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Abstract: Our investigation intended to analyze the chemical composition and the antioxidant activity
of Carrichtera annua and to evaluate the antiproliferative effect of C. annua crude and phenolics extracts
by MTT assay on a panel of cancerous and non-cancerous breast and liver cell lines. The total flavonoid
and phenolic contents of C. annua were 47.3 ± 17.9 mg RE/g and 83.8 ± 5.3 mg respectively. C. annua
extract exhibited remarkable antioxidant capacity (50.92 ± 5.64 mg GAE/g) in comparison with BHT
(74.86 ± 3.92 mg GAE/g). Moreover, the extract exhibited promising reduction ability (1.17 mMol
Fe+2/g) in comparison to the positive control (ascorbic acid with 2.75 ± 0.91) and it displayed some
definite radical scavenging effect on DPPH (IC50 values of 211.9 ± 3.7 µg/mL). Chemical profiling of
C. annua extract was achieved by LC-ESI-TOF-MS/MS analysis. Forty-nine hits mainly polyphenols
were detected. Flavonoid fraction of C. annua was more active than the crude extract. It demonstrated
selective cytotoxicity against the MCF-7 and HepG2 cells (IC50 = 13.04 and 19.3 µg/mL respectively),
induced cell cycle arrest at pre-G1 and G2/M-phases and displayed apoptotic effect. Molecular
docking studies supported our findings and revealed that kaempferol-3,7-O-bis-α-L-rhamnoside and
kaempferol-3-rutinoside were the most active inhibitors of Bcl-2. Therefore, C. annua herb seems
to be a promising candidate to further advance anticancer research. In extrapolation, the intake of
C. annua phenolics might be adventitious for alleviating breast and liver malignancies and tumoral
proliferation in humans.
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1. Introduction

At the moment, cancer is the second cause of mortality and morbidity worldwide [1,2]. It accounts
for 9.6 million cases of deaths in 2018 as estimated by WHO [3,4]. Based on the incident rate, the most
common neoplasms in women are breast, cervical, colorectal, thyroid and lung tumors. On the other
hand, liver, prostate, colorectal, stomach and lung are the most common types of cancer in men [4].
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The rapid creation and growth of abnormal cells in neoplasms is correlated to the un-controlled
cell hyper-proliferation which has several hallmarks, such as resistance to apoptosis, insensitivity
to antigrowth signals, enabling angiogenesis, activation of tissue invasion and metastasis [5–7].
Metastases are the major cause of death [5]. Due to the increase of cancer cases and consequently
the rise in mortality rates, Cancer therapy is an ongoing challenge with better treatment protocols
needed. Until now, surgery combined with radio and chemotherapies are the most impactful treatment
approach. Regrettably, resistance to various chemotherapies and a lack of drug selectivity and toxicity
are also problematic. Hence, there is an increasing need for new treatment strategies and more effectual
antineoplastic agents to combat malignant tumors [2,3].

Natural products are promising candidates as anticancer agents for being more available and
less harmful [1,2]. Another possibility is the combination of existing chemotherapeutics with plant
polyphenols [3]. Polyphenols have emerged as one of the most abundant natural products with a
relevant antioxidant activity therefore, they oppose ROS formation and attenuate oxidative DNA
damage and mitochondrial dysfunction by acting as chemo-preventive agents. Moreover, several
polyphenols have reported to induce cell cycle arrest in different malignant cell lines [1]. Plant derived
flavonoids have been validated to be efficient chemotherapeutic candidates against numerous cancers
via modulation of apoptosis. The main mechanisms involved are the intrinsic and extrinsic activation
of apoptotic proteins, and induction of DNA damage besides their interference with multiple signal
transduction in the process of carcinogenesis and consequently obstruct proliferation, angiogenesis
and metastasis [1,2].

Family Brassicaceae (Cruciferae) is composed of 350 genera including about 3500 species [8]. Species
of family Brassicaceae are considered as a good source of food, vegetable oils and spices [9]. Additionally,
Family Brassicaceae accumulates different groups of phytochemicals such as phenolics [10,11],
flavonoids [12], alkaloids [13] and glucosinolates [14]. These phytochemicals contribute to the
reported antioxidant, antimicrobial, anti-inflammatory [15], anticancer [6], and cardiovascular protective
activities [10]. Carrichtera annua L. is a plant belonging to family Brassicaceae. Despite several Brassicaceae
species have been extensively subjected to phytochemical studies and investigations on their medicinal
value in ameliorating human and animal diseases [16], there are limited reports concerning C. annua.
Indeed, as far as we know, there are few studies on the chemical constituents of C. annua and a number of
flavonoid derivatives were reported [17–21] and only article concerning the biological activity of C. annua
where the anticomplement activity of the plant was reported [21]. On the basis of the aforementioned
considerations, the present work involves the estimation of total phenolic and flavonoid contents,
and antioxidant activity of C. annua. In addition, the whole plant is investigated for its chemical
constituents using LC-ESI-TOF-MS/MS technique. Moreover, the antiproliferative effect of C. annua
extract as well as its flavonoid rich fraction was assessed. The molecular docking tool was utilized
to determine the most active compounds by inspecting their interaction with active cavities of the
target receptors.

2. Materials and Methods

2.1. Plant Material

Carrichtera annua (L.) DC Cruicferae (Brassicaceae) parts were collected from Sinai, Egypt.
Authentication of the plant was done by Prof. Dr Elsayeda M. Gamal El-Din, Department of Botany,
Faculty of Science, Suez Canal University. A voucher specimen of the plant was placed in the Herbarium
of Pharmacognosy Department, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt (under
registration number SAA-159). The collected plant was dried at room temperature and then pulverized.

