PharmacoDB into a fully modu-
lar and scalable ETL pipeline (https://github.com/bhklab/
PharmacoDI snakemake pipeline) which ensures that all
software dependencies, metadata and code are version con-
trolled, transparent and fully reproducible. This pipeline in-
cludes a number of additional features which keeps Phar-
macoDB annotations up to date, such as dynamic queries
to ChEMBL (26) and Cellosaurus (25) to fetch respec-
tive drug and cell line metadata. Automated quality con-
trol checks are implemented throughout the pipeline to en-
sure data integrity and flag data for manual review if prob-
lems are detected. Once quality control passes, the Python
SQLAlchemy package is used to connect with our Azure
MySQL database where database tables are automatically
created and loaded before being deployed for use in the
PharmacoDB web-application (Figure 2).

CONNECTIVITY TO EXTERNAL DATABASES

While the original PharmacoDB database included links
to external databases for drugs, genes and cell lines, Phar-
macoDB 2.0 focuses on creating bidirectional links to im-
prove discoverability of the available pharmacogenomic
data. Unique stable identifiers were created for both drugs
and cell lines in the PharmacoDB database, allowing exter-
nal databases to link directly to entities in PharmacoDB.
A collection of drugs from PharmacoDB 2.0 are bidirec-
tionally linked to Reactome (23), an online database of bio-
logical pathways including drug mechanisms of action. Re-
actome provides detailed insights into drug targets, bind-
ing partners and subsequent biological pathways associated
with target action. PharmacoDB drugs are also linked to
Drug Target Commons (DTC) (24), a community-driven
web platform for compound-target bioactivity assay anno-
tation profiles relevant for drug discovery and repurpos-
ing. ChEMBL (26) IDs matching our compound identi-
fiers are added in addition to PubChem identifiers. The cell
lines from the datasets are bidirectionally linked and an-
notated to Cellosaurus (25), which is a cell line informa-
tion resource. Additional cell line metadata such as disease,

metastasis site, species and links to external databases such
as DepMap are available from Cellosaurus for the linked
cell lines. The external links can be found in the individ-
ual drug and cell line pages of PharmacoDB as well as in
external web-applications. In addition, PharmacoDB APIs
are implemented using JavaScript programming language in
Express which is a back end web application framework for
NodeJS. GraphQL (https://graphql.org/), which is an open-
source data query and manipulation language for the APIs
is used to structure the APIs, and which also provides a run-
time for fulfilling queries with existing data. The newly cre-
ated APIs provide better performance and are open source
to facilitate user operability. The APIs can be accessed with-
out any authentication process or tokens.

ENHANCED DATA ANALYSIS

Tissue-specific analysis

Building on top of the newly standardized tissue ontology,
PharmacoDB 2.0 has been updated with a focus on tissue-
specific analysis throughout the web application. Pharma-
coDB 2.0 contains cell response data for a large panel of
1757 cell lines spanning across 30 tissues. Moreover, Phar-
macoDB includes data for a large portfolio of 589 FDA
approved drugs, several investigational drugs, tool or lead
compounds, and natural substances, all with varying levels
of activity across and within tissue types. Therefore, the vi-
sualizations within the web-application have been extended
to help identify patterns of sensitivity across and within tis-
sue(s). On each individual drug page, the differential sensi-
tivity to a compound across tissues is displayed as a box-
plot, giving a quick overview of the tissues that are sensitive
or resistant to a compound. As with all the plots in the web-
application, this can be displayed by integrating data across
all datasets or filtered by dataset(s). For example, viewing
this plot across all datasets for Dabrafenib clearly indicates
the well known preferential sensitivity of BRAF mutated
skin cancers to BRAF inhibition (37), and its absence in
other tissues (even tissues known to harbour mutations in
the BRAF pathway, such as bowel) (Figure 3A). Alterna-
tively, within PharmacoDB 2.0 it is possible to investigate
the differential sensitivity to a compound within a tissue
type by comparing the drug dose–response curves across all
cell lines tested in all datasets for a particular tissue. Contin-
uing with the example of Dabrafenib, it is possible to iden-
tify the most sensitive and resistant skin cell lines, using ei-
ther the sensitivity summary metrics provided in Pharma-
coDB (such as the area above the curve [AAC] or the drug
concentration necessary to inhibit 50% of the maximal cell
viability, IC50), or visually (Figure 3B). This will be a useful
addition for experimentalists interested in identifying the
most sensitive and/or resistant models to a particular com-
pound for investigating mechanism, synthetic lethality or
possible drug combinations.

