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THE BIGGER PICTURE The sequence in the genome of an organism encodes all the information of life. We
combine a data-driven approach using machine learning (ML) and the results of free energy calculations to
offer a fresh perspective on this long-standing problem of prediction of DNA conformation (A or B) from the
sequence. We trained our ML model using sophisticated state-of-the art algorithms such as LightGBM
along with a nested cross-validation strategy to overcome the common problems associated with data
bias and overfitting when constrained by limited data size. Our study will serve the broader interest of re-
searchers who are not only seeking accurate and reliable predictive models but also want to understand
the physical and chemical origins behind the predictions.

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem
SUMMARY
DNA carries the genetic code of life, with different conformations associated with different biological func-
tions. Predicting the conformation of DNA from its primary sequence, although desirable, is a challenging
problem owing to the polymorphic nature of DNA. We have deployed a host of machine learning algorithms,
including the popular state-of-the-art LightGBM (a gradient boosting model), for building prediction models.
We used the nested cross-validation strategy to address the issues of ‘‘overfitting’’ and selection bias. This
simultaneously provides an unbiased estimate of the generalization performance of a machine learning algo-
rithm and allows us to tune the hyperparameters optimally. Furthermore, we built a secondary model based
on SHAP (SHapley Additive exPlanations) that offers crucial insight into model interpretability. Our detailed
model-building strategy and robust statistical validation protocols tackle the formidable challenge of working
on small datasets, which is often the case in biological and medical data.
INTRODUCTION

The prediction of a DNA conformation from the mere knowledge

of its sequence presents an opportunity to presume its role in

specific biological processes. The biological processes, such

as direct and indirect readout mechanisms in protein-DNA inter-

actions, exploit the conformational flexibility exhibited by DNA.

The A-DNA conformation is shorter and more compact than

that of B-DNA. During B / A transition, the phosphate groups

protrude outward and the minor groove becomes broad and

shallow, forming more water bridges in accordance with the the-

ory of economy of hydration proposed by Saenger et al.1
This is an open access article under the CC BY-N
The protein molecules such as transposase, endonuclease,

and polymerase interact with B-DNA locally and convert a few

dinucleotide steps to A form in a whole DNA.2 A-philic DNA seg-

ments exhibit low energy cost for deformation, and thus proteins

bind to such hotspots during indirect recognition mechanism to

commence the transcription process.2 The A form also partici-

pates in the protection of bacterial cells under extreme UV

exposure.3 Whelan and coworkers have shown fully reversible

B-DNA / A-DNA transition in living bacterial cells on desicca-

tion and rehydration using Fourier transform infrared spectros-

copy.4 Extremophiles such as SIRV2 virus (Sulfolobus islandicus

rod-shaped virus 2) survives at extreme temperatures of 80�C
Patterns 2, 100329, September 10, 2021 ª 2021 The Author(s). 1
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Figure 1. Schematic illustration of feature

extraction
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and acidity of pH 3 by adopting complete DNA in the A form and

aids protein to encapsidate DNA.5

Thus, it has become clear of late that A-DNA is merely not a

non-functional conformation of DNA; it is an essential adaptation

of DNA to survive harsh conditions. It is, therefore, intriguing to

predict the sequence-structure relationship in DNA. Moreover,

an understanding of sequence specificity of B-form / A-form

transition and an a priori detection of the A-philic segment in

the genome will unveil the possible hotspots of certain biological

processes in specific genes of organisms.

Only a few studies have attempted prediction of DNA confor-

mation from its sequence. Basham and coworkers derived

A-DNA propensity energy (APE)6 based on the solvation free en-

ergy of trinucleotide steps to determine DNA structural prefer-

ences. However, APEs are unavailable for specific trinucleotide

steps, thereby making this method inapplicable in general

across a genomic DNA sequence. In a different approach, Tol-

storukov and coworkers7 formulated free energy models for all

ten unique dinucleotide steps (D-12 model) and 32 individual

trinucleotide steps (T-32 model) from experimental data of mid-

points in B-DNA/ A-DNA transition studied earlier by others.8,9

The T-32 model was found to be more accurate than the D-12

model. It inherently considers stereochemical effects present

along the B / A transition as it is based on three consecutive

DNA base steps. However, the absence of the TAA/TTA free en-

ergy values limits the application of this dataset for a DNA struc-

ture prediction. The comparison between these free energy

methods and present machine learning (ML) model could be

interesting. However, the lack of free energy values for all unique

32 trinucleotide steps in these models limits us from comparing

these methods. For example, TAA/TTA step and CAG/CTG step

(apart from many other steps) are absent in Tolstorukov’s

trimeric T-32 and Basham’s APE model, respectively. This
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refrained us from using at least 2–4 se-

quences in each train and test fold and

compare accuracies of these methods

with our ML model.