2.2. Preparation of Plant Extract

Two hundred and fifty grams of powdered aerial part of C. annua were extracted with ethanol till
exhaustion. The extracts were combined, dried under vacuum to give 10.94 g of brownish-green residue.
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2.3. Determination of Total Phenolic Content

Quantification of total phenolics of the C. annua (L.) DC extract was achieved
spectrophotometrically following the method described by the Saeed research team [22] with slight
modification. A 200 µg/mL solution of the C. annua in methanol was prepared. The extract solution
(0.5 mL) and 10-fold diluted Folin–Ciocalteu reagent (2.5 mL) were mixed together. Then 75 mg/mL
sodium carbonate solution (2 mL) was added. The reaction mixture was kept for 10 min at 50 ◦C.
Using gallic acid as a standard, the UV absorbance was recorded at λ 630 nm against blank using
(Milton Roy, Spectronic 1201, Houston, TX, USA). The result was obtained as gallic acid equivalents
(mg·GAE/g dry extract)

2.4. Estimation of Total Flavonoid Content

Total flavonoids were estimated by AlCl3 method as mentioned by Saeed and coworker [22].
A solution of final concentration 1 mg/mL was prepared by dissolving the crude extract in methanol.
0.3 mL of the extract solution was diluted with 3.4 mL of methanol (30% v/v) and mixed with 0.15 mL
0.5 M NaNO2 and 0.3 M AlCl3.6H2O (0.15 mL of each). The mixture was subjected to vigorous shaking
and incubated for 5 min. at 20 ◦C. Then 1 mL of 1M NaOH solution was added. By applying rutin as
a standard, the UV absorption was recorded spectrophotometrically at λ 510 nm using (Milton Roy,
Spectronic 1201, Houston, TX, USA). The result was obtained as rutin equivalent (mg·RE/g dry extract).

2.5. Evaluation of Antioxidant Activity

2.5.1. DPPH Free Radical Scavenging Activity

The free radical-scavenging activity of C. annua crude extract was evaluated by using the method
reported by Fuochi and coworkers [23]. In short, a 100 µM solution of 2,2-diphenyl-1-picrylhydrazyl
(DPPH) radical freshly prepared in methanol then stored at 10 ◦C in dark. The extract under investigation
was prepared (at the various concentrations). An aliquot of 70 uL of the extract solution was added to
DPPH solution (3 mL). The reaction mixture was incubated in dark for 30 min.at room temperature.
The absorbance of the mixture was recorded at λ 515 nm with a UV-visible spectrophotometer (Milton
Roy, Spectronic 1201, Houston, TX, USA). The control absorbance (only DPPH radical solution) and
butylated hydroxytoluene (BHT) as a standard were also estimated. The measurements were calculated
as the average of three replicates. The inhibition % (PI) of the DPPH radical was determined as
previously reported from the formula:

PI = [{(AC−AT)/AC} × 100] (1)

where AC represents the control absorbance at and AT represents sample + DPPH absorbance.
The 50% inhibitory concentration (IC50) was calculated from the dose/response curve using

Graphpad Prism software (San Diego, CA, USA).

2.5.2. Ferric Reducing Antioxidant Power (FRAP) Assay

The FRAP of C. annua ethanol extract was determined using the procedure described by Nsimba in
2008 [24]. The mechanism of the assay based on electron transfer process at low pH, where the colourless
complex (Fe3+-TPTZ) is reduced to the blue colored complex (Fe2+-tripyridyltriazine). The reaction
was monitored by measuring the change in absorbance at λ 593 nm using (Milton Roy, Spectronic 1201,
Houston, TX, USA). 40 µL of the extract solution was diluted with 0.2 mL of distilled water and mixed
with 1.8 mL of warm freshly prepared FRAP reagent prepared as previously described [24]. The results
were illustrated as the concentration of antioxidants having ferric reducing ability equivalent to that of
1 mM FeSO4, expressed as m Mol Fe+2 equivalent/g dry sample. The utilized positive controls were
ascorbic acid and Butylated hydroxytoluene (BHT; Sigma-Aldrich, St. Louis, MO, USA).
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2.5.3. Total Antioxidant Capacity (TAC) Assay

The total extract of C. annua were evaluated for total antioxidant capacity (TAC) by
spectrophotometrical determination using phosphomolybdenum assay. The procedure was executed
as previously described by Saeed and his research team [22] with some modification. In Eppendorf
tube; 0.1 mL of a 1 mg/mL extract (as methanolic solution) was added to reagent solution (1 mL).
The tubes were capped, incubated in a water bath at 95 ◦C (for 90 min). The reaction mixture was
then cooled to room temperature. Measurement of the absorbance was performed by UV-visible
spectrophotometer using (Milton Roy, Spectronic 1201, Houston, TX, USA) at λ 695 nm against blank.
TAC results were calculated (mg/g of dry sample) and expressed as gallic acid equivalents. Butylated
hydroxytoluene (BHT; Sigma-Aldrich, St. Louis, MO, USA) was used as a reference compound.

2.6. Preparation of Phenolics Extract of C. annua

Phenolic compounds of C. annua were extracted using the method described in El-Shaer and
coworkers [25]. In brief, one hundred and fifty grams of powdered aerial parts of C. annua were
treated with an aqueous solution of 5% Na2CO3. After one hour, the mixture was filtered and washed
with distilled water to ensure complete extraction. The filtrate was diluted with distilled water and
neutralized by HCl then partitioned between ethyl acetate and n-butanol. The obtained extracts
were combined together then concentrated under reduced pressure to afford 4.03 g of C. annua total
phenolics extract.

