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Abstract

Allosteric regulation is a key component of cellular communication, but the way in which information is passed from one
site to another within a folded protein is not often clear. While backbone motions have long been considered essential for
long-range information conveyance, side-chain motions have rarely been considered. In this work, we demonstrate their
potential utility using Monte Carlo sampling of side-chain torsional angles on a fixed backbone to quantify correlations
amongst side-chain inter-rotameric motions. Results indicate that long-range correlations of side-chain fluctuations can
arise independently from several different types of interactions: steric repulsions, implicit solvent interactions, or hydrogen
bonding and salt-bridge interactions. These robust correlations persist across the entire protein (up to 60 Å in the case of
calmodulin) and can propagate long-range changes in side-chain variability in response to single residue perturbations.
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Introduction

Allostery is an essential feature of protein regulation and

function. Allosteric regulation acts by linking distant sites of a

protein together in such a way that information about one site is

transmitted to and influences the behavior of another. Chemical

modifications as subtle as the phosphorylation of a serine residue

can cause dramatic changes in protein function [1], and shifts in

structure as small as 1 Å have even been shown to modify

behavior in a domain up to 100 Å away [2]. Traditionally,

allostery has been understood as a feature of symmetric, multi-

subunit proteins where the binding of a ligand to one subunit

facilitates the binding of similar ligands to the other subunits,

resulting in cooperative binding transitions [3]. However, allosteric

behavior has now been observed within a single protein domain

[4] and its definition extended to include any shift in protein

structure and function at one site resulting from modification at

another.

Moreover, it was proposed some time ago that information

regarding the binding of a ligand or other modification at one

protein site could be transmitted through altered protein

fluctuations, even if the protein’s average structure remains

unaffected [5]. Two particularly clear examples of this kind of

dynamic allostery have been recently observed in the binding of

cAMP to the CAP dimer and in the subsequent binding of the

cAMP-activated CAP dimer to DNA [6,7]. In the first step, the

binding of cAMP to one monomer of CAP lowers the binding

affinity of cAMP to the second even though no structural changes

are observed, and calorimetric analysis suggests that the negative

cooperativity results entirely from entropic effects [6].

The observed allosteric effect of protein fluctuations has led to

the idea that allostery may be present in all proteins [8–10], and

that functional allostery simply exploits and refines pre-existing

long-range correlations and interaction networks. In fact, such

networks are to be expected given the physical constraints of the

densely-folded, yet fluctuating, protein. Just as in any condensed

phase, significant fluctuations in this packed environment are

permitted through correlated motions.

Qualitative experimental evidence for long-range correlation

abounds in studies demonstrating allosteric regulation, as exem-

plified in [1] and [2]. However, attempts to quantify these long-

range correlations using NMR techniques have proven difficult

[11–13], and much of our current understanding of correlated

motions has come from analyses of molecular dynamics (MD)

simulations. Traditional MD trajectories evaluated with covari-

ance matrices and principle component analyses [14] have shed

light on important features of intra-protein correlations, such as

how backbone motions tend to be significantly correlated within

secondary structural units [14] and how a few flexible hinge

residues can cause large motions within otherwise stable folds [15].

Energy-perturbative MD simulations, such as anisotropic thermal

diffusion [16] and pump-probe MD [17], have been used to

observe the rapid anisotropic diffusion of an energy perturbation

within the protein. However, these MD studies are limited in their
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ability to characterize sluggish rearrangements and have largely

neglected the contributions of correlated side-chain fluctuations.

Within the folded protein, side-chains are significantly less

ordered than the backbone [18], and alternative side-chain

configurations in protein crystals are more prevalent than previously

thought [19]. The thermodynamic importance of this side-chain

variability in calmodulin-ligand binding has been highlighted

in Refs. [20–22]. In addition, the participation of side-chain

fluctuations in long-range networks has been demonstrated through

NMR mutational studies [9,23]. In one MD simulation designed to

incorporate data from NMR experiments, correlations were even

observed between side-chains whose motions appeared decoupled

from those of their backbone atoms [24].

Double mutant cycles [25] have also been applied to examine

the dependence of folding and binding on interactions between

specific residue pairs. While such mutational studies can

demonstrate the interactions of certain residue pairs, they are

experimentally demanding, making it difficult to obtain a

comprehensive picture of any long-range side-chain interactions

present, in particular those involving residues essential for folding

stability. As an alternative, an evolutionary statistical network

analysis method has been developed to determine networks of

correlated residues that are common to evolutionarily related

proteins [26]. Although this method has had some success in

identifying allosterically-related regions within proteins [27], its

robustness has been challenged in a study on artificially-generated

sequences [28]. In principle, it is also limited to detecting

correlated changes in residues during evolution, presumably

highlighting only correlated networks with a selected function

and can therefore say little about the presence or absence of other

correlations.

In this study, we employed an atomistically detailed model to

examine the kinds of correlations that emerge among side-chain

fluctuations within the natively-folded protein. The computation-

ally inexpensive nature of our model energy function [21],

together with a variety of advanced Monte Carlo sampling

techniques, allowed an unprecedentedly thorough investigation of

the correlations among these fluctuations that result from different

types of interactions. Keeping the backbone fixed, we find that

long-range correlation of side-chain fluctuations can emerge from

different types of atomic interactions, that significant correlations

persist across the entire folded protein, and that these correlations

alone can propagate changes in structure and mobility over scales

as large as 50 Å.