Schneider and coworkers developed an

automated workflow10–12 to analyze DNA

local conformations. They classified DNA

dinucleotide steps based on local back-

bone conformations. It was observed that

DNA structure exhibits mixed A-form/B-

form traits in the backbone torsional

space, even though the overall structure

appears as either A form or B form. Their

work demonstrated a high-resolution atlas

of local DNA conformations.

In our approach, we have focused on the

development of a general and more accu-

rate method based on an ML approach

that considers occurrences of all ten

unique dinucleotide steps to predict the

conformational preference of a given
DNA sequence (see Figure 1). In an ML-based approach, the

inference is drawn based on observation alone. Therefore,

although ML methods are suitable for prediction, the molecular

or thermodynamic origin behind the prediction remains un-

known. To address this issue, we have also built an explanatory

model based on SHAP (SHapley Additive exPlanations) values13

for interpreting and explaining our model output. This method

also incorporates the information obtained from free energy

values that we obtained earlier to explain themolecular and ther-

modynamic basis of the prediction made by our ML model.

RESULTS

We describe here the results of the nested cross-validation (CV)

performance of the LightGBM algorithm across different metrics

used for model assessment (see Figure 2). We observed that the

LightGBM algorithm gave the best overall classification results

across all five test sets in the nested CV. Figure 3 shows receiver

operator characteristic (ROC) curves and precision-recall (PR)

curves plotted across all five different test sets (folds). Table 1

shows performance metrics across test sets. We obtained a

mean ROC area under the curve (AUC) score of 0:97± 0:03, a

mean Matthews correlation coefficient (MCC) score of 0.83, a

mean accuracy score of 92.7%, a mean F1 score of 0.881, a

mean AUC PR of 0.956, and a mean average precision (average

PR) of 0.957 on the test sets. The overall performance of our clas-

sifier summarized across different thresholds is given by theROC

AUC. Similar to the ROC curve, the PR curve can be used to test

all the possible positive predictive values and sensitivities ob-

tained through a binary classification. They are especially valu-

able for assessing howwell anMLmodel performson the positive

class (A-DNA samples). A high area under the PR curve repre-

sents both high recall and high precision. Table 2 displays the



Figure 2. Schematic display of nested 5-fold

stratified cross-validation

A set of n observations is randomly split into five

non-overlapping groups in the outer loop. Each

group contains approximately the same percentage

of samples of each target class as the complete set

(stratification). In the inner loop, each training fold is

divided again for another round of cross-validation

(k = 3) to determine optimal hyperparameters for the

classifier.
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per-class performance across all test sets.We observe both high

precision and high recall values for each class label. Table 3

shows performance comparison between different ML algo-

rithms. The weighted average returns the average score consid-

ering the proportion for each label in the dataset, whereas the

macro average returns the average without considering the pro-

portion for each label in the dataset. Furthermore, to ensure

reproducibility, we also provide the values of tuned hyperpara-

meters for each model and for all datasets in section C and

DataS2of supplemental information.Detailed results of other ap-

proaches are presented in section B of supplemental information

(see random forest [Figure S4 and Table S2], support vector ma-

chine [SVM] classifier [Figure S5 and Table S3], logistic regres-

sion [Figure S6 and Table S4], and naive Bayes classifier [Fig-

ure S7 and Table S5]). Section G of supplemental information

compares the results on repeated (k=2) stratified nestedCV (Fig-

ure S9), and Table S6 shows a comparison between using

different methodologies for adjusting class imbalance.

In LightGBM, boosting helps in reducing bias and variance in

ensemble-based models, which is particularly useful for control-

ling overfitting. It builds trees in a stage-wise forward manner,

where weak learners (trees) are added to address the shortcom-

ings of existing weak learners. As the end result, the model is

able to achieve high accuracy by increasing the importance of

‘‘difficult’’ observations (samples that have a complex non-linear

decision boundary). As more trees are added, they rectify the

misclassification error committed by existing learners. To control

overfitting, we use the optimal value of regularization parame-

ters: L1, L2 regularization, bagging fraction and frequency, num-

ber of leaves, and feature fraction (see section C in supplemental

information). Another benefit of using gradient boosting is that

after the boosted trees are constructed, it is relatively straightfor-

ward to retrieve importance scores for each attribute.14 To un-

derstand how individual dinucleotide steps affect the propensity
of a sequence to assume a given confor-

mation, we have used SHAP,13 a unified

approach for explaining the output of any

ML model. SHAP connects game theory

with local explanations, uniting several

previous methods, and representing the

only possible consistent and locally accu-

rate additive feature attribution method

based on expectations.13 This explanation

model uses simplified inputs, which toggle

features on and off, rather than raw inputs

to the original model. Figure 4 shows the

schematic models of SHAP, where data
are processed using the original model and using the SHAP

criteria as mentioned above. gðz0Þis a linear function of binary

variables (ON or OFF), which determines the role of individual in-

puts of features in the prediction. SHAP builds model explana-

tions by asking the same question for every prediction and

feature: ‘‘How does prediction i change when feature j is

removed from the model?’’ as mentioned above.

