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A B S T R A C T   

Antimicrobials including antibiotics, antiparasitic, and antifungals, are subjected to resistance. In this context, 
Public Health Organizations called for a One Health approach because antimicrobials used to treat different 
infectious diseases in animals and plants may be the same than those used in humans. Whereas mechanisms of 
resistance transmission from animals or environment to humans should be considered differently if related to 
prokaryotic or eukaryotic pathogens, their impact can be considered as a whole. In that respect, we discussed the 
use of anti-parasitic in animals including anticoccidials, anthelmintics, and insecticides-acaricides, and the use of 
azoles in the environment that may both favor the development of drug resistance in humans. In light of the 
current situation, there is an urgent need for a transdisciplinary approach through anti-parasitic and antifungal 
stewardship programs in humans, animals, and environment, especially in the era of COVID-19 pandemic that 
will probably aggravate antimicrobial resistance.   

1. Introduction 

Infectious agents responsible for diseases in humans, animals, and 
plants, are organized as bacteria, viruses, parasites, and fungi. Most of 
the anti-infectious drugs developed against those microbes are microbe- 
specific, namely antibiotics against bacteria, antiviral against viruses, 
antiparasitic agents against parasites, and antifungals against fungi, 
with few overlaps. A vast majority of those antimicrobials are subjected 
to resistance [1]. In this context, the World Health Organization, the 
Food and Agriculture Organization, and the World Organization for 
Animal Health, united in the fight against antimicrobial resistance called 
for a One Health approach because antimicrobials used to treat different 
infectious diseases in animals and plants may be the same than those 
used in humans [2]. 

Mechanisms of resistance may be different from prokaryotes and 
eukaryotes. Prokaryote including bacteria may acquire resistance genes 
directly from one to another following an antibiotic exposure. Therefore, 
resistant bacteria arising either in humans, animals, or in the environ-
ment, may easily spread their resistant phenotypes [3]. For eukaryotic 
pathogens including parasites and fungi, the mechanisms of resistance 
require more time than that of bacteria to reach a significant rate of 

therapeutic failures. Indeed, eukaryotes have a natural variability of 
their genomes including single nucleotide polymorphisms, protein re-
dundancies, and transcriptional response to drug administration [4,5]. 
After a drug pressure, those events may provide a significant advantage 
to a sub-population. Those mechanisms of resistance are complex and 
require to be considered in the light of this complexity, including the 
biology of eukaryotic pathogens, the frequent use of common drugs, and 
the potential of pathogens to escape to treatment. Whereas mechanisms 
of resistance transmission from animals or environment to humans 
should be considered differently if related to prokaryotes or eukaryotes, 
their impact can be considered as a whole. One can anticipate that the 
permanent interplay between pathogens, human or animal hosts, and 
environment, will lead to an amplification loop of the drug resistance 
that need to be consider with more attention. 

This review will focus on eukaryotic pathogens including parasites 
and fungi. The impact of drug resistance in parasitic diseases is 
responsible for a terrible disability-adjusted life year estimate. Indeed, 
increasing levels of drug resistance were documented for protozoan 
parasites [6] including Plasmodium, Giardia, Leishmania, Trypanosoma, 
or helminths [7]. Resistance of Plasmodium species to drugs is one of the 
reasons for stalling progress in malaria elimination. Giardia, a protozoan 
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parasite of global importance for animals and humans, is associated with 
increasing rates of drug resistance and treatment failures for the most 
used drugs including metronidazole and albendazole [8,9]. Among 
fungi, Aspergillus and Candida are becoming increasingly resistant to 
antifungals [10]. Therefore, the issue of anti-parasitic and antifungal 
resistance must be more deeply integrated antimicrobial resistance 
global agenda in a One Health perspective. In that respect, the use of 
anti-parasitic in animals and antifungals in the environment that may 
both favor the development of drug resistance in humans are needed to 
be discussed. 