Results

A simple model was used to explore side-chain rotations
In order to investigate the correlated rearrangements that arise

from side-chain fluctuations alone, it was necessary to isolate these

motions from other sources of configurational change. For this

reason, we held the backbone fixed in its folded conformation

throughout the calculations described in this paper. While

fluctuations resulting from bond stretching and angle bending

are important and likely to give rise to a great deal of correlated

motion, we focused here instead on side-chains’ torsional degrees

of freedom, as these rotations give rise to the changes in atomic

configurations that are largest in magnitude.

This study made use of a model we designed to roughly capture

the essential physical determinants of side-chain behavior within

the folded protein, namely, steric repulsions, van der Waals

attractions, hydrogen bonding, salt-bridge interactions, and

solvation [21]. While not fully realistic in every particular (e.g.,

resolving the positions only of nuclei heavier than hydrogen), the

model properly represents the variety, strength, and anisotropy of

the side-chain interactions and the physical constraints of the

folded backbone on which they reside.

We explored this model with Monte Carlo (MC) sampling (see

Methods). Each MC step consisted of the proposed rotation of a

single randomly-chosen side-chain dihedral angle. To promote

broad sampling of thermally accessible configurations, we

permitted moves through sterically disallowed regions of state

space. Using exact correction methods, we constructed equilibri-

um averages with contributions only from sterically allowed

structures (those in which each heavy atom excludes a spherical

volume with radius 0.75 times its van der Waals radius). See [21]

for details.

Boltzmann-weighted ensembles of the side-chain configurations

determined using this sampling procedure include a diverse set of

rotamer states and correlate well with experimental observations of

side-chain fluctuations and changes in entropy upon ligand

binding [21]. We therefore applied this method to investigate

correlations among the diverse set of rotamer states.

Single residue perturbations effected changes in side-
chain fluctuations throughout the protein

Several experimental approaches that probe correlations within

proteins mutate single residues and observe the resulting changes

in structure, function, or dynamics [9,23,29,30]. We began our

examination of side-chain correlations in a similar way by

modeling the changes in torsional variability that occured

throughout a small globular protein, barstar, as a result of

perturbations to a single side-chain. Previous MD simulations of

barstar suggested a relatively rigid backbone, as well as significant

variability in side-chain packing [31]. Additional results from 19F
NMR experiments showed that the P27A mutation results in

detectable dynamic changes even in residues more than 12 Å

away from the mutation site, and suggested that the motion of

barstar’s side-chains gives rise to a network of correlated residues

[32].

Author Summary

Allosteric regulation occurs when the function of one part
of a protein changes in response to a signal recognized by
another part of the protein. Such intra-protein communi-
cation is essential for many biochemical processes,
allowing the cell to adapt its behavior to a dynamic
environment. Most studies of the information conveyance
underlying allostery have to date focused on the role of
backbone motions in mediating large structural changes.
Here we focus instead on more subtle contributions,
arising from fluctuations of side-chain torsions. Using a
model for side-chain bond rotations in the tightly packed
environment imposed by native backbone conformations,
we observed significant sensitivity of side-chain organiza-
tion to small, localized perturbations. This susceptibility
arises from correlations among side-chain motions that
can propagate information within a protein in complex,
heterogeneous ways. Specifically, we found appreciable
correlations even between side-chains distant from one
another, so that the effect of a minor perturbation at one
site on the protein could be observed in the altered
fluctuations of side-chains throughout the protein. In
conclusion, we have demonstrated that the statistical
mechanics of correlated side-chain fluctuations within a
model of the folded protein provides the basis for an
unconventional but potentially important means of
allostery.

Correlated Side-Chain Motions
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Quantifying such correlated fluctuations requires a metric that

can report on the extent of local variability at the single residue

scale. For this purpose, we calculated the Gibbs entropy for each

residue, �SS(res), associated with occupying distinct rotameric states.

�SS(res)
i ~{kB

X

Hi

p(Hi)ln p(Hi), ð1Þ

where Hi~fh(i)
1 , . . . ,h

(i)
Ni
g denotes the set of torsional variables for

each of the Ni rotatable sp3-sp3 hybridized bonds belonging to

residue i, and h(i)
n denotes the set of ideal torsional angle values for

the n th torsional angle in residue i. While sp3-sp2 hybridized

bonds were allowed to rotate, they were also excluded from the

statistical analysis due the difficulty in determining ideal dihedral

angles [33]. The probabilities p(Hi) of these 3Ni states were

calculated in simulations by constructing histograms over the

course of importance sampling from the Boltzmann distribution of

side-chain configurations. In doing so, we focused on the inter-

rotameric rearrangements (those between the three most likely

energy basins for the torsional angle of an sp3-sp3 hybridized

bond), which allowed the calculation of absolute local entropies

that would have been impractical at a higher level of resolution.

However, intra-rotameric fluctuations (those within a single

torsional energy basin) are sensitive to the structural perturbations

we applied, and it is necessary to allow deviations from these ideal

angles, w~x{h, in order to fully account for the variety of

possible side-chain configurations [34,35]. A quadratic energy is

associated with these deviations w (see Methods).