To interpret and relate these SHAP values with the thermody-

namics, we describe the concept of the absolute free energy

values (see section E in supplemental information and Kulkarni

and Mukherjee15 for further details). Thermodynamically, the

conformation of a particular structure depends on the free ener-

getic stability. Therefore, the propensity of a sequence to adopt a

particular conformation should depend on the overall free energy

of the sequence in that conformation. Keeping that in mind, we

had earlier calculated the free energy cost (Table 3) for the forma-

tion of the A form of each of the ten dinucleotide steps, as dis-

cussed below.15

To obtain an idea about which features are most important for

our model, we have plotted the SHAP values of each dinucleo-

tide step (feature) for every sample. Figure 5 shows the SHAP

summary plot, which sorts features by the sum of SHAP value

magnitudes over all samples and uses these SHAP values to

show the distribution of the impacts of each feature on themodel

output. The summary plot combines feature importance with

feature effects. Each point on the summary plot is a Shapley

value for a feature and an instance. The position on the y axis

is determined by the feature and on the x axis by the Shapley

value. The color represents the value of the feature from low to

high (red means high impact, blue means low impact). Overlap-

ping points are jittered in the y-axis direction, so we get a sense

of the distribution of the Shapley values per feature. The features

are ordered according to their importance. Traditionally AA/TT

and GG/CC are considered to be the most B-philic and A-philic
Patterns 2, 100329, September 10, 2021 3



Figure 3. Nested stratified 5-fold cross-validation performance of the LightGBM model

(A) Receiver operator characteristic (ROC) AUC curves.

(B) Precision-recall (PR) curves. AUC PR, area under curve of PR curves.
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dinucleotide steps. We see that (AA/TT), a B-promoting dinucle-

otide step, and GG/CC, an A-promoting dinucleotide step, have

the highest impact on our model prediction. The AA/TT step has

the highest negative SHAP value, which corresponds to its high-

est contribution in predicting B-promoting DNA sequences.

Similarly, the GG/CC and GC/GC have the highest positive

SHAP value, which corresponds to their highest contribution in

predicting A-promoting DNA sequences. GG/CC has lower junc-

tion free energy (ðDGJÞ compared with AA/TT and thus, lower

mean cooperative length for B-to-A transition. High positive

SHAP values for GG/CC support this free energy-based

observation.

CG/CG and AT/AT dinucleotide steps have highest negative

SHAP values after AA/TT step, thus suggesting these steps as

B-philic steps and supported by absolute free energy values.

This tells us that they have a high negative impact (B-DNA prone)

on the model prediction. Similarly, GC/GC and AC/GT are

observed to be A-philic and B/A intermediate step, respectively,

based on both positive SHAP values and low free energy values.

Absolute energy (DGa) values indicate AG/CT and GA/TC as

A-philic steps, whereas SHAP value distribution indicate these

steps as B-philic steps. Dinucleotide steps AG and GA steps

prefer B-form conformation over A form as observed in previous

studies (Svozil et al.;10 Marathe et al.16 ; our review17). Earlier

studies observed that structurally TA/TA and CA/TG steps

exhibit high roll angle similar to A-form steps but still maintain

flexible B form (Hassan and Calladine (1998) J. Mol. Biol. 282,

331–343). The flexible B form allows DNA bending or kinking dur-

ing protein interactions. DGa values predicted TA and CA steps

as neutral (neither A-philic or B-philic) and B-philic step,

respectively.

For CA and TA steps, overall SHAP values are distributed

close to the abscissa and neutral feature values (violet color)

with negative SHAP values possibly indicate the intermediate

nature of these steps. Thus, we can see that SHAP values

have correctly predicted conformation preference in comparison
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with free energy values, demonstrating its classification effi-

ciency over the free energy method.

It is interesting to note that there is good agreement between

these inferences drawn from ourMLmodel with the absolute free

energy values, except for TA and CA steps (Table 4). Figure 6

shows the standard bar plot obtained by taking the mean abso-

lute value of the SHAP values for each feature. This plot shows

how each dinucleotide step (feature) contributes to the predic-

tion of the propensity of the A/B-promoting DNA sequence.