2. Anticoccidials used in animals and humans 

In humans, Cryptosporidium is the most common diarrhea-causing 
coccidia worldwide leading to 2.9 million cases per year in children 
<2 years old in subsaharan Africa and responsible for malnutrition and 
cognitive impairment in children [11–13]. Cryptosporidiosis is mainly 
acquired through direct contact between infected human (anthroponotic 
transmission) or through water sources for Cryptosporidium hominis, but 
zoonotic or foodborne transmission also occur with subtypes of 
C. parvum. Indeed, Cryptosporidium was reported in cattle, poultry, dogs, 
cats, and many more animals including chimpanzees, lemurs, and go-
rillas [14]. Nitazoxanide while moderately effective is the only FDA- 
approved drug for the treatment of diarrhea caused by C. parvum in 
immunocompetent patients, but not licensed in Europe. Paromomycin is 
effective in 60–70% of non-HIV cases, but not FDA-approved. Nitazox-
anide and paramomycin are also used alone or in combination for 
treatment of cryptosporidiosis in animals including ruminants, dogs, 
cats, horses, calves, sheep, and goats. Then, there are reasonable 
grounds for predicting that the uncontrolled used of these drugs in an-
imals could lead to selection of drug-resistant Cryptosporidium that may 
infect humans through zoonotic or foodborne transmission. 

In animals, infections by other protozoans including Eimeria and 
Isospora species are very common, especially in young birds and mam-
mals, but these species are host specific. It induces a major economic 
impact due to reduced weight gain and increased mortality, particularly 
in poultry industry. It is also a serious disease in sheep, goats, cattle, 
rabbits, and pigs. In this context, the food animal industry is intensively 
using anticoccidial drugs, including prophylactic use in poultry 
throughout most of the growing period. The risk of underdosage due to 
feed administration is a real matter of concern. Anticoccidial agents are 
generally classified into either polyether ionophores (monensin, sali-
nomycin, maduramicin, lasalocid) or synthetic chemicals (robenidine, 
decoquinate, halofuginone, nicarbazin, diclazuril). These drugs are 
licensed in the EU and the US as zootechnical feed additives (mainly for 
poultry) or as veterinary drugs (mainly for ruminants). Eimeria and 
Isospora being highly host specific, there is no risk for resistance selec-
tion between animals and humans. Nevertheless, a few anticoccidial 
agents have shown some antibacterial activity. Salinomycin has indeed 
an inhibitory effect on Clostridium perfringens [15], and monensin and 
salinomycin against Gram-positive bacteria including Staphylococcus 
[16]. There is therefore a risk for selection of drug-resistant bacteria, which 
could be released in the environment and potentially transmitted to people 
working in close contact to animals, leading finally to inter-human 
transmission. 

3. Anthelmintics 

Anthelmintics are considered helminth-specific, with few demon-
strations of activity against virus including the antiviral effect of iver-
mectin [17] and activity against flagellates such as Giardia spp. [18]. 
Among the main anthelmintics, albendazole and mebendazole are 
definitively the most used both in human and veterinary medicine. 
Those benzimidazoles demonstrated broad-spectrum activity against 
intestinal nematodes or tapeworms infections and tissue nematode/ 
cestode infections [19]. Inappropriate use of these major drugs led to a 

decreased efficacy linked to the selection of single nucleotid poly-
morphisms of the beta-tubulin gene or other mutations [20–23]. The 
concomitant large-scale use of these drugs among humans and animals is 
a major issue to be addressed before fixation of resistance in the parasite 
populations and high therapeutic failure rates. The problems caused by 
Haemonchus contortus infection in small ruminants is a well-known 
example of the consequence of anthelmintic resistance spreading 
[23–26]. Project of repurposing benzimidazoles as anti-cancer drugs 
may increase the problem of resistance in the future [19]. 

Praziquantel is a cestodicidal agent used in both human and veteri-
nary medicine. Whereas most of cestodes are highly host specific, 
Echinococcus spp. and Dibothriocephalus spp. can infect humans and an-
imals. Thus, the appearance of Echinococcus resistant strains to prazi-
quantel would pose a major health concern considering the risk for an 
increase in human larval echinococcosis and resistance, and required 
new therapeutic approaches including the use of adjuvant to improve 
praziquantel efficacy [27]. Albendazole is the most efficient and safe 
drug to interrupt larval growth of Echinococcus spp [28,29] without ev-
idence of resistance, leading to its use as a first-line anti-infective 
treatment for alveolar and cystic echinococcosis [28]. 