Fig. 1 shows the change in �SS(res)
i that resulted from a single-

residue perturbation. Residues shown in red demonstrated a

statistically-significant increase in side-chain variability, while the

variability of those shown in blue decreased (see Methods). The

perturbations shown, a mutation of isoleucine to glycine at position

86 (Fig. 1(a)) and a constraint of the glutamate in position 46 to its

crystalline configuration (Fig. 1(b)), were chosen to demonstrate the

types of changes possible. (A comparison to the previously studied

P27A [32] was not possible, since neither proline nor alanine

residues have rotatable side-chains in our model.) Surprisingly,

removing the isoleucine side-chain at position 86 (circled in Fig. 1(a))

not only affected the local entropy of a few neighboring residues, but

also altered the side-chain variability of residues much farther from

the site of mutation. Motions of even distant residues must therefore

be linked to those of residue 86. Because the interaction potentials in

our model are short in range, the changes in fluxionality that

resulted from this mutation must propagate through neighboring

residues to those farther away. Fig. 1(b) shows analogous changes

that resulted when a residue, E46 (circled), is merely frozen into its

crystalline conformation. Such a reduction in motion of one side-

chain might be expected to result in the increased variability of its

nearest neighbors. However, we found that even so subtle a

constraint resulted in unexpected and wide-spread changes in the

side-chain fluctuations. Some residues near the frozen amino acid

even became slightly more constrained while the variability of a few

residues farther away increased. A similar effect was observed in

NMR experiments upon ligand-binding in stromelysin 1, where the

few residues participating in strong interactions with the ligand lost

mobility, but the order parameters of those farther away actually

decreased upon binding, indicating an increase in their entropy

[36]. It was suggested that the increased fluctuations far from the

binding site may counter the loss of entropy at the binding site itself

and therefore assist in modulating the thermodynamics of binding.

The changes in side-chain statistics we observed as a result of

these single residue perturbations are not readily intuited.

Increasing or decreasing disorder at one site may result in the

same or opposite effect in other regions of the folded protein, and

the effects cannot be easily predicted from the spatial arrangement

of the residues.

Figure 1. Single-residue perturbations in barstar. Changes D�SS(res)
i

in the Gibbs entropy of each residue i in barstar (1a19 [47]) that resulted
from perturbations to single side-chains. Residues whose entropy
changes by a significant amount, according to Student’s t-test at the
90% level, are shown in color. Red indicates increased entropy, blue
indicates decreased entropy (see scale bar). Although side-chains are
depicted in their crystallographic arrangements for graphical simplicity,
note that �SS(res)

i is a measure of the extent of fluctuations among a wide
variety of distinct packings. For the results presented in panel (a), I86
(shown in black and circled) was mutated to G. For those of panel (b)
E46 (shown in black and circled) was constrained to its crystallographic
configuration.
doi:10.1371/journal.pcbi.1002168.g001

Correlated Side-Chain Motions

PLoS Computational Biology | www.ploscompbiol.org 3 September 2011 | Volume 7 | Issue 9 | e1002168



Correlated fluctuations result from several types of
interactions and persist throughout protein

Correlated fluctuations within the folded protein are commonly

quantified using Pearson correlation coefficients [14]. Despite their

limitations in detecting nonlinear correlations and correlations

between the motions of particles moving orthogonally to one

another [37], Pearson coefficients have yielded important

information regarding correlated motions. These coefficients are

most appropriate for backbone motions as these motions are

expected to be correlated in similar directions and to be linear in

nature due to the stiffness and collective motions of various

secondary structural elements [14]. However, in a study analyzing

the results of molecular dynamics simulations of protein G and

lysozyme, a generalized correlation measurement based on mutual

information was able to detect significantly more correlation than

the Pearson coefficient [37]. Side-chain motions are even more

likely to fall outside the purview of the Pearson coefficient,

dominated as they are by dihedral angle rotations. A parameter

based on mutual information is able to provide a more robust

measurement of correlated side-chain fluctuations [37], and can be

readily derived from simulation data in a similar way to the

entropies calculated in the preceding section. We therefore chose

to consider the mutual information associated with each pair of

residues within a folded protein.

Pairwise mutual information is a measure of the correlation

between two random variables. In our case it reports on the degree

of correlation between the rotameric state populations of two

residues. The mutual information Iij between residues i and j can

be calculated as

Iij~{kB

X

Hi

X

Hj

p(Hi,Hj)ln½
p(Hi,Hj)

p(Hi)p(Hj)
�, ð2Þ

where p(Hi,Hj) denotes the probability of each of the 3Ni :3Nj joint

states of residues i and j, and Ni is the number of rotatable sp3-sp3

hybridized bonds in residue i. After rearranging Eq. 2 and

substituting in Eq. 1, this becomes

Iij~�SS(res)
ij {(�SS(res)

i z�SS(res)
j ) ð3Þ

where �SS(res)
ij is the Gibbs entropy associated with the discrete

rotameric states for residues i and j considered jointly. Thus when

the fluctuations of the two residues are completely independent of

one another, �SS(res)
ij ~�SS(res)

i z�SS(res)
j and Iij~0. However, when the

residues are correlated, their entropies are inseparable, and Iijw0.