DISCUSSION

In our approach, we have trained different ML algorithms using a

set of known A-DNA/B-DNA sequences. The best ML approach

(LightGBM) provides prediction with correctness of �93% and

an MCC score of 0.832. As it turns out, our model is able to cap-

ture the complex relationship between the feature vectors (dinu-

cleotide steps) that attribute to the final conformation assumed

by a DNA sequence. Understanding why a model makes a spe-

cific prediction can be as important as the prediction’s accuracy

in many applications. This is crucial when wewant to understand

how each fundamental dinucleotide step contributes toward the

conformation attained by a sequence. The highest accuracy for

largemodern datasets is often achieved by complex models that

are difficult to interpret, such as an ensemble of several models

or deep learning models. LightGBM18 is an implementation of a

gradient boosting decision tree technique that offers a balanced

tradeoff between accuracy and interpretability. For gaining

further insight into the interpretability of our model, SHAP anal-

ysis was employed with which we could come up with a consis-

tent and locally accurate additive feature attribution method

based on expectations. Our study thus indicates that the confor-

mational preference of a DNA lies in the fundamental free ener-

getic driving force at a local dinucleotide level. Most of the

DNA sequences used here, however, are short. Therefore, the

cooperative effect may play a role in the case of longer DNA



Table 3. Comparison between different ML algorithms

Average

PR

AUC

PR

ROC

AUC AccuracyF1 MCC

Random forest 0.888 0.885 0.945 0.881 0.8290.747

SVM classifier 0.912 0.908 0.943 0.886 0.8220.741

Logistic regression 0.910 0.906 0.945 0.896 0.8210.758

Naive Bayes

classifier

0.919 0.918 0.952 0.891 0.8410.765

LightGBM 0.957 0.956 0.974 0.927 0.8810.832

Table 1. Classification performance of LightGBM algorithm with

tuned hyperparameters (see section C in supplemental

information) across different test folds

Average PR AUC PR ROC AUC Accuracy F1 MCC

Test fold 1 0.954 0.952 0.969 0.923 0.857 0.822

Test fold 2 0.946 0.944 0.973 0.923 0.880 0.825

Test fold 3 0.987 0.986 0.994 0.947 0.917 0.878

Test fold 4 0.994 0.993 0.997 0.947 0.917 0.878

Test fold 5 0.906 0.904 0.939 0.895 0.833 0.756

Mean 0.957 0.956 0.974 0.927 0.881 0.832
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sequences, and an effort is under way to understand this. Our

training set contains some hexamer or octamer A-DNA se-

quences. Such short oligonucleotides are affected by crystal

packing forces.19,20 At the same time, we also find nuclear mag-

netic resonance (NMR) structures with A form. We would also

like to point out that crystal packingmay have a role in producing

A form for certain sequences. However, this influence is limited

to only fa specific set of sequences. We believe that this has to

do with the inherent propensities of these sequences to adopt

the A form. For this reason, we do not find all short sequences

adopting the A form. There are some short AT-rich sequences

(PDB: 4U9M, 2G1Z) which are crystallized as B-DNA as opposed

to crystal packing-derived A-DNA conformation. There are many

8- or 10-mer sequences that are in B form, just as not all A-DNA

sequences are 8- or 10-mers. Therefore, it is not obvious that the

length of the DNA sequencewould dictate a particular conforma-

tion. The high predictive performance of our model indicates that

there must be some inherent tendencies of these sequences to
Table 2. Detailed model evaluation report across different

test folds

Precision Recall F1 score Support

Test fold 1 B-DNA 0.90 1.00 0.90 27

A-DNA 1.00 0.75 0.86 12

macro average 0.95 0.88 0.90 39

weighted average 0.93 0.92 0.92 39

Test fold 2 B-DNA 0.89 0.96 0.93 26

A-DNA 0.91 0.77 0.83 13

macro average 0.90 0.87 0.88 39

weighted average 0.90 0.90 0.90 39

Test fold 3 B-DNA 0.96 0.96 0.96 26

A-DNA 0.92 0.92 0.92 12

macro average 0.94 0.94 0.94 38

weighted average 0.95 0.95 0.95 38

Test fold 4 B-DNA 0.96 0.96 0.96 26

A-DNA 0.92 0.92 0.92 12

macro average 0.94 0.94 0.94 38

weighted average 0.95 0.95 0.95 38

Test fold 5 B-DNA 0.96 0.92 0.94 26

A-DNA 0.85 0.92 0.88 12

macro average 0.90 0.92 0.91 38

weighted average 0.92 0.92 0.92 38
adopt the A form, and the objective of the present work is to cap-

ture that.

AA steps are highly B-philic due to the steric hindrance of their

antisense counterpart TT step. A severe steric hindrance be-

tween protruding methyl groups of thymine base exists if it un-

dergoes B / A transition and thus enhances the free energetic

cost of the process. It is surprising to see that ML models can

predict the AA step as the most B-philic step without the knowl-

edge of the structure and interactions between the stacking

base steps.