4. Insecticides-acaricides 

The risk related to the use of insecticides-acaricides is the selection of 
resistance in arthropods or vectors, which has been intensively 
described, especially for mosquitoes and ticks [30]. The side effect could 
be the indirect selection of resistant arthropods being able to bite or 
infest humans. The project of using mass drug administration (MDA) of 
ivermectin for humans and cattle as a malaria vector control combined 
with the classical use of macrocyclic lactones in ruminants for their 
endectocide activity has the potential to enhance the risk of generating 
resistance in mosquitoes as well as in soil-transmitted helminth in-
fections of humans and livestock [31,32]. While there is not yet evidence 
of mosquito tolerance or resistance to ivermectin, risks mitigation 
strategies should take into account the doses and regimen proposed as 
MDA in humans, the residency time of the drug in treated humans or 
animals, and the persistence in the environmental water up to 4 months 
[33]. This example is a clear demonstration of the complex interplay 
between human and animal treatments against parasites, blood-sucking 
insects, and environment. The same indirect selection could be obtained 
with the use of pesticides in the environment leading to more resistant 
domestic flies and mosquitoes. These risks need to be assessed and fol-
lowed by multidisciplinary teams working on vector control. 

5. Azoles used in the environment and in humans 

Most antifungals used in humans belong to three classes including 
azoles, echinocandins, and polyenes. Azoles are the most common class 
of antifungals used in patients suffering from aspergillosis [34]. Today, 
Aspergillus resistance to triazoles is a growing problem in humans [35] 
considering that the mortality rates of patients with voriconazole- 
resistant invasive aspergillosis are higher compared with voriconazole- 
susceptible infections [35]. Resistance mutations are commonly 
observed in the Cyp51A gene involved in cell wall synthesis which is the 
target of antifungal triazoles [36]. Aspergillus resistance in humans can 
be managed using antifungal susceptibility testing and local resistance 
surveillance. More challenging is the control of Aspergillus fumigatus 
resistance acquired in the environment which is attributed to the 
widespread use of azole-based fungicides against plant pathogenic 
moulds such as Fusarium and A. flavus. Azole drugs are dominated the 
agriculture fungicide market and a > 4-fold increase was reported in the 
United States during the 2006–2016 period [37]. As those fungicides 
have also an activity against A. fumigatus in the environment, inevitable 
exposure of A. fumigatus to azoles is responsible for the acquisition of 
resistance through the environment resulting in cross-resistance of 
A. fumigatus to medical azoles. It was recently demonstrated that the 
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prevalence of azole resistant A. fumigatus was positively correlated with 
residual levels of azole fungicides in soils [38]. Avian species highly 
susceptible to aspergillosis by moving between different environments 
including those with large amount of azole fungicides may play an 
important role in the dispersion of Aspergillus isolates, especially resis-
tant strains. In this context, the frontier between drug resistance in 
humans and environment is not clear and horizontal scenarios should be 
taken into account as claimed by Hollomon [39]. Considering that the 
main burden of A. fumigatus resistance is the acquisition of resistance 
through the environment, the extensive use of azoles fungicides in the 
environment is a crucial element to consider in antifungal resistance 
control program as it has an impact on human's health. 

6. Conclusions 

Beside bacterial diseases, parasitic and fungal diseases are major 
public health issues in many parts of the word. Humans and animals are 
paying a terrible price to these pathogens. A large part of animal food 
consumed in the word is produced in countries were these diseases are 
preeminent, including Brazil, Nigeria, India, China, and others. National 
regulations for drug used in these countries may be different from EU or 
US regulations leading to an extensive use of food additives including 
anticoccidials. But food and/or live animals to feed population, as well 
as their infectious agents and resistant strains, are circulating around the 
world. 

There is an urgent need to fight together against parasitic and fungal 
drug-resistant infections regardless who is responsible among humans, 
animals, caregivers, industry, or agriculture. Considering resistance to 
antimicrobials in humans, animals, or the environment, is mostly due to 
the misuse and overuse of drugs, communication, education, and 
training, among all involved partners would be a key factor of success. 
The role of the transdisciplinary approach through anti-parasitic and 
antifungal stewardship programs in humans, animals, and environment 
[40,41], is unquestionable because transdisciplinarity is expected to 
provide a more sustainable knowledge, experiences, and a better con-
stituency in health policy. Some regulatory agencies (e.g. US- 
Environment & Pesticide Agency (EPA), and European Medicine 
Agency (EMA)) have already drafted guidelines to assess the potential 
impact of medicinal product, including antibiotics and antiparasitics. In 
that perspective, environmental risk assessment (ERA) is requested for 
some categories of human and veterinary products, to confirm that their 
use would not have any impact on other helminths or arthropods than 
the targeted parasites [33,42]. Beside those agencies, the World Health 
Organization, the Food and Agriculture Organization, and the World 
Organization for Animal Health (OIE), are other important partners, 
with support from academic societies. In the era of COVID-19 pandemic, 
this of utmost importance to consider a comprehensive and integrated 
health control policy to fight against the significant human threat of 
antiparasitic and antifungal resistance [43]. 
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-nous-faisons/initiatives-mondiales/antibioresistance/, 2021 (accessed December 
14, 2021). 