2.7. Preparation of the Sample and LC-HRMS Analysis

As previously described [26], the mobile phase working solution consisted of DI-Water:
Acetonitrile: Methanol in a ratio of 50:25:25. Fifty mg of weighted dry methanolic extract was
dissolved in one ml of MP-WS then vortex for 2 min. After that, ultra-sonication for 10 min followed
by centrifugation for 10 min at 10,000 rpm were performed. 20 µL of the stock (50/1000 µL) was diluted
with reconstitution solvent (1000 µL). At last, the concentration used for injection was 1 µg/µL where
25 µLs were injected in both positive and negative modes. Additionally, 25 µL of mobile phase working
solution was used for injection as a blank sample. The used mobile phases consisted of: (A) 5 mM
ammonium formate buffer pH 3 containing 1% methanol and used for positive TOF MS mode; (B) 5 mM
ammonium formate buffer pH8 containing 1% methanol used for negative TOF MS mode; in addition to
mobile phase (C) composed of 100% acetonitrile used for positive and negative modes. The pre column
used was In-Line filter disks (Phenomenex, 0.5 µm × 3.0 mm) whereas, the column was X select HSS T3
(Waters, 2.5 µm, 2.1 × 150 mm) and the flow rate was 0.3 mL/min. Data processing was performed via
MS-DIAL3.52. Feature (peaks) extraction from total ion chromatogram was achieved using Master view
software, according to the following criteria: features intensities of the sample-to-blank should be more
than 5 and features should have Signal-to-Noise not less than 5 (Non-targeted analysis). Identification
of compounds was achieved via accurate mass measurements, MS/MS data, exploration of specific
spectral libraries and public repositories for MS-based metabolomic analysis (MassBank NORMAN,
MassBank MoNA, PubChem), retention times as well as data comparison with the literature.

2.8. Biological Assays

2.8.1. Cell Culture Treatment

A panel of cancerous and non-cancerous breast and liver cell lines; MCF-7, MDA_MB-231,
MCF-10A, HepG2 and THLE2 were maintained in RPMI-1640/DMEM (Sigma-Aldrich, St. Louis, MO,
USA). Both types of media were supplemented with 2mML-glutamine (Lonza, Belgium) and 10% FBS
(Sigma, St. Louis, MO, USA), 1% Penicillin/Streptomycin (Lonza, Belgium). Incubation was performed
for all cells at 37 ◦C in 5% CO2 atmosphere (NuAire, Lane Plymouth, MN 55447, USA) according to the
routine tissue culture procedure [27].
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2.8.2. Cytotoxicity Using the MTT Assay

Cells were plated at a density of 5000 cells in triplicates in a 96-well plate. On the next day,
treatment of the cells was performed with the indicated compound/s at the specified concentrations in
100 µL media as a final volume. Cell viability was considered after 72 h using MTT solution (Promega,
Madison, WI, USA) [28]. The reagent (20 µLs) was added to each well followed by incubation of the
plate for 3 h and fluorescence was subsequently measured (570 nm) using a plate reader, then IC50

values were assessed using the GraphPad prism 7 [29,30].

2.8.3. Annexin V/PI and Cell Cycle Analysis

Apoptosis rate in cells was quantified using annexin V-FITC (BD Pharmingen, San Diego, CA,
USA). Cells were seeded into 6-well culture plates (3 × 105 cells/well); overnight incubation was done
at 37 ◦C, under 5% CO2. Cells were then treated with indicated compounds for 48h. Next, media
supernatants and cells were collected, followed by washing with ice-cold PBS. Next, cells were
suspended in 100 µL of annexin binding buffer solution (25 mM CaCl2, 1.4 M NaCl, and 0.1 M
Hepes/NaOH, pH 7.4). This was followed by incubation for 30 min in the dark with annexin V-FITC
solution (1:100) and PI at 10 µg/mL concentration for 30 min. Stained cells were then acquired by
Cytoflex FACS machin. Data was analyzed using cytExpert software. This assay was carried out as
previously published in [31–33].

2.8.4. RT-PCR

Treatment of MCF-7 cells with phenolics extract of C. annua (IC50 = 13.04 µg/mL) was done for
72 h. After completion of the treatment, collection of the cells and extraction of total RNA were
performed using Rneasy® Mini Kit (Qiagen, Hilden, Germany) as instructed by manufacturer. cDNA
synthesis was executed using 500 ng of RNA using i-Script cDNA synthesis kit (BioRad, Hercules,
CA, USA) according to the instructions of the manufacturer. Real-time RT-PCR reactions composed
of 25 µL Fluocycle®II SYBR® (Euroclone, Milan, Italy), 1.5 µL of both 10 µM forward and reverse
primers, 3 µL cDNA, and 19 µL of H2O. Performance of the reactions was done for 35 cycles using
temperature profiles as follows: for initial denaturation (95 ◦C for 5 m); for denaturation (95 ◦C for
15 min); Annealing (55 ◦C for 30 min), and finally extension (72 ◦C for 30 min) [31–33]. At the end, the
Ct values were collected, and the relative folds of changes between all the samples. Primer used were
listed in Table 1.

Table 1. Primers used for real-time RT-PCR.

Primer Sequence

β-Actin FOR: 5’-GCACTCTTCCAGCCTTCCTTCC-3’
REV: 5’-GAGCCGCCGATCCACACG-3’

P53 FOR: 5’-CTTTGAGGTGCGTGTTTGTG-3’
REV: 5’-GTGGTTTCTTCTTTGGCTGG-3’

Bcl-2 FOR: 5’-GAGGATTGTGGCCTTCTTTG-3’
REV: 5’-ACAGTTCCACAAAGGCATCC-3’

PUMA FOR: 5’-GAGGAGGAACAGTGGGC-3’
REV: 5’-CTAATTGGGCTCCATCTCGG-3’

BAX FOR: 5’-TTTGCTTCAGGGTTTCATCC-3’
REV: 5’-CAGTTGAAGTTGCCGTCAGA-3’

Casp-3 FOR: 5’-TGGCCCTGAAATACGAAGTC-3’
REV: 5’-GGCAGTAGTCGACTCTGAAG-3’

Casp-8 FOR: 5’-AATGTTGGAGGAAAGCAAT-3’
REV: 5’-CATAGTCGTTGATTATCTTCAGC-3’

Casp-9 FOR: 5’-CGAACTAACAGGCAAGCAGC-3’
REV: 5’-ACCTCACCAAATCCTCCAGAAC-3’
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2.9. Simulated Molecular Docking

All identified derivatives were screened for their binding activities towards the “B-cell lymphoma
2 (Bcl-2)” protein, its crystal structure with the co-crystallized ligand was freely accessible from the
protein data bank. Processes concerning preparation of the protein, optimization of the ligands and
software validation are implemented following the regular work as published by Nafie et al., 2019 [34].
The “MOE-2019 software” was used for molecular docking study. Each ligand-receptor complex was
tested for binding interaction analysis with the binding energy (Kcal/mol), 3D images were performed
using Chimera as a visualizing software [35].