One difficult feature of mutual information is that a numeri-

cally-calculated estimate of two completely uncorrelated variables

only approaches zero at the limit of infinite sampling. For any

finite sampling, a small amount of spurious mutual information

will be observed, regardless of the actual coupling between the two

variables [38]. When calculating I numerically, this inherent bias

in the noise must be accounted for in order to determine the

mutual information’s statistical significance. We used two

approaches to address this bias. In the first, we subtracted out

the expected spurious mutual information to estimate the true

amount of correlation between the two variables. The resulting

excess mutual information, I ’, between residues i and j is defined

as

I ’ij~Iij(n){I
(ref)
ij (n): ð4Þ

Iij(n) is the numerically-calculated mutual information measured

over a finite sampling period consisting of n MC steps. I
(ref)
ij (n) is

the same measurement, but this time computed within a non-

interacting reference state, where no correlations are possible (see

Methods for details). I ’ is then an estimate of the mutual

information of the infinitely-sampled ensemble. In the second

approach, we focused on the robustness of the mutual information

measurement, calculating its signal-to-noise ratio, Iij(n)=I (ref)(n).

The extended structure of calmodulin (3cln [39]), as shown in

Fig. 2(a), provides an exemplary test case for examining how side-

Figure 2. Structural representations of extended crystalline
calmodulin. The crystal structure (a) and contact map (b) of calcium-
bound calmodulin (3cln [39]). The calcium ions are shown in yellow, and
several residues are labeled in both panels for reference. The distance
between each pair of Ca atoms is indicated by color (see scale bar) in
(b), where x- and y-axes run over residue labels. The residue labeling
corresponds to the full sequence, however residues that do not possess
torsional degrees of freedom in our model (A, G, P, and all residues
bound to the calcium ions) are excluded from the contact map.
doi:10.1371/journal.pcbi.1002168.g002

Correlated Side-Chain Motions
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chain fluctuations are correlated within the folded protein.

Although in solution this chain collapses, the structure of the

crystal is extended, featuring two globular regions connected by an

extended a-helix. Any information shared between the two lobes

must pass through this extended a-helix, since the pairwise

interactions in our model largely decay by 7 Å. We calculated the

pairwise excess mutual information, I ’ij , for all residue pairs ij in

Ca2z-bound calmodulin, as well as the ratio of Iij=I
(ref)
ij in order to

gauge the significance of the measured correlations. Both

quantities are shown in Fig. 3 as functions of the residues’ position

along the backbone. For reference, we present in Fig. 2(b) the

spatial distance between residues in the native structure as a

function of the same indices. Panels (b)–(e) of Fig. 3 indicate

mutual information resulting from various interaction types

considered in isolation. Panel (f) gives results for the full model.

Different types of inter-atomic interactions in our model gave

rise to different patterns of correlated fluctuations. In Fig. 3(b),

correlations that result solely from steric repulsions are shown.

While the signature of calmodulin’s a-helical structure can be

clearly seen along the diagonal, where residues i and iz3 or i and

iz4 are often highly correlated, many other residue pairs appear

significantly correlated as well, even those that are spatially distant.

In Fig. 3(c), the correlations that result from the implicit solvent

alone are shown. These correlations are more limited, restricted

almost completely to residues that are nearby in space, as can be

seen when comparing Fig. 3(c) to Fig. 2(b). Again the a-helical

residues display appreciable correlation, even more than that

resulting from the repulsive sterics, as might be expected from

their high degree of solvent exposure. The correlations that result

from considering van der Waals attractions along with the

repulsive sterics is shown in Fig. 3(d). While the correlations along

the a-helix remain strong, many other correlations emerge as a

result of these attractions. Hydrogen bonding and salt bridge

interactions, taken alone, generate highly significant correlations

throughout the entire structure (see Fig. 3(e)), which appear

remarkably insensitive to spatial distance. Since only a subset of

the residues participate in such interactions, the fluctuations of the

remaining residues are completely uncorrelated in this restricted

version of our model. The full potential, used to generate the data

in Fig. 3(f), results in both the most significant signal-to-noise ratios

and the largest excess mutual information values, indicating a

large degree of correlation that spans the full range of inter-residue

distances while retaining features of the dominant a-helical

structure.

To further explore how different interactions give rise to long-

range correlations in both a small globular protein as well as the

extended calmodulin structure, we calculated the average excess

mutual information per residue pair for all residue pairs in

calmodulin and barstar, resolved by the spatial inter-residue

distance between Ca atoms. (See Fig. 4.) In both proteins, steric

Figure 3. Mutual information of residue pairs in calmodulin. The mutual information, Iij , associated with side-chain fluctuations of residue
pairs in calmodulin. Plots (b)–(f) display the mutual information signal:noise ratio, Iij=I

(ref)
ij (upper left triangles) and the excess mutual information I ’ij

(lower right triangles), as indicated in (a). The x- and y-axes run over labels, i and j respectively, of residues in the amino acid sequence, excluding
those lacking rotameric freedom in our model. Scale bars for the signal:noise ratio and the excess mutual information are presented on the top and
bottom left, respectively. Results are shown for the following combinations of interactions: (b) repulsive sterics (S), (c) implicit solvent (IS) (d) Lennard-
Jones (LJ) interaction comprising repulsive sterics and van der Waals attractions, (e) hydrogen bonding and salt-bridges (HBSB), and (f) the full
potential (LJ+HBSB+IS). Residue 30K, which we scrutinize in detail later (see Fig. 5), is highlighted in (f) for reference.
doi:10.1371/journal.pcbi.1002168.g003

Correlated Side-Chain Motions
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repulsions alone give rise to small, but significant, correlations that

persist across the entire protein structure. The same is true for the

implicit solvent interactions and their combination, S+IS.