Query biomarkers

PharmacoDB 2.0 improves the users’ ability to explore,
evaluate and compare the molecular features most strongly
correlating with response to particular compounds across

https://github.com/bhklab/rPharmacoDI
https://pypi.org/project/PharmacoDI
https://github.com/bhklab/PharmacoDI_snakemake_pipeline
https://graphql.org/
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Figure 2. Computational processing pipeline of raw pharmacogenomic data for ingestion into PharmacoDB. Different panels show the process of ingesting
public datasets into PharmacoDB 2.0. The first panel highlights the sources of the newly added datasets, while the subsequent panels highlight the tools
and technologies used for Data Processing and Standardization, Data Ingestion and Annotation, and for building the PharmacoDB 2.0 web app itself.

pharmacogenomic studies. The original version of Pharma-
coDB contained precomputed tables for pan-cancer associ-
ations of drug response with gene expression, mutation and
copy number variation computed using the PharmacoGx
package (34). The data were presented in a plain table for-
mat, useful only for ranking associations by significance or
effect size. PharmacoDB 2.0 extends this by providing inter-
pretable visualizations to compare and contextualize these
associations, extends the analysis to tissue-specific associa-
tions and incorporates updates to the statistical methodol-
ogy to evaluate the strength and significance of these mark-
ers.

The previous pipeline used to evaluate the associations
between all feature types, and drug response was based
around a linear modelling approach, and relied on ana-
lytical P-values derived from assumptions of normality.
However, both the distributions of molecular features and
drug–response metrics can deviate significantly from nor-
mal, potentially inducing biases in the estimation of these
P-values (38). This is exacerbated by our addition of tissue-
specific associations to the database, for which sample sizes
are much smaller (dozens versus hundreds of cell lines).
Therefore, PharmacoDB 2.0 includes both analytic and
permutation-estimated P-values for associations, increas-
ing the reliability of statistical significance estimates in the
database (details on statistical methodology are available in
the Supplementary Data).

Tissue-specific gene-compound associations require eval-
uating the correlation between a feature and drug response

within cell lines limited to a single tissue type. Repeating this
for each of the 30 tissues in PharmacoDB becomes a sig-
nificant undertaking, increasing the table associations from
approximately 33.5 million pan-cancer associations to over
400 million tissue specific associations (after filtering out
associations based on <20 cell lines). While analytical test
results are available for all associations, permutation test-
ing of all 400 million associations is a lengthy and ongo-
ing process. Currently, PharmacoDB contains the results of
permutation testing associations appearing in at least three
datasets. As we compute the results of permutation tests for
more compounds and gene features, we will be continuously
updating the database.

Finally, each gene-compound association (tissue-specific
or pan-cancer) is now associated with a biomarker page
within the web application, which contains summary in-
formation about the gene, the compound, and two types
of plots contextualizing the associations available for this
gene and compound pair in the database. A forest plot al-
lows users to compare the strength of associations between
the compound and gene across datasets. In Figure 3C, we
show the association between the validated biomarker of
ERBB2 expression (39,40) and Lapatinib response in breast
tissue. The forest plot gives a visual summary of the repro-
ducibility of this marker across studies. As a forest plot is
displayed for each available molecular feature type, it also
facilitates comparison of the drug–response effect between
expression, copy number, and mutation alterations of the
same gene. The second plot, specifically designed for copy
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Figure 3. Visualization of tissue-specific drug–response and gene–drug associations. (A) Drug response (AAC) of Dabrafenib across various tissues from
all datasets. (B) Differential sensitivity of skin cell lines to Dabrafenib; cell lines and datasets of interest can be highlighted in the plot by checking the
boxes. (C) Forest plot of Pearson correlations between Lapatinib response and ERBB2 expression in breast tissue. Data from RNA sequencing is shown
here. The significant associations (FDR < 0.05 and pearson correlation coefficient, r > 0.7) is highlighted in bright pink. (D) Manhattan plot showing
the association of copy number alterations with Lapatinib response in all datasets and across all tissue types, with ERBB2 highlighted. The genomic
coordinates are displayed on the x-axis, and negative logarithm of the association P-value is displayed on the y-axis. The different colors of each block
show the extent of each chromosome.
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number alteration (CNA) associations, is a Manhattan plot,
displaying the strength and significance of each CNA as-
sociation with this particular compound across the dataset
(Figure 3D). This provides important context to the asso-
ciation, allowing a visual identification of associations that
are driven by focal copy number changes, versus those that
are likely passengers to larger genomic events.