3. Results and Discussion

3.1. Total Phenolic and Flavonoid Content

Phenolic compounds are widespread phytoconstituents and their main sources in human diet are
fruits and vegetables. The same bioactive polyphenols, such as hydroxycinnamic acid derivatives,
flavonoids and proanthocyanidins are also obtainable from forest trees [22]. Therefore, determination
of the polyphenols content in the extract; the total phenols and total flavonoids is reasonable, in order to
estimate the potential antioxidant capacity of C. annua crude extract. Total phenolic content of C. annua
extract was estimated spectrophotometrically using Folin–Ciocalteu reagent. Based on the calibration
curve of gallic acid, the obtained linear equation obtained was Y= 0.0011X + 0.0131 (R2 = 0.9946).
The total phenolic content of C. annua methanolic extract was 83.8 ± 5.3 mg GAE/g of plant extract.
Total flavonoid content in C. annua extract was obtained spectrophotometrically using AlCl3 reagent
and rutin as standard. Derived from the calibration curve of rutin, the obtained linear equation
was; Y = 0.0011X + 0.0131 (R2 = 0.9946). The total flavonoids content of C. annua methanolic extract
estimated from the above equation was 47.3 ± 17.9 mgRE/g of plant extract (see Figure 1).

Figure 1. C. annua total phenolics contents (TPC) expressed as gallic acid equivalent per gram of dry
weight GAE/g dw (83.8%) and total flavonoids contents (TFC) expressed as rutin equivalent per gram
of dry weight RE/g dw (47.3%).
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3.2. Evaluation of In Vitro Antioxidant Activity of C. annua Extract

Flavonoids and phenolic acids are characterized by being electron or hydrogen donors, reducing
and metal chelating agents. These properties arise from different conjugations and varying numbers of
hydroxyl groups in their structures [16]. Therefore, due to the complexity of natural phytoconstituents
and different scavenging modes of ROS (reactive oxygen species), a group of assays were used
simultaneously in order to judge the antioxidant activity of C. annua extract, [36]. In the present study,
three indicative tests (DPPH, FRAP, TAC) were applied to analyze the antioxidant power of C. annua
crude extract. Figure 2 demonstrates that the crude extract had definite scavenging activity on DPPH
exhibiting a dose-dependent scavenging rate. As shown in Figure 3a, C. annua crude extract with IC50

values of 211.9 ± 3.7 µg/mL revealed notable activities in DPPH radical scavenging assay compared to
the positive control (BHT IC50 = 100 ± 2.1 µg/mL.). Results of FRAP (Figure 3b) demonstrates that
C. annua had promising reduction ability with 1.17 mMol Fe+2 /g in comparison to the positive control
(Ascorbic acid with 2.75 ± 0.91 respectively). Figure 3c demonstrates the total antioxidant capacity
of C. annua extract and BHT (standard synthetic antioxidant) assessed by phosphomolybdenum test.
C. annua extract exhibited remarkable antioxidant potential (50.92 ± 5.64 mg GAE/g) in comparison
with BHT (74.86 ± 3.92 mg GAE/g).

Figure 2. The scavenging rate (%) of 2,2-diphenyl- 1-picrylhydrazyl (DPPH) by C. annua crude extract.
All of the values in the figure are expressed as means (%) and SD of triplicated experiments.

Figure 3. Cont.
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Figure 3. Antioxidant activity of C. annua crude extract (a) The IC50 value of 2,2-diphenyl-
1-picrylhydrazyl (DPPH) radical scavenging assay, (b) ferric-ion reducing antioxidant power (FRAP)
assay and (c) total antioxidant capacity (TAC) assay.

3.3. LC-ESI-TOF-MS/MS Analysis

Herein, Carrichtera annua was proven to be a rich source of phenolics and flavonoids (83.8 ± 5.3 mg
GAE/g and 47.3 ± 17.9 mg RE/g respectively). It demonstrated promising antioxidant potential by
exhibiting notable free radical scavenging activity (IC50 = 211.9 ± 3.7 µg/mL) and ferric reduction power
(17 mMol Fe+2/g) as well as good antioxidant potential (50.92 ± 5.64 mg GAE/g). As a consequence,
C. annua crude extract was investigated by LC-ESI-TOF-MS/MS (Agilant, Santa Clara, CA, USA) in
order to fully understand the chemical diversity of its phytoconstituents including phenolics and other
metabolites accountable for the estimated antioxidant activity of the plant. Data are represented in
Table 2 and LC-ESI-TOF-MS/MS profile is shown in (Supplementary Materials Figures S1–S4). Tentative
identification of the individual components was achieved by comparison of their chromatographic
behavior, m/z values in the total ion chromatogram (TIC) and base peak chromatogram (BPC) profile as
well as their fragmentation pattern with those described in the literature.