However, much larger correlations emerge when van der Waals

attractions are considered in addition to the steric repulsions.

Hydrogen bonding and salt bridge interactions are clearly the

most correlating types of interactions considered. However, the full

potential, which combines all these interaction types, results in the

largest overall correlation.

An additional feature within these plots deserves mention; in both

proteins, correlation is at a maximum around 6 Å for all subsets of

interactions excepting hydrogen bonding and salt bridges. This

short-distance peak indicates that residue pairs adjacent in the

amino acid sequence (whose a-carbons are separated by &3:8 Å)

do not interact as strongly on average as do residue pairs that are

positioned slightly farther apart. In a-helices, neighboring residues

point in different directions and, while still likely to interact with

their sequential nearest neighbor, are more likely to interact strongly

with their iz3 and iz4 neighbors. In b-sheets, however, residues

alternately point towards different faces of the sheet, so that the side-

chains on residues i and iz2 are much more likely to interact with

one another than do those on i and iz1. Residues influenced only

by hydrogen bonding and salt bridge interactions, when artificially

freed of the steric constraints that would keep them from collapsing

back on themselves, still correlate most strongly with their nearest

neighbors.

Substantial long-range correlation is seen throughout both

barstar and calmodulin. Moreover, the fact that so many subsets

of the full potential independently give rise to long-range

correlations suggests that correlated side-chain fluctuations should

be a robust characteristic of most protein sequences and nearly any

globular fold.

Correlated side-chain motions can propagate changes in
fluctuations over 50 Å

Through correlated side-chain fluctuations, local perturbations

to a protein (e.g., due to small ligand binding) could in principle be

transmitted over substantial distances. We scrutinized this

possibility by examining the consequences of mutating a single

residue in calmodulin. Such a mechanism of communication was

described earlier for barstar (see Fig. 1), whose size limited our

conclusions to distances of less than 30 Å. Calmodulin, in its

extended structure, provides a better test of the ability of side-

chain correlations to transmit information over long distances.

We focused this analysis on correlated fluctuations involving one

particular residue in calmodulin, 30K, which we observed to be

significantly correlated with several other residues (see Fig. 3(f)). In

Fig. 5(a), 30K is colored black, while the pairwise mutual information

between this side-chain and all others is indicated in bluescale.

Appreciable correlations are apparent throughout the lower

globular region near residue 30. The correlations become stronger

within the spatially-constricted alpha-helical bridge and spread out

again and weaken in the far lobe. To determine whether these

correlations could transmit structural and dynamical information

over significant distances, we mutated residue 30K to glycine. The

resulting change in �SS(res)
i for each residue i is shown in Fig. 5(b). A

significant decrease in entropy was detected in some neighboring

residues, while both increases and decreases in entropy were found

for residues farther from the mutation site. Although unexpected,

the reduction in entropy at residue i resulting from the removal of

a neighboring bulky residue can be readily explained if that nearby

mutation results in the loss of a potential hydrogen bonding

partner for residue i. Such a loss can result in the probability

associated with the hydrogen-bonding subset of residue i’s
configurations being greatly reduced.

We found statistically significant changes in entropy even in the

globular region opposite that of residue 30. Thus we conclude that

side-chain fluctuations alone can reliably propagate the effect of a

single point mutation over at least 50 Å.

When comparing Fig. 5(a) to Fig. 5(b), it is clear that some, but

not all, of the strongly correlated residues in the wild-type

calmodulin experience detectable changes in their side-chain

variability as a result of this particular mutation. Even some

residues that are minimally correlated with residue 30K show

significant shifts in their side-chain statistics. Although the mutual

information can tell us a great deal about the degree of correlation

between two side-chains in our model, it is not a discriminating

predictor of changes in side-chain variability upon mutation. The

discrepancies are likely due to the fact that our calculation of mutual

information lacks contributions from correlated intra-rotameric

fluctuations, which are still able to convey information in our model

Figure 4. Distance dependence of mutual information in
barstar and calmodulin. Average excess mutual information I ’ as a
function of distance between Ca atoms. For both (a) barstar and (b)
calmodulin, we summed the values of I ’ for all residue pairs within
several inter-residue distance ranges and then divided by the number
of such pairs. Results are shown for various subsets of atomic
interactions: S indicates repulsive sterics, IS indicates implicit solvent,
LJ indicates the Lennard-Jones interaction, and HBSB indicates the
hydrogen bonding and salt-bridge interactions. See Methods for
binning details.
doi:10.1371/journal.pcbi.1002168.g004

Correlated Side-Chain Motions
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and will therefore influence the detected changes upon side-chain

mutation. Furthermore, observing the statistically significant

changes in Fig. 5(b) requires a great deal of sampling – were more

sampling feasible, additional changes would likely be detected.

Magnitude of side-chain correlations is substantial
If the side-chain motions of a protein’s N different residues were

negligibly correlated, then the total entropy S associated with

transitions among distinct rotameric states could be calculated as a

simple sum of single-residue contributions, S&
PN

j~1 sj . The

excess mutual information, summed over all residue pairs,

provides a rough measure of the error in such a mean-field

estimate. Correspondingly, the quantity
P

ij I ’ij characterizes the

global thermodynamic significance of inter-residue correlations.