The GG step is well known to adopt or induce the A form in

DNA sequences. Again, it is encouraging to note that the ML

model can predict GG and GC as themost A-philic steps without

any structural information. The eukaryotic and prokaryotic ge-

nomes contain DNA segments that can be easily converted to

A form (A-DNA promoter sequences [APS]). These A-form seg-

ments can then be specifically recognized by DNA binding pro-

teins during the indirect readout mechanism. Such APSs allow

binding of certain transcription factor (TF) binding proteins21

and could play a role in protein-DNA binding mechanisms.

Recently, Li et al. incorporated DNA sequence and shape as fea-

tures along with information from X-ray and simulated structures

to determine TF binding regions in DNA sequences.22

Whitley and coworkers21 used Basham’s trinucleotide solva-

tion free energy method of A/B DNA structure prediction6 to

find A-DNA promoters in the Xenopus tropicalis genome. Owing

to the limited applicability of the aforementioned method, we

believe that our proposed ML model can be implemented on

other genomes to find unknown A-DNA promoter DNA steps a

priori. Further study is under way to explore eukaryotic genome

analysis as well as the genome of organisms that survive under

stringent conditions using the A form of DNA.

Limitations of the study
Wewould now like to discuss the limitations of the present study.

The DNA structures considered here are assigned as B-DNA or

A-DNA because these structures do not contain mixed A-form/

B-form dinucleotide steps. We assume that even with mixed A/

B traits at the local level, based on the definition of recent studies

the whole DNA structure appears as B or A due to prominent

conformational preference of each dinucleotide step of the

DNA. The cooperative effects of these dinucleotide steps

contribute to the overall conformational preference in DNA

oligonucleotides.

Finally, the classification of a sequence to A or B is based on

the Nucleic Acid Database (NDB) data. Therefore, our goal was

to apply the method to a given sequence and predict the A/B
Patterns 2, 100329, September 10, 2021 5



Figure 4. Schematics of SHAP (SHapley Additive exPlana-

tions) model
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classification in conformity with the NDB (global) structural clas-

sification. Asmentioned earlier, we tried to include in our curated

dataset the sequences whose structures were obtained under

similar experimental conditions so as to minimize the effect of

varying experimental conditions.

At the moment, we are restricted by the paucity of a sufficient

number of labeled DNA sequences. Out of 192 curated DNA se-

quences in the NDB dataset, 61 are A-DNA sequences and 131

are B-DNA sequences (supplemental information, section F

[Data S1]). The lack of data is one of the significant challenges

in any ML model. Furthermore, the severe class imbalance be-

tween A- and B-DNA is another limitation, although we have

adopted several measures to overcome these limitations in the

present study. Also, the present study focuses only on the ca-

nonical A-DNA or B-DNA conformation, with the objective of

developing a method to understand the tendency of short DNA

segments in long oligonucleotides to adopt these conforma-

tions. Thus, we have not considered non-canonical DNA struc-

tures. We also acknowledge that there are subclasses of this

broad classification23—different A-form conformers, conformers

bridging A to B form and vice versa, a separate Z form, subdivi-

sion of B conformations into BI and BII form24—which we could

not categorize owing to the paucity of data in the NDB database.

EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

The lead contact for this work is Arnab Mukherjee, arnab.mukherjee@

iiserpune.ac.in.

Materials availability

The study did not generate new unique materials or reagents.

Data and code availability

Data and code can be accessed at the following link: https://github.com/

abhijitmjj/DNA-structure-prediction (code author and repo maintainer: Abhijit

Gupta [github username: abhijitmjj]).

DNA structure prediction from its sequence code is available in the

GitHub repository (https://github.com/abhijitmjj/DNA-structure-prediction).

We intend to build a webserver for our program soon, where the user can pro-

vide raw sequences as the input and obtain the probabilities for them to attain

A/B form conformation.

Methods

Data curation

The first step in an ML approach is data curation. Since we use a supervised

learning approach, we collected A- and B-DNA structures from the Nucleic

Acid Database (NDB repository).25,26 The corresponding sequences were

retrieved from the RCSB PDB27 database by a parser written by us. We filtered

out all redundant sequences along with all those sequences which had

anything in addition to A, C, G, and T. Furthermore, we considered only the un-
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bound double-stranded DNA structures. We removed all DNA sequences less

than 5 base pairs long from our analysis as they are too short to be deciding a

particular conformation.While selecting sequences for our study, we looked at

the different experimental conditions under which different DNA structures

were crystallized/labeled, namely "Crystallization Method," "Temperature

(K)," "pH," "Crystal Growth Procedure," "R-free Values," and "Percent Solvent

Content." In particular, for X-ray structures we selected those sequences that

corresponded to structures with high Rfree values and resolution. For NMR-

based structures, we considered the ‘‘Sample Temperature,’’ ‘‘Sample pH

Values,’’ ‘‘Solvent System,’’ ‘‘Ionic Strength,’’ and other relevant parameters.