In particular, 49 hits were identified in C. annua (Table 2, Figure 4) belonging to different metabolic
classes; mainly phenolics. Fifteen flavonol derivatives have been detected in C. annua extract among which
quercetin-3-O-arabinoglucoside (peltatoside), quercetin 3-O-β-D-glucopyranosyl- (1–>2)-arabinopyranoside,
quercetin 3-O-[(6 sinapoyl-β-glucopyranosyl)(1–>2)-β-arabinopyranoside]-7-O-β-glucopyranoside, quercetin
3-O-[(6-feruloyl-β-glucopyranosyl)-(1–>2)-β-arabinopyranoside]-7-O-β-glucopyranoside, quercetin 3-O-
[(6-sinapoyl-β-glucopyranosyl)-(1–>2)-β arabinopyranoside, kaempferol-3 rutinoside and isorhamnetin
have been reported previously in C. annua [17,19–21]. It is noteworthy to mention that, despite of
quercetin-7-O-arabinosyl-3-O glucoside and quarecetin-3-O-glucoside [21] were isolated from C. annua,
they were not detected in our extract, instead we recorded quercetin-4′-O-glucoside. In addition to flavonols,
luteolin, and apigenin flavone aglycones and glycosides were recorded in the present study. Moreover,
four anthocyanins (cyanidin-3-glucoside, petunidin-3-O-β-glucopyranoside, peonidine-3-O-glucoside and
malvidin-3-galactoside) have been reported for the first time in C. annua. Ferulic, p coumaric, caffeic and
sinapic acids were detected along with other organic acids.
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Figure 4. Cont.
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Figure 4. Chemical structures of the identified compounds by LC-ESI-TOF-MS/MS.
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Glucosinolates (GSs) are sulfur- and nitrogen-containing compounds widely distributed in
Brassicaceae plants [37]. Five GSs (progoitrin, sinigrin, glucotropaeolin, 4-hydroxyglucobrassicin and
9-(methylsulfonyl) hydroxy nonyl glucosinolate) were detected in the current study. On the other
hand, gluconapin, brassicanapin, erucin, glucoberteroin, glucoerucine and glucoraphanin which were
reported in Spanish and Australian C. annua [38,39] were not detected.

Alkaloids are nitrogenous compounds synthesized from amino acids and have been reported
in several Brassicaceae plants [13]. In the present investigation, four nitrogenous compounds
particularly of indole type (1H-indole-3-carboxylic acid, 3-formyl indole, 2-(1H-indol-3-yl) acetic acid
and 1-methoxy-1H-indole-3-carbaldehyde) which were previously reported in Isatis tinctoria; a plant
belongs to family Brassicaceae [40] were also recorded in this study. No tropane alkaloids were detected
in this study which coincide with Brock and coworker [41]. However, our findings went against them
in the presence of calystegines since there were none of them were reported. Interestingly, trigonelline
was recorded for the first time in a member of family Brassicaceae.

Tocotrienols and tocopherols are naturally occurring terpenes present in Brassicaceae plants
and have diverse biological activities [13]. Our results revealed the presence of δ- tocotrienol and
β-tocotrienol in C. annua.
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Table 2. Metabolites identified in C. annua crude extract using LC-ESI/TOF/MS/MS.

Compound
No

Rt
(Min.) Proposed Compound Molecular

Formula
Precursor

Type
Calcd. m/z for

Precursor
Obs. m/z for

Precursor MS/MS Ref.

1 1.05 Citric acid C6H8O7 [M−H]− 191.0192 191.0193 173, 111 [42]
2 1.18 Malic acid C4H6O5 [M−H]− 133.0137 133.0141 155, 71 [42,43]
3 1.24 Methanesulfonic acid CH4O3S [M−H]− 94.9803 94.9807 80 [44]
4 1.39 Trigonilline C7H7NO2 [M+H]+ 138.0550 138.0551 94, 92 [45]
5 1.44 D-(-)-Quinic acid C7H12O6 [M−H]− 191.0556 191.0556 173, 147, 85 [46,47]
6 2.02 Caffeoyl-quinic acid C16H18O9 [M−H]− 353.0872 353.0868 191, 179, 135 [42]
7 2.23 Glucotropaeolin C14H19NO9S2 [M−H]− 408.0423 408.0268 408, 162, 195, 246, 228 [48]
8 2.98 1H-indole-3 carboxylic acid C9H7NO2 [M−H]− 160.0399 160.0399 116, 142, 143 [40,49]
9 3.22 Progoitrin C11H19NO10S2 [M−H]− 388.0372 388.0370 388, 274, 259, 210, 192 [50,51]

10 4.18 3-formylindole C9H7NO [M+H]+ 146.0606 146.0608 118 [40,49]
11 4.60 * Quercetin-3-O-arabinoglucoside C26H28O16 [M−H]− 595.1299 595.1303 462, 433, 301, 300, 299 [21,52]

12 4.68 * Quercetin
3-O-β-D-glucopyranosyl-(1→2)-arabinopyranoside C26H28O16 [M−H]− 595.1299 595.1306 301, 311, 433 [19,52]

13 4.75 2-(1H-indol-3-yl) acetic acid C10H9NO2 [M+H]+ 176.0712 176.0736 176, 159, 158 130, 118 [40,49]
14 5.10 Sinigrin C10H17NO9S2 [M−H]− 358.0266 358.0569 358, 278, 275, 259, 241 [50]
15 5.29 Kaempferol 3, 7 di-glucoside C27H30O16 [M−H]− 609.1456 609.1460 489, 447, 285 [42]

16 5.69 Quercetin3-O- [(6 sinapoyl-β-glucopyranosyl)
(1→2)-β-arabinopyranoside]-7-O-β-glucopyranoside C43H48O25 [M−H]− 963.2406 963.2443 801, 595, 463, 385 [17,20,42]

17 5.70 Quercetin3-O-[(6-feruloyl-β-glucopyranosyl)
-(1→2)-β-arabinopyranoside]-7-O-β-glucopyranoside C42H46O24 [M−H]− 933.2301 933.2311 771, 739, 301 [17,18,42]

18 5.93 1-methoxy-1H-indole-3-carbaldehyde C10H9NO2 [M+H] + 176.0712 176.0749 161, 133, 117 [40,49]

19 6.09 4-Hydroxyglucobrassicin C16H20N2O10S2 [M−H]− 463.0481 463.1205 463, 291, 275, 259, 241,
195 [48,53]