For crystalline barstar modeled with the full potential,
P

ij I ’ij is

calculated to be 72 kJ/(mol:300 K). The higher-order correlations

expected in such a dense environment [40] (see Fig. 3 where a

single residue is often significantly correlated to several others)

make this value an overestimate of the total correlation. Even so,

its magnitude is noteworthy. In addition, while allowing intra-

rotameric fluctuations, this calculation neglects their contribution

to the total correlation, which were found to be essential in

reproducing the calorimetric TDSbinding of calmodulin with its

ligands in [21] and are likely to be substantial.

Long-range correlations are present within several
different backbone models of folded barstar

The rigidity of the peptide backbone in these calculations justifies

to some extent our schematic model of side chain interactions: For

our purposes the potential energy function need not resolve subtle

thermodynamic differences among diverse chain conformations,

but instead serves to establish basic length and energy scales for

rearrangements within the native state’s basin of attraction.

In considering the biological relevance of our results, backbone

rigidity is in part justified empirically by the observation that only

weak correlations exist between backbone NMR order parame-

ters, S2, and their associated side-chain order parameters, S2
axis

[41]. This weak correlation is likely due to the fact that side-chain

and backbone fluctuations largely occur on different time-scales

[42], with typical side-chain fluctuations ranging from picoseconds

to nanoseconds, while typical collective backbone fluctuations

range from nanoseconds to seconds and longer.

However, it is important to assess how variations in backbone

configuration of the folded protein might influence the side-chain

correlations we have calculated. Toward this end we examined

four different structural models from an NMR structure of barstar

(1btb [43]). These four conformations were chosen to represent the

range of models included in the NMR structure (see Methods). In

each case plots of SI ’T per pair vs. inter-residue distance for the

full potential closely resemble results for the crystal structure (see

Fig. 6). Since the statistics of side-chain rotations in a fluctuating

backbone environment can be rigorously decomposed into

contributions from sub-ensembles in which the backbone is held

fixed, the consistent nature of the observed long-range correlation

from one backbone structure to another establishes their

robustness to typical backbone motions.

Larger backbone fluctuations, however, such as partial unfolding

events or the motions of hinged regions, are certain to disrupt many

of these correlations and may limit their role in conveying allosteric

information. In particular those correlations arising from contact

Figure 5. Correlation between residue 30 and other residues in calmodulin. The extent of correlation between residue 30 (shown in black
and circled) and all other side-chains in calmodulin (3cln [39]) is shown here. In (a) each residue i is colored according to the magnitude of its excess
mutual information I ’i,30 with 30K (see left scale bar and Fig. 3). Coloring in (b) indicates the change D�SSres in each residue’s side chain entropy
effected by the mutation K30G. Here, red represents increased entropy and blue decreased entropy (see right scale bar). See Methods for details.
doi:10.1371/journal.pcbi.1002168.g005
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between residues that are spatially proximal, but distant within the

protein’s amino acid sequence, will attenuate as backbone motions

carry them away from one another. However, correlations between

residues linked through a path of sequential neighbors, such as those

observed along the central a-helix of crystalline calmodulin in Fig. 5,

may persist. As a result, some information may continue to be

transmitted through side-chain fluctuations even after significant

backbone rearrangements, as long as the secondary structure, which

is responsible for many of the observed correlations between

sequential neighbors (see Fig. 3(f)), remains intact.

Amino acids displayed different propensities towards
correlated side-chain motion

In addition to scrutinizing the effect of different types of atomic

interactions, we also examined how a protein’s amino acid

composition might contribute to stronger or weaker correlations

among its side-chain fluctuations. To do so, we took a set of twelve

small globular proteins with different sequences and folds (see

Methods) and calculated the average excess mutual information

per pairwise interaction for each amino acid across the entire set of

proteins. The result is plotted in Fig. 7.

In general, amino acids with the most sp3-sp3 hybridized

rotatable bonds resulted in the largest SI ’T values. The amino acid

arginine is clearly the most strongly correlated residue, followed

closely by lysine. While both of these amino acids have four

rotatable bonds, arginine is considerably bulkier than lysine, with

more potential hydrogen bonding partners. In addition, arginine

has been found to take on fewer alternate rotameric states in

simulations of folded proteins than lysine [44].

Similarly, the bulky aromatics (Phe, Tyr, Trp) were more

correlating than their single sp3-sp3 hybridized rotamer would

indicate, while isoleucine and leucine are both much less

correlating than the other residues with two rotatable bonds:

glutamine and glutamate. Glycine, alanine, and proline all have

SI ’T~0, since they possess no rotatable bonds in the model.

Changes in NMR-derived order parameters do not
compare well to calculated changes in side-chain
entropies

Recent NMR measurements on eglin C provided a good

opportunity to compare our results with experimental evidence of

wide-spread changes in side-chain fluctuations resulting from small

perturbations [9,30]. In this work, a series of valine residues were

mutated to alanine at various positions in eglin C, a small globular

protein with a relatively static backbone, and the resulting changes

in the order parameters of side-chain methyl groups were

measured. The changes in the NMR-measured order parameters

were in many cases quite low; the majority of the statistically

significant changes were less than 0.05 (order parameters range

from 0.0 for a completely disordered vector to 1.0 for a completely

ordered one), with only a few residues showing changes greater

than 0.1 [9,30]. The magnitude of these NMR-measured changes

combined with the significant statistical errors in our calculations

(the average standard deviation was 0.02) rendered such a

comparison difficult. In the cases where we could resolve the

changes in our MC-calculated order parameters enough to make a

meaningful comparison to the experiments we found little

correspondence between our data and the NMR measurements.

