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ABSTRACT Host recognition of viral nucleic acids generated during infection leads
to the activation of innate immune responses essential for early control of virus. Ret-
rovirus reverse transcription creates numerous potential ligands for cytosolic host
sensors that recognize foreign nucleic acids, including single-stranded RNA (ssRNA),
RNA/DNA hybrids, and double-stranded DNA (dsDNA). We and others recently
showed that the sensors cyclic GMP-AMP synthase (cGAS), DEAD-box helicase 41
(DDX41), and members of the Aim2-like receptor (ALR) family participate in the rec-
ognition of retroviral reverse transcripts. However, why multiple sensors might be re-
quired and their relative importance in in vivo control of retroviral infection are not
known. Here, we show that DDX41 primarily senses the DNA/RNA hybrid generated
at the first step of reverse transcription, while cGAS recognizes dsDNA generated at
the next step. We also show that both DDX41 and cGAS are needed for the antiret-
roviral innate immune response to murine leukemia virus (MLV) and HIV in primary
mouse macrophages and dendritic cells (DCs). Using mice with cell type-specific
knockout of the Ddx41 gene, we show that DDX41 sensing in DCs but not macro-
phages was critical for controlling in vivo MLV infection. This suggests that DCs are
essential in vivo targets for infection, as well as for initiating the antiviral response.
Our work demonstrates that the innate immune response to retrovirus infection de-
pends on multiple host nucleic acid sensors that recognize different reverse tran-
scription intermediates.

IMPORTANCE Viruses are detected by many different host sensors of nucleic acid,
which in turn trigger innate immune responses, such as type I interferon (IFN) pro-
duction, required to control infection. We show here that at least two sensors are
needed to initiate a highly effective innate immune response to retroviruses—
DDX41, which preferentially senses the RNA/DNA hybrid generated at the first step
of retrovirus replication, and cGAS, which recognizes double-stranded DNA gener-
ated at the second step. Importantly, we demonstrate using mice lacking DDX41 or
cGAS that both sensors are needed for the full antiviral response needed to control
in vivo MLV infection. These findings underscore the need for multiple host factors
to counteract retroviral infection.

KEYWORDS AML/MDS, DEAD-box helicase, antiviral interferon response, cGAS,
cytosolic sensing

Retroviruses are major causes of disease in animals and humans. The initial immune
response to retroviruses is critical to the ability of organisms to clear infection,

because once viral DNA integrates into the host chromosomes, persistent infections
arise, leading to immunodeficiencies, cancers, and other pathologies. The genomes of
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mammals and other species include many genes that restrict infectious retroviruses.
Among the host antiretroviral factors, APOBEC3 proteins play a major role in restricting
retrovirus infection, by cytidine deamination of retroviral DNA and by blocking early
reverse transcription (1–7).

The retrovirus RNA genome is converted by the viral reverse transcriptase (RT)
enzyme first to RNA/DNA hybrids using a tRNA to prime DNA synthesis and then to
double-stranded DNA (dsDNA). Reverse transcription thus creates potential ligands for
host sensors that recognize foreign nucleic acids. Cellular recognition of these retroviral
reverse transcripts activates the innate immune response. For example, depletion of the
host cytosolic DNA exonuclease three prime repair exonuclease 1 (TREX1), a DNA
exonuclease, increases the type I interferon (IFN) response to HIV and murine leukemia
virus (MLV) infection (4, 8, 9). The TREX1-sensitive retroviral reverse transcripts are
recognized by cellular DNA sensors such as cyclic GMP-AMP synthase (cGAS), DEAD-box
helicase 41 (DDX41), and ALR family members such as IFN-induced 16 (IFI16) in humans
and IFI203 in mice (9–13, 61).

cGAS produces the second messenger cyclic GMP-AMP (cGAMP) upon DNA binding,
which binds and activates stimulator of IFN genes (STING) (14–16). STING then trans-
locates from the endoplasmic reticulum to a perinuclear compartment and activates
TANK-binding kinase 1 (TBK1), which phosphorylates the transcription factor IFN reg-
ulatory factor 3 (IRF3), which in turn enters the nucleus, where it induces type I IFN
transcription (17–19). DNA binding to DDX41 and the ALRs also induces type I IFN
production via the STING pathway (20). It is not understood how DDX41, which belongs
to a family of DEAD-box helicase-containing genes commonly thought to bind RNA,
participates in the recognition of nucleic acid. Familial and sporadic mutations in
human DDX41 lead to acute myeloblastic leukemia and myelodysplastic syndromes
(AML/MDS), suggesting that it also functions as a tumor suppressor (21, 22).

While many studies have shown that the loss of any one of these factors decreases
the STING-mediated IFN response to cytosolic DNA, it is not known why there are
multiple sensors that converge on the same pathway, particularly in vivo. Here, we
show that DDX41 recognizes the RNA/DNA intermediate generated