20 6.46 9(methylsulfonyl)hydroxy nonyl glucosinolate C17H33NO12S3 [M−H]− 538.1087 538.8553 259, 275, 291 [37]
21 6.46 Kaempferol-3 rutinoside C27H30O15 [M−H]− 593.1506 593.1503 285, 447 [19,42]
22 6.66 Syringaldehyde C9H10O4 [M−H]− 181.0501 181.0511 181, 151 [54]
23 6.84 Quercetin-4’-glucoside C21H20O12 [M+H]+ 465.1033 465.1028 465, 303 [55]
24 6.91 Luteolin-7-O-glucoside C21H20O11 [M−H]− 447.0927 447.09366 447, 285 [56]
25 6.94 Kaempferol-3,7-O-bis-α-L-rhamnoside C27H30O14 [M−H]− 577.1557 577.1576 431, 285 [57]
26 6.95 Quercetin 3-O-galactoside C21H20O12 [M+H]+ 465.1033 465.1049 465, 303 [58]
27 6.97 Quercetin-3-D-xyloside C20H18O11 [M−H]− 433.0771 433.0772 301, 300, 271, 151 [52]
28 6.99 * Cyanidin-3-glucoside C21H21O11 [M]+ 449.1084 449.1075 449, 287 [59–61]
29 7.00 * Kaempferol-3-O glucoside C21H20O1 [M+H]+ 449.1084 449.1085 449, 287 [58,62]

30 7.09 Quercetin 3-O-[(6-sinapoyl-β-glucopyranosyl)-(1→2)-β
arabinopyranoside C37H38O20 [M−H]− 801.1878 801.1855 801, 595, 300 [17]

31 7.23 Petunidin-3-O-β-glucopyranoside C22H23O12 [M]+ 479.1190 479.116 317, 302 [63]
32 7.75 Vitexin C21H20O10 [M−H]− 431.0978 431.0989 431, 311, 283, [64]
33 7.77 Cosmosiin C21H20O10 [M+H]+ 433.1135 433.1154 433, 271 [65]
34 7.79 Syringetin-3-O-glucoside C23H24O13 [M−H]− 507.1139 507.1134 507, 345, 179 [66]



Antioxidants 2020, 9, 1286 15 of 27

Table 2. Cont.

Compound
No

Rt
(Min.) Proposed Compound Molecular

Formula
Precursor

Type
Calcd. m/z for

Precursor
Obs. m/z for

Precursor MS/MS Ref.

35 7.97 Peonidine-3-O-glucoside C22H23O11 [M]+ 463.1240 463.1223 463, 301, 286 [59,60]
36 8.14 Malvidin-3-galactoside C23H25O12 [M]+ 493.1346 493.1358 493, 331 [59,60]
37 8.31 Caffeic acid C9H8O4 [M−H]− 179.0344 179.0343 179, 151, 136, 133 [67]
38 8.69 Hesperetin C16H14O6 [M−H]− 301.0712 301.0711 301, 283, 271, 258 [68]
39 8.72 Quercetin C15H10O7 [M+H]+ 303.0505 303.0457 303, 153 [69]
40 9.13 Isorhamnetin C16H12O7 [M−H]− 315.0505 315.0513 315, 300, 151 [20,70]

41 9.39 Luteolin C15H10O6 [M−H]− 285.0399 285.0402 285, 267, 257, 241, 223,
197, 175 [64,71]

42 9.40 Kaempferol C15H10O6 [M−H]− 285.0399 285.0392 285, 257, 241, 223, 197,
151 [64,71]

43 9.60 P -coumaric acid C9H8O3 [M−H]− 163.0395 163.0389 163, 119 [72]
44 9.88 Sinapic acid C11H12O5 [M−H]− 223.0606 223.0964 223, 208, 179, 164 [42]
45 10.23 Ferulic acid C10H10O4 [M−H]− 193.0501 193.0503 193, 178, 149 [42]
46 10.68 Apigenin C15H10O5 [M−H]− 269.0450 269.0458 269, 241, 225, 181, 169 [64]
47 11.23 Kaempferide C16H12O6 [M+H]+ 301.0712 301.0712 301, 286 [73]
48 24.77 δ- tocotrienol C27H40O2 [M+H]+ 397.3107 397.3115 397, 201, 187 [74]
49 26.89 β- tocotrienol C28H42O2 [M+H]+ 411.3263 411.3271 411, 205, 191, 151 [74]

* Interchangeable values.
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3.4. Biology

3.4.1. Cytotoxicity Using the MTT Assay

Evidence of the anticancer activities of family Brassicaceae plants against various types of
malignancies have been acquired in numerous biological investigations [16,75–79]. These antitumor
activities are mediated by different mechanisms such as antioxidant, cell cycle arrest, induction
of apoptosis and prevention of angiogenesis and metastasis [80,81]. Candidate phytoconstituents
responsible for these antineoplastic properties are glucosinolates and their hydrolytic products and
phenolics (particularly flavonoids) as well [78]. Hence, the crude and phenolics extracts of C. annua
were screened for their cytotoxic activities against panel of cancerous and non-cancerous breast and
liver cell lines; MCF-7, MDA-MB-231, MCF-10A, HepG2 and THLE2, and to test their safety (selectivity)
using the MTT assay (Table 3). C. annua crude extract was most cytotoxic against the MCF-7 cell line
(IC50 = 22.8 µg/mL) with cell growth inhibition 25.4% at the highest concentrations 100 µg (Figure 5),
while it was selective against the MDA-MB-231 with higher IC50 value of 46.2 µg/mL, and safe against
normal breast and liver cells.

Figure 5. IC50 nonlinear regression curve fit of percentage of cell viability vs log [con. µg/mL], R
square ≈1, using the GraphPad prism software. (A) Cytotoxicity of crude extract against MCF–7,
(B) Cytotoxicity of phenolics extract against MCF–7, (C) Cytotoxicity of phenolics extract against HepG2.



Antioxidants 2020, 9, 1286 17 of 27

Table 3. IC50 values of both C. annua crude and phenolics extracts against panel of breast and liver
cancer and normal cells using the MTT assay.

Sample Working
Concentrations

IC50 (µg/mL) *

Breast Liver

MCF-7 MDA-MB-231 MCF-10A HepG2 THLE2

C. annua crude
extract 20, 50, 100, 150,

200 (µg/mL)

22.8 ± 1.01 46.2 ± 1.4 ≥50 32.3 ± 1.1 ND

C. annua
phenolics extract 13.04± 0.87 ND ≥50 19.3± 0.98 ≥50

* Values are expressed as mean ± SD of triplet trials, and calculated using GraphPad prism 7 software using
nonlinear regression Dose-Inhibition curve ft.