CONCLUSION AND FUTURE DIRECTIONS

Large-scale compound screens across various biological
model systems are being carried out at a fast pace, gener-
ating valuable pharmacogenomic data for biomarker dis-
covery, a key challenge in precision medicine. PharmacoDB
2.0 is a major update bringing enhancements to the User
Interface of the web application, greatly expands the phar-
macogenomic data available within the database and imple-
ments pipelines following FAIR principles which allow re-
searchers to track the provenance of data included in each
release of PharmacoDB going forward. PharmacoDB pro-
vides a platform of reference to cancer researchers while de-
signing their experiments. It can be used either for check-
ing if an experiment has been carried out by other research
groups or to compare experiment outcomes with public
data. Information on the cell line and tissue breakdown of
drug studies in datasets, sensitivity across tissues and top
gene–drug associations are particularly helpful in this re-
gard. PharmacoDB also helps users check the association
of their gene of interest with drug response and further an-
alyze the reliability of a potential biomarker across various
studies. Finally, PharmacoDB serves as a tool for drug re-
purposing by providing drug response on tissue types other
than the drug’s approved indication.

Since the first publication of PharmacoDB in 2018, sev-
eral other web applications have arisen which integrate
pharmacogenomics studies, including CellMinerCDB (41),
and the Dependency Map Portal integrating GDSC, CTRP
and PRISM drug response data with RNAi and CRISPR
essentiality screening data (3,4,20,27). These three web tools
have converged on a core set of functionality, allowing
the exploration of dose–response data, comparisons be-
tween datasets and exploration of molecular features asso-
ciated with drug response. However, each tool fills a dif-
ferent niche. DepMap is focused on providing interactive
access to the Dependency Map project data, integrating
molecular profiling, compound screening and essentiality
datasets. As such, researchers who are interested in compar-
ing data modalities generated by this project would benefit
from access to all different data modalities through one por-
tal. CellMinerCDB is focused on integrating NCI derived
data with the larger public datasets from the Broad, Sanger
and MD Anderson institutes and uniquely provides interac-
tive tools for multivariate modelling of compound response
from molecular features. PharmacoDB, in contrast to the
other websites, has focused on integrating across a wider
range of pharmacogenomics studies, and includes major
pan-cancer screening initiatives as well as smaller, tissue-
specific studies. Researchers interested in a large collec-
tion of independent datasets for integrative or meta-analysis
would benefit from the larger number of studies covered
by PharmacoDB. This can be especially useful for machine

learning researchers, where it is important to have indepen-
dent training and multiple testing datasets to show general-
izability. However, PharmacoDB does not at this time inte-
grate any gene essentiality data, and researchers looking for
such data will be better served by the other two tools.

Future work on PharmacoDB will be focused on building
upon its strengths. In the upcoming releases, we will plan
to add smaller published studies that lack the visibility of
the DepMap and NCI datasets, and are working on a for-
mal statistical meta-analysis to leverage this growing num-
ber of datasets for biomarker discovery. PharmacoDB has
already proven to be a valuable resource for computational
and wet-lab researchers and with continued improvements,
we aim to make pharmacogenomics data more discoverable
and accessible for the cancer research community.
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Vähä-Koskela,M., Peddinti,G., van Adrichem,A.J., Wakkinen,J.,
Jaiswal,A. et al. (2018) Drug target commons: a community effort to
build a consensus knowledge base for drug-target interactions. Cell
Chem. Biol., 25, 224–229.

25. Bairoch,A. (2018) The Cellosaurus, a Cell-Line Knowledge Resource.
J. Biomol. Tech., 29, 25–38.

26. Gaulton,A., Hersey,A., Nowotka,M., Bento,A.P., Chambers,J.,
Mendez,D., Mutowo,P., Atkinson,F., Bellis,L.J., Cibrián-Uhalte,E.
et al. (2017) The ChEMBL database in 2017. Nucleic Acids Res., 45,
D945–D954.

27. Yu,C., Mannan,A.M., Yvone,G.M., Ross,K.N., Zhang,Y.-L.,
Marton,M.A., Taylor,B.R., Crenshaw,A., Gould,J.Z., Tamayo,P.
et al. (2016) High-throughput identification of genotype-specific
cancer vulnerabilities in mixtures of barcoded tumor cell lines. Nat.
Biotechnol., 34, 419–423.

28. Picco,G., Chen,E.D., Alonso,L.G., Behan,F.M., Gonçalves,E.,
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