We have presented the distribution of different experimental conditions under

which different structures were obtained in section A of supplemental informa-

tion. Tominimize the effect of the influence of varying experimental conditions,

we tried to select the sequences obtained under similar conditions. We also

checked for outlier samples using a skewness adjusted interquartile range

method28(see section A in supplemental information), which takes into consid-

eration the skewness in the distribution for robust outlier detection. This helped

us in obtaining those sequences for which the experimental conditions were

similar, irrespective of the class label. Section A of supplemental information

shows kernel density estimation plots of each experimental condition for

both A- and B-DNA samples that we included in our dataset.

We also performed sequence similarity analysis across all sequences in a

given class. We used the alignment-free sequence comparison approach

that is based on the frequencies of k-mers (subsequences or words of length

k).29 This considers the ‘‘Euclidean distance’’ between k-mers frequency pro-

files of two sequences as a measure of the dissimilarity between them. The

pairwise distance matrix hence obtained is normalized between 0 and 1. Un-

like alignment-based methods, the alignment-free method does not assume

the contiguity of homologous regions. They are also less dependent on substi-

tution/evolutionary models and are comparatively computationally inexpen-

sive. The choice of k depends on the nature and the length of the sequences.

Smaller k-mers should be used when sequences are obviously different (e.g.,

they are not related), whereas longer k-mers can be used for very similar

sequences.30,31 For nucleotide sequences, k is usually set to 4–10 for smaller

sequences, and k = 8 or 10 is typically used for comparing longer

sequences.30,32 We considered k = f4; 5; 6g for comparing sequence similar-

ity. The mean sequence similarity is 31:9% for A-DNA samples and 28:7%

for B-DNA samples in our curated dataset. In our dataset, the smallest

sequences are of length 6 and hence is the upper bound on the choice of k.

Our curated dataset contained 192 samples, of which 61 are A-DNA se-

quences and 131 are B-DNA sequences. The list of curated DNA sequences

along with resolution (Å), R value, Rfree (for crystallographic structures), and

other relevant experimental conditions are mentioned in section F of supple-

mental information (Data S1).

Feature extraction

Feature extraction or ‘‘feature design’’ is an essential step in anyML approach.

The characteristics of any object are called features. In a DNA sequence, rele-

vant features could be the length of the DNA, the number and types of dinucle-

otide steps, or the number and types of tetranucleotide steps. In this study, we

have considered the count of all ten unique dinucleotide steps in the given DNA

sequence as our feature vectors (Figure 1). There are two main rationales

behind our choice: (1) the dinucleotide step represents the smallest possible

building block for DNA conformation;33,34 (2) we have used the absolute free

energy values for each dinucleotide step15 in model interpretation, explaining

how a particular conformation can be attributed to structural and chemical as-

pects associated with each dinucleotide step.

We wish to mention that the lack of data precludes us from building a model

that considers relative positions of the different dinucleotide steps in a

sequence. Such a model, although desirable, would require a large number

of training samples for training. Our approach, on the other hand, offers a

viable compromise.

Pre-processing and adjusting the class imbalance

Data pre-processing involves the transformations that are applied to the data

before feeding them to ourMLmodels. For this classification problem, we have

encoded the A-DNA samples as the positive class with the label ‘‘1’’ and the

B-DNA samples as the negative class with the label ‘‘0.’’ Some ML models

such as support vector machines with radial basis function as the kernel35

and models that use L1 and L2 regularization assume that all features are

mailto:arnab.mukherjee@iiserpune.ac.in
mailto:arnab.mukherjee@iiserpune.ac.in
https://github.com/abhijitmjj/DNA-structure-prediction
https://github.com/abhijitmjj/DNA-structure-prediction
https://github.com/abhijitmjj/DNA-structure-prediction


Figure 5. SHAP summary

The plot sorts features by the sum of SHAP value

magnitudes over all samples and uses SHAP values

to show the distribution of the impacts of each

feature on the model output. The color represents

the feature value (red = high, blue = low). The hori-

zontal scale represents the SHAP values, with the

left side indicating B-DNA region (negative values)

and the right side indicating A-DNA region (positive

values). The absolute free energy value of each

dinucleotide step is mentioned adjacent to its label.
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centered around 0 and have variance in the same order.36 We, therefore, stan-

dardized the features by removing the mean and scaling to unit variance. The

standard score of a sample x is calculated as

z = ðx� uÞ=s;

where u is the mean of the training samples and s is the standard deviation of

the training samples. Centering and scaling happen independently on each

feature by computing the relevant statistics on the samples in the training set.