On the other hand, phenolics extract of C. annua was much more cytotoxic against the MCF-7 cells
(IC50 = 13.04 µg/mL) than the crude extract, additionally, it showed more cytotoxic activity against the
HepG2 cells (IC50 = 19.3 µg/mL) than the crude extract. On the other hand, it was not toxic against
other cells, which elucidates the selectivity of its action. So, these results indicated the activity of
phenolics extract against MCF-7 and HepG2 cells in a selective way for the other cells. Hence, phenolics
extract was assumed of value to be investigated to determine its impact on induction of apoptosis in
both MCF-7 and HepG2 cancer cells.

3.4.2. Annexin V/PI and Cell Cycle Analysis

Treatment of MCF-7 cancer cells with phenolics extract (IC50 = 13.04 µg/mL, 48 h) was performed.
Investigations were done for its apoptosis-inducing activity using the cell cycle analysis with the cell
population in different cell cycle phases. Investigation of the cell cycle is a decisive test that declares
the cell accumulation percentage in each growth phase with cytotoxic substances after treatment.
As shown in Figure 6 (upper panel), phenolics extract remarkably stimulated apoptotic breast cancer
cell death with 47.14-fold (23.57% compared to 0.51% for the control). It induced early apoptosis by
12.15-fold (4.62% compared to 0.38% for control), and late apoptosis by 157.9-fold (18.95% compared to
0.12% for control). While it stimulated cell death via necrosis with 12.63-fold (12.25%, compared to
0.97% for the control). Moreover, MCF-7 cancer cells after phenolics extract treatment were subjected to
DNA flow cytometry to analyze the cell cycle kinetics to determine the compound’s phase interference
with the cell cycle. As seen in Figure 6C–E. It increased G2/M cell (34.85%, compared to 11.57% for
control), and pre-G1 (35.72%, compared to 1.47% for the control) population, also it reduced cell
number in the S (25.44% compared to 36.14% for control).

Similarly, HepG2 cancer cells were remedied with phenolics extract (IC50 = 19.34 µg/mL, 48 h).
As seen in Figure 7 (upper panel), phenolics extract remarkably stimulated apoptotic breast cancer
cell death with 14.07-fold (10.27% while it was 0.73% for the control). It induced early apoptosis by
6.32-fold (2.91% compared to 0.46% for control), and late apoptosis by 27.25-fold (7.36% compared to
0.27% for control). Moreover, HepG2 cancer cells after phenolics extract treatment were subjected to
DNA flow cytometry, as seen in Figure 7 (lower panel). It enhanced G2/M cell (27.05%, compared to
7.3% for control), and pre-G1 (26.47%, compared to 1.86% for the control) population, also it reduced
cell population in the S (27.61% compared to 44.67% for control).

Consequently, phenolics extract induced pre-G1 and G2/M-phase cell cycle arrest and blocked the
progression of MCF-7 and HepG2 cancer cells that deteriorate the genetic metrical.



Antioxidants 2020, 9, 1286 18 of 27

Figure 6. FITC/Annexin-V-FITC/PI differential apoptosis/necrosis (A) untreated control, (B) Phenolics extract (IC50 = 13.04 µg/mL, 48 h) and DNA content-flow
cytometry aided cell cycle analyses (C) untreated control, (D) Flavonoid extract (IC50 = 13.04 µg/mL, 48 h), (E) bar chart representation) in MCF–7. ** p ≤ 0.05 and
*** p ≤ 0.001 are significant different.
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Figure 7. FITC/Annexin-V-FITC/PI differential apoptosis/necrosis (A) untreated control, (B) Phenloics extract (IC50 = 19.34 µg/mL, 48 h) and DNA content-flow
cytometry aided cell cycle analyses (C) untreated control, (D) Flavonoid extract (IC50 = 13.04 µg/mL, 48 h), (E) bar chart representation in HepG2 cells. ** p ≤ 0.05 and
*** p ≤ 0.001 are significant different
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3.4.3. RT-PCR Analysis

For investigation the apoptotic pathway for the phenolics extract, 13.2 µg/mL of the sample was
added to MCF-7 cells and left for 72 h to allow complete interaction, after RNA extraction, cDNA was
produced. Then the expression of mRNA of Caspases 3, 8 9, pro-apoptotic (P53, BAX, PUMA) as well
as anti-apoptotic genes (Bcl-2) in MCF-7 cells was traced by the RT-PCR analysis.

As demonstrated in Figure 8, the expression of P53 gene was noticeably elevated by the phenolics
extract (≈4.7-fold) with concomitant activation of the PUMA and BAX levels which have been raised
by ≈5.06-fold and 6.08-fold, respectively. Furthermore, flavonoid extract has remarkably raised the
mRNA expression of caspases 3, 8, 9 genes by ≈10.7-fold, 3.64-fold and 7.25-fold, respectively. On the
hand, it markedly suppressed the expression of Bcl-2 (the anti-apoptotic gene) by ≈0.32-fold. These
findings are in harmony with the apoptotic mechanism suggested for anti-cancer activity.

Figure 8. RT-PCR analysis of the apoptosis-related genes was performed after the MCF-7 cells were
treated with phenolics extract (13.04 µg/mL) for 72 h.

3.5. Simulated Molecular Docking Experiment

In this present study, C. annua phenolics extract exhibited antiproliferative activity against
breast and liver carcinomas via apoptosis. Hence, the phenolics and flavonoids identified by the
present LC-ESI-TOF-MS/MS analysis were selected for a simulated molecular docking investigation to
gain insights into the possible molecular targets for the cytotoxic and apoptosis-inducing activities.
The majority of the identified compounds revealed good binding interactions with binding energies
(−9.24 to −27.28 Kcal/mol) inside the “B-cell lymphoma 2 (Bcl-2) (PDB ID: 4IEH) and their full
interactions were summarized in Table 4. Other minor compounds didn’t show any binding activity
towards the studied target. Accordingly, our docking experiment proposed their mechanism of
action as Bcl-2 suppressors which is congruent with the flow cytometric and the RT-PCR analyses
illustrating the apoptosis-inducing activity. As seen in Figure 9, Kaempferol-3,7-O-bis-α-L-rhamnoside
and Kaempferol-3-rutinoside formed the maximum interactions with the interactive amino acids Arg
66 and Tyr 161 with binding energies of −23.67 and −18.28 (Kcal/mol), as they formed three hydrogen
bonds with Arg 66 amino acid.
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Table 4. Summary of ligand-receptor interactions with binding energy (Kcal/mol) of the identified compounds to “B-cell lymphoma 2 (Bcl-2) protein, PDB = 4IEH).