NMR order parameters are expected to underestimate the full

range of side-chain motion, as they neglect motion slower than the

tumbling time of the molecule, and recent work demonstrates that

such motion can be substantial [45,46]. Similarly, our calculation

is also expected to underestimate the full range of motion

accessible to the side-chains due to the fixed backbone, which

we observed previously to be particularly problematic in

calculating methyl group order parameters for alanines [21]. As

a result, a poor correspondence between our calculated methyl-

group order parameters and those derived from NMR relaxation

experiments, in particular those involving mutations to alanine, is

perhaps to be expected. In past work we nevertheless demonstrat-

ed a clear correspondence to the measured NMR order

parameters for wild-type eglin C using the same computational

approach [21]. Even if the model is not sufficiently accurate or

detailed to make quantitative predictions for altered side-chain

fluctuations in the specific case of eglin C, the conclusions we draw

here for long-range correlations among side-chain fluctuations

should be pertinent to the biophysics of folded proteins in general.

Discussion

The propagation of information across long distances within the

folded protein is of great importance in allosteric regulation. While

backbone structural changes and fluctuations have long been

studied as the bearer of this information, correlated side-chain

fluctuations provide potential information conductance pathways

Figure 6. Distance dependence of mutual information in
different NMR models of barstar. The average excess mutual
information I ’ per residue pair is plotted here for various atomic
interactions, binned according to the Ca-Ca inter-residue distance, for
the crystal structure (1a19 [47]) and four NMR model structures (1btb
[43]) of barstar, using the full LJ+IS+HBSB potential. See Methods for
details.
doi:10.1371/journal.pcbi.1002168.g006

Figure 7. Mutual information by residue type. The average excess
mutual information per interaction, SI ’T, for all twenty amino acids. In
each case data was pooled from all applicable pairs of fluctuating
residues within a set of twelve small globular proteins (see Methods).
doi:10.1371/journal.pcbi.1002168.g007
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that have often been overlooked. In this work we have examined

these side-chain correlations and found that changes in fluctua-

tions in response to even single residue perturbations, such as a

point mutation or residue immobilization, are statistically

significant, widely distributed, and not easily intuited from the

protein’s sequence or structure. The correlations emerge indepen-

dently from several different sources: steric repulsions, solvation,

and hydrogen bonding and salt bridges. Together, these

interactions give rise to robust, statistically-significant correlations

that persist across the entire spatial extent of both barstar and

calmodulin.

In the calculation of the mutual information values, we model the

protein’s backbone as a rigid structure, enabling us to investigate the

degree of correlation among side-chain fluctuations alone. An

understanding of the role of backbone fluctuations is necessary,

however, to judge the biological relevance of these observed

correlations. Interestingly, we found that significant correlations are

present among the side-chains of barstar in several different

backbone structures, which collectively represent the range of its

typical conformational fluctuations in solution. Moreover, since the

time scales characteristic of backbone and side-chain motions are

likely well separated in many cases, communication via side-chain

rearrangements as we have described may often occur on an

effectively static backbone. However, upon larger backbone

rearrangement, such as hinge motions or partial unfolding events,

a significant fraction of the observed side-chain fluctuations are

likely to decouple, and thus the role of side-chain correlations in

allosteric regulation where large backbone rearrangements are

known to occur may be limited.

We also utilized a simple implicit solvent model to account for

the solvent’s mean field effect on the protein. While this approach

allows us to focus directly on the protein’s degrees of freedom, it

neglects solvent fluctuations. Physically realistic solvent fluctua-

tions are likely to influence side-chain fluctuations in the same way

that side-chain fluctuations influence one another, and the reverse

is also true. This potential for correlation between solvent and

side-chain fluctuations suggests that fluctuations of the solvent shell

may also convey information from one site on the protein to

another. Indeed, we observed that even the mean field effect of

solvation mediates the correlation of side-chain fluctuations, as

seen in Fig. 3(c). However, more and stronger correlations were

observed to arise from hydrogen-bonding and salt bridge

interactions (see Figs. 3(e) & 4), and it is largely through these

very effects that the solvent molecules would influence the side-

chains. While we are not able to explore the resulting implications

in our current work, the demonstration of allosteric effects

mediated through solvent fluctuations would be quite intriguing.

Finally, it is important to note that the magnitude of the

correlations measured here is only a fraction of the total

magnitude possible among the side-chains, since correlated

fluctuations within each individual rotameric well, which are not

included in our correlation metric, are sure to contribute

significantly, perhaps even to a greater degree, to the overall

amount of correlation. Even so, correlations amongst inter-

rotameric fluctuations alone reveal much about the way side-

chain fluctuations give rise to long-range correlations within the

folded protein. The role of these robustly correlated side-chain

fluctuations in allosteric regulation should be considered further.