We also observed a significant class imbalance (32%A-DNA versus 68%B-

DNA curated, non-redundant sequences) that became apparent during the

preliminary analysis. To address the class imbalance issue, in which training

data belonging to one class outnumber the examples in the other, we tried

two different strategies during the training stage. First, we adjusted the class

weight. Due to the imbalanced number of positive (A-DNA) and negative

(B-DNA) samples, the class weight option imposes a heavier penalty for errors

in the minority class. Class weights are inversely proportional to class fre-

quencies in the training data. The second strategy employed the SMOTE +

TOMEK method,37 which is a combination of oversampling and undersam-

pling. SMOTE is an oversampling method that synthesizes new plausible ex-

amples in the majority class. Tomek-Links refers to a method for identifying

pairs of nearest neighbors in a dataset that have different classes. Removing

one or both examples in these pairs has the effect of making the decision

boundary in the training dataset less noisy or ambiguous. Despite the differ-

ences between the two approaches, they deliver similar improvements.

Model building

In this stage, we considered different ML algorithms for our problem. Classifi-

cation of a sequence into A-/B-DNA is a binary classification problem.We tried

LightGBM18 (based on gradient boosting decision tree), SVM classifier with

‘‘RBF’’ and linear kernel,35 random forest classifier, naive Bayes classifier,

and logistic regression.35 Each model outputs the probability pðCk jxÞ of a

class, Ck = f0; 1 g, given a sequence x (0 represents B-DNA and 1 represents

A-DNA). We then used an optimal threshold for converting this probability into

class labels. When selecting a classification algorithm for a particular problem,

one has to simultaneously select the best algorithm for that dataset and the

best set of hyperparameters for the chosen model. These hyperparameters

are intrinsic to each algorithm and define themodel architecture. The accuracy

of a model on unseen data is critically dependent on the choice of suitable
values for the hyperparameters. The search for

optimal values for the hyperparameters is a process

known as model selection. ML models such as

LightGBM have several hyperparameters. These

are the threshold parameter scale_pos_weight for

adjusting the threshold for an imbalanced dataset,

regularization parameters L1 and L2, number of

leaves (for controlling the complexity of the model),

number of iterations, learning rate, bagging fraction,

and bagging frequency. Even fairly simple general-

ized additive models such as logistic regression

have hyperparameters such as regularization,

class_weight, or threshold. Most of these models

would perform poorly on the unseen data if one

were to use the default set of hyperparameters. Hy-
perparameter optimization can be accomplished in several ways: one can

exhaustively consider all parameter combinations using grid search, use ran-

domized search strategy to sample a given number of candidates from a

parameter space with a specified distribution, or optimize the criterion of ex-

pected improvement (EI) using a Gaussian process/tree-structured Parzen

estimator approach (TPE). We chose to use the optimization of EI criterion

because it is intuitive and has been shown to work well in a wide variety of set-

tings.38 To tune the hyperparameters of our models, we used the TPE

approach implemented in the Optuna framework.39

We have used Intel Distribution for Python and Python API for Intel Data An-

alytics Acceleration Library (Intel DAAL)—named PyDAAL40—to boost ML and

data analytics performance. Using the advantage of optimized Scikit-learn

(Scikit-learn with Intel DAAL) that comes with it, we were able to achieve faster

training time and accurate results for the prediction problem.

Training and evaluation

In an ideal situation, we would have a large dataset to be able to train and vali-

date our models (training samples) and have separate data for assessing the

quality of our model (test samples). However, such data-rich situations are,

more often than not, rare in the life sciences. In many practical applications,

we seldom have the luxury of having a sufficiently large test set, which would

provide an unbiased estimate of the generalization performance of ourmodels.

If we reserve too many data for training, this results in unreliable and biased

estimates of the generalization performance; setting aside too many data for

testing results in too few data for training, which in turn hurts model perfor-

mance. For such situations where the dataset is small and reserving data for

independent test sets is not feasible, the nested CV41,42 procedure offers a

viable alternative. Nested CV can be used for choosing an appropriate classi-

fier (model) and optimizing its hyperparameters to obtain a reliable and unbi-

ased estimate of generalization performance.41,43 Model selection without

nested CV uses the same data to tune model parameters and evaluate model

performance. Information may thus ‘‘leak’’ into the model and overfit the data,

leading to a phenomenon called ‘‘overfitting in model selection.’’43 We

compared the performance of the machine learning algorithms, referred to

as ML algorithms hereafter, by performing nested 5-fold stratified nested

CV. This process consists of two nested CV loops which are often referred

to as inner (internal) and outer (external) CV loops. We perform the model se-

lection in the inner loop, and in the outer loop we estimate the generalization

performance (see Figure 2 for a schematic overview of nested CV). In the outer
Patterns 2, 100329, September 10, 2021 7