Compound Binding Energy
(Kcal/mol)

Ligand-Receptor Interactions with the Key Amino Acids

HB Interactions Lipophilic Interactions

Caffeoyl-quinic acid (6) −9.24 1 HB with Arg 66 -
Quercetin-3-O-arabinoglucoside (11) −19.30 2 HB with Arg 66 and Tyr 161 -

Quercetin 3-O-β-D-glucopyranosyl-(1→2)-arabinopyranoside (12) −21.20 2 HB with Arg 66 and Tyr 161 Arene-Cation Arg 66
Kaempferol 3,7diglucoside (15) −18.17 2 HB with Arg 66 and 1 HB with Tyr 161 Arene-Cation Arg 66

Quercetin 3-O-[(6-sinapoyl-β-glucopyranosyl)
-(1→2)-β-arabinopyranoside]-7-O-β-glucopyranoside (16) −27.28 2 HB with Arg 66 and Tyr 161 Arene-Cation Arg 66

Quercetin
3-O-[(6-feruloyl-β-glucopyranosyl)-(1→2)-β-arabinopyranoside]-7-O-

β-glucopyranoside (17)
−27.5 2 HB with Arg 66 and Tyr 161 Arene-Cation with Arg 66

Kaempferol-3-rutinoside (21) −18.28 3 HB with Arg 66, 1 HB with Tyr 161 -
Quercetin-4’-glucoside (23) −16.57 1 HB with Arg 66 Arene-Cation Tyr 161
Luteolin-7-O-glucoside (24) −21.27 2 HB with Arg 66, and Tyr 161 -

Kaempferol-3,7-O-bis-α-L-rhamnoside (25) −23.67 3 HB with Arg 66, 3 HB with Tyr 161 -
Quercetin 3-O-galactoside (26) −18.17 2 HB with Arg 66 and Tyr 161 -

Quercetin-3-D-xyloside (27) −20.51 1 HB with Tyr 161 Arene-Cation Arg 66
Cyanidin-3-glucoside (28) −18.78 2 HB with Arg 66 and Tyr 161 -

Kaempferol-3-O-glucoside (29) −16.78 2HB with Arg 66 1 arene-cation with Arg 66
Quercetin 3-O-[(6-sinapoyl-β-glucopyranosyl) -(1→2)- β

arabinopyranoside (30) −15.29 2HB with Arg 66 1 arene-cation with Arg 66

Bolded numbers in parenthesis represent the number of the chemical structure (Figure 4).
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Figure 9. Visualized docked compounds: (A) Kaempferol-3,7-O-bis-α-L-rhamnoside (25) and (B)
Kaempferol-3-rutinoside (21) inside the “B-cell lymphoma 2 (Bcl-2) (PDB ID: 4IEH) representing key
interactions with bond length (Å) with interactive amino acids (Arg 66 and Tyr 161).

The current study has highlighted the noteworthy antioxidant and anticancer activities of C. annua.
Therefore, this plant could be beneficial in cancer chemo preventive and chemotherapy. It represents a
promising candidate to be used in combination with the existing chemotherapies. This combination
tends to overcome drug resistance, increase the sensitivity to chemotherapy and counteract their dose
dependent side effects especially those arise from the increased oxidative stress such as cardio and
nephro toxicities. A future pharmacological study will be conducted to assess the in vivo efficacy
and safety of C. annua as an antitumor herb individually and in combination with conventional
chemotherapies to verify our assumption.

4. Conclusions

C. Annua herb can be considered as a promising chemo preventive and anticancer plant owing
to its antioxidant and anti-proliferative effects that attributed to its unique chemical constituents.



Antioxidants 2020, 9, 1286 23 of 27

Herein, C. annua herb was studies for the first time for its chemical profiling and anticancer potential
as well. Using LC-ESI-TOF-MS/MS analysis, 49 hits were identified mainly of polyphenolic type where
flavonoid derivatives predominated and some of them were recorded in the plant for the first time.
On the other hand, both of C. annua crude extract and its flavonoid fraction displayed significant and
selective anticancer activity on HepG2 and MCF-7 cancer cells. However, the phenolic fraction was
more active than the extract and it induced cell cycle arrest at pre-G1 and G2/M-phases by activation of
pro apoptotic proteins and suppression of anti-apoptotic ones. The molecular docking studies indicated
that most of the polyphenolics identified in the C. annua extract exhibited good binding interactions
with binding energies (−9.24 to −27.28 Kcal/mol) inside the “B-cell lymphoma 2 (Bcl-2). Both of
kaempferol-3,7-O-bis-α-L-rhamnoside and kaempferol-3-rutinoside were the most active inhibitors
of Bcl-2. Therefore, C. annua herb seems to be a promising candidate to further advance anticancer
research. In extrapolation, the intake of C. annua phenolics might be adventitious for alleviating breast
and liver malignancies and tumoral proliferation in humans.

Supplementary Materials: The following are available online at http://www.mdpi.com/2076-3921/9/12/1286/s1;
Figure S1. Total ion chromatogram (TIC) recorded in the negative mode for C. annua extract; Figure S2. Base peak
chromatogram (BPC) recorded in negative ion mode C. annua extract; Figure S3. Total ion chromatogram (TIC)
recorded in the positive mode for C. annua extract; Figure S4. Base peak chromatogram (BPC) recorded in the
positive mode for C. annua extract.
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