Methods

Model
Our model is defined by an energy function that depends on the

atomic coordinates of the protein’s residues. The only degrees of

freedom in our model are the dihedral angles x~hzw, where h
represents the ideal angle of each rotameric state taken from an

empirical rotamer library [33], and w describes torsional variations

within the potential energy well of each rotamer. Thus the energy

function depends on the full set of h and w values (denoted H and

W) for all residues,

E(H,W)~EdihedralszEnon{bondedzEimplicit solvent: ð5Þ

The potential Edihedrals is piecewise quadratic in w, biasing

dihedral angles towards their ideal h values; Enon{bonded includes

a Lennard-Jones function that governs both repulsive sterics (with

a hard-sphere cutoff at 0.75 times the van der Waals radius) and

attractive van der Waals interactions, as well as hydrogen-bonding

and salt-bridge terms; and Eimplicit solvent accounts for solvation

using an approach based on the solvent-accessible surface area. A

detailed description of the model is given in [21].

Structures
The analysis outlined in this paper requires a good structural

model of the protein considered. For barstar, we use a crystal

structure of the mutant C82A at 2.8 Å resolution (1a19 [47]),

except for the analysis in Fig. 6 using different NMR structural

models, where the structure 1btb [43] was used. In this case four

models (numbers 3, 4, 16, and 29) were chosen to represent the

structural variety within the full set of NMR models, as assessed by

the RMSD values calculated between all possible pairwise

combinations of the four models and compared to those of the

full ensemble.

For calmodulin, a crystal structure at 2.2 Å was used (3cln [39]).

In our calculations the positions of calcium ions and the side-

chains bound to them were held fixed. The results in Fig. 7 also

included the following proteins: eglin c (1cse [48]), GB3 (1igd

[49]), protein L (1hz6 [50]), PYP (1f9i [51]), PZD2 (1r6j [52]),

SH2 (1d1z [53]), CspA (1mjc [54]), ubiquitin (1ubq [55]), and

tenascin (1ten [56]).

Sampling
Side chain configurations were sampled from the Boltzmann

distribution using Metropolis Monte Carlo techniques. In order to

calculate the highly converged measurements of �SS(res)
ij needed to

produce the results shown in Figs. 1 & 5(b), additional adaptive

umbrella sampling techniques and biased sampling procedures

were utilized [21,57]. Averages at 300 K were finally constructed

from such calculations by summing results for different energies

with appropriate statistical weights.

Statistical tests
Significance of D�SS(res)

i . D�SS(res) values in Figs. 1 & 5(b) were

color-coded only if they passed Student’s t-test for significance at

the 90% level, using the two-sided Student’s t statistic. Mean �SS(res)

values were calculated using a Wang-Landau [57] bias for five sets

of five trials each, first for the unperturbed wild-type protein and

then for the same protein perturbed either by freezing or by

mutating one of its side-chains. Averages and standard deviations

were calculated across the five sets and compared to determine the

significance. For Fig. 1, trials ran for 200,000 MC sweeps, whereas

for Fig. 5(b), trials ran for 50,000 MC sweeps.

Significance of mutual information. The calculation of

both the excess mutual information I ’ij and the signal-to-noise

ratio of the mutual information Iij(n)=I
(ref)
ij (n) requires an estimate

of the spurious mutual information I
(ref)
ij (n) resulting from finite
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sampling (see Eq. 4). We constructed I
(ref)
ij (n) by sampling

rotameric states from a non-interacting reference system defined

by the energy function

E(H)~{kBT
X

i

ln p(hi)

Here, p(hi) is the probability of observing rotamer state hi in the

fully interacting model. By construction, these single-residue

distributions are then identical in the reference system,

p(ref)(hi)~p(hi). Rotameric fluctuations of distinct residues,

however, are statistically independent in the reference system,

p(ref)(hi,hj)~p(hi)p(hj), so that I
(ref)
ij (n) vanishes in the limit of

complete sampling, n??.

For each interacting trial run, the probabilities p(hi) associated

with each rotameric state were recorded and used to bias its

corresponding non-interacting reference run. Excess mutual

information values and signal-to-noise ratios were then calculated

independently for each pair of interacting and non-interacting, but

biased, trial runs. Presented results are averages of these I ’ij and

Iij(n)=I
(ref)
ij (n) values.

For the results shown in Figs. 3, 4, 5(a), & 6, Iij was calculated in

five trial runs of 50,000 MC sweeps initiated from randomly-

chosen side-chain configurations. Subsequently, I
(ref)
ij was com-

puted from five independent runs of a biased, noninteracting

reference system, also initiated from randomly-chosen side-chain

configurations. As described above, the lengths and biases of these

reference runs were chosen to produce samples equivalent in size

and in single-rotamer distribution to the number and distribution

of sterically valid configurations generated in the corresponding

simulation of the interacting system. The signal:noise ratio and the

excess mutual information were calculated independently for each

trial; averages over those trials are presented in the figures. The

results shown in Fig. 5(a) and Fig. 6 were calculated using the full

LJ+IS+HBSB potential.

For Figs. 4 & 6, the above results were collected into inter-

residue distance bins of 4 Å wide for barstar and 8 Å wide for

calmodulin, except for the first two bins which were kept 4 Å wide

in order to highlight the peak at short distances of &6 Å.

All images were made using MacPyMOL [58].
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