Table 4. List of absolute energy values (DGa) and mean of

absolute SHAP values for all ten possible dinucleotide steps

Dinucleotide steps DGa(kcal/mol)

AA/TT 2.34

GG/CC 0.86

AC/GT 1.91

CA/TG 2.40

AT/AT 2.29

TA/TA 1.59

AG/CT 0.67

GA/TC 0.84

CG/CG 3.06

GC/GC 1.33

Note that DGJ values were calculated only for homonucleotide steps and

not heteronucleotide steps.DGJ is 1.59 kcal/mol for AA/TT and 0.52 kcal/

mol for GG/CC.
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loop, our dataset is randomly split into five non-overlapping groups. Stratifica-

tion is used to preserve the percentage of samples for each class. In each

group, these two disjoint subsets are referred to as the training and the test

set. In each group, the test set is exclusively used for model assessment. In

the inner loop, the training set is used for model building and model selection.

In each iteration of the inner loop, the incoming training set is repeatedly split

into inner training and validation datasets by a stratified 3-fold CV approach.

The inner training folds are used to derive different models by varying the hy-

perparameters (tuning parameters) of the model family at hand, whereas the

validation sets are used to estimate the models’ performance. The hyperpara-

meters corresponding to the model with the lowest CV error across the inner

folds are chosen for training the outer loop model. Along with tuning of hyper-

parameters, we also choose the optimal threshold via a threshold-moving

technique on the validation data. This involves choosing the threshold that cor-

responds to the maximum score on a chosen evaluation metric. For this pur-

pose, we have chosen the F1 score metric. This tries to find the balance be-

tween precision and recall, which is extremely useful in scenarios when we

are working with imbalanced datasets. Finally, in each iteration of the outer

loop, we initialize the model with the tuned hyperparameters and threshold
8 Patterns 2, 100329, September 10, 2021
and use the test set to obtain an unbiased estimate of the selected model.

We present below the pseudocode for the nested CV algorithm.

For i = 1 to K1 splits do://(outer loop)

Split D into Dtrain
i ; Dtest

i for the i0th split

For j = 1 to K2 splits do://(inner loop)

Split Dtrain
i into Dinner train

j ; Dvalidation
j for the j0th split

sample parameter space (PsetsÞ using random search and TPE to get Pj

Initialize and train model M on Dinner train
j with hyperparameter set Pj

Tune hyperparameters to get P�
j and compute validation error Evalidation

j for

M with Dvalidation
j

Select optimal hyperparameter set P� from Psets, where Evalidation
j is

the least

Train M with Dtrain
i , using P�as hyperparameters

Compute test error metrics Etest
i for M with Dtest

i

For assessment of the performance of our classification model, we have

chosen accuracy, F1 score, MCC, ROC curve, and PR curves as our primary

evaluation metrics. When there is a class imbalance, the accuracy alone

cannot give an accurate assessment of the performance of a classification

model. A classifier may proclaim all data points as belonging to the majority

class and obtain a high-accuracy score while performing poorly on the predic-

tion of minority class samples. Therefore, using accuracy as the sole criterion

for model evaluation can lead to overoptimistic inflated results, especially on

imbalanced datasets. ROC represents a probability curve, and the AUC of

the ROC curve represents the measure of separability between the two clas-

ses. The higher the AUC-ROC score, the better the model is at distinguishing

between A- and B-DNA samples. Precision is defined as the ratio of true pos-

itives and the sum of true positives and false positives. False positives are out-

comes themodel incorrectly labels as positive that are actually negative. In our

example, false positives are B-DNA that the model classifies as A-DNA. In

contrast, recall expresses the number of true positives divided by the sum of

true positives and false negatives. In most problems pertaining to classifica-

tion, one could give a higher priority tomaximizing precision, or recall, depend-

ing on the problem one is trying to solve. However, in general, there exists a

more straightforward metric that takes into consideration both precision and

recall. This metric is known as the F1 score, the harmonic mean of precision

and recall. Notably, the MCC coefficient considers true and false positives

and negatives and is generally regarded as a balanced measure that can be

used when there is a class imbalance.44 It produces a more informative and

truthful score in evaluating binary classifications than accuracy and F1 score.

The formulas of these metrics are mentioned in section D of supplemental
Figure 6. Mean of absolute SHAP values

show the average impact of each dinucleo-

tide step in predicting whether a given

sequence will attain A or B conformation
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information. Section F of supplemental information contains the list of all sam-

ples used for training and testing for each iteration of the outer loop.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2021.100329.
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