[3] A.H. Holmes, L.S.P. Moore, A. Sundsfjord, M. Steinbakk, S. Regmi, A. Karkey, P. 
J. Guerin, L.J.V. Piddock, Understanding the mechanisms and drivers of 
antimicrobial resistance, Lancet Lond. Engl. 387 (2016) 176–187, https://doi.org/ 
10.1016/S0140-6736(15)00473-0. 

[4] J. Zhang, A.J.M. Debets, P.E. Verweij, E. Snelders, Azole-resistance development; 
how the Aspergillus fumigatus lifecycle defines the potential for adaptation, 
J. Fungi Basel Switz. 7 (2021) 599, https://doi.org/10.3390/jof7080599. 

[5] K.J. Wicht, S. Mok, D.A. Fidock, Molecular mechanisms of drug resistance in 
Plasmodium falciparum malaria, Annu. Rev. Microbiol. 74 (2020) 431–454, https:// 
doi.org/10.1146/annurev-micro-020518-115546. 

[6] B. Hanboonkunupakarn, N.J. White, Advances and roadblocks in the treatment of 
malaria, Br. J. Clin. Pharmacol. (2020), https://doi.org/10.1111/bcp.14474. 

[7] S.H. Tinkler, Preventive chemotherapy and anthelmintic resistance of soil- 
transmitted helminths - can we learn nothing from veterinary medicine? One 
Health Amst. Neth. 9 (2020), 100106 https://doi.org/10.1016/j. 
onehlt.2019.100106. 

[8] A. Riches, C.J.S. Hart, K.R. Trenholme, T.S. Skinner-Adams, Anti-Giardia drug 
discovery: current status and gut feelings, J. Med. Chem. 63 (2020) 13330–13354, 
https://doi.org/10.1021/acs.jmedchem.0c00910. 

[9] R. Argüello-García, D. Leitsch, T. Skinner-Adams, M.G. Ortega-Pierres, Drug 
resistance in Giardia: mechanisms and alternative treatments for Giardiasis, Adv. 
Parasitol. 107 (2020) 201–282, https://doi.org/10.1016/bs.apar.2019.11.003. 

[10] K.A. Etienne, E.L. Berkow, L. Gade, N. Nunnally, S.R. Lockhart, K. Beer, I.K. Jordan, 
L. Rishishwar, A.P. Litvintseva, Genomic diversity of azole-resistant Aspergillus 
fumigatus in the United States, MBio 12 (2021), e0180321, https://doi.org/ 
10.1128/mBio.01803-21. 

[11] S.O. Sow, K. Muhsen, D. Nasrin, W.C. Blackwelder, Y. Wu, T.H. Farag, 
S. Panchalingam, D. Sur, A.K.M. Zaidi, A.S.G. Faruque, D. Saha, R. Adegbola, P. 
L. Alonso, R.F. Breiman, Q. Bassat, B. Tamboura, D. Sanogo, U. Onwuchekwa, 
B. Manna, T. Ramamurthy, S. Kanungo, S. Ahmed, S. Qureshi, F. Quadri, 
A. Hossain, S.K. Das, M. Antonio, M.J. Hossain, I. Mandomando, T. Nhampossa, 
S. Acácio, R. Omore, J.O. Oundo, J.B. Ochieng, E.D. Mintz, C.E. O’Reilly, L. 
Y. Berkeley, S. Livio, S.M. Tennant, H. Sommerfelt, J.P. Nataro, T. Ziv-Baran, R. 
M. Robins-Browne, V. Mishcherkin, J. Zhang, J. Liu, E.R. Houpt, K.L. Kotloff, M. 
M. Levine, The burden of cryptosporidium diarrheal disease among children < 24 
months of age in moderate/high mortality regions of Sub-Saharan Africa and South 
Asia, utilizing Data from the Global Enteric Multicenter Study (GEMS), PLoS Negl. 
Trop. Dis. 10 (2016), e0004729, https://doi.org/10.1371/journal.pntd.0004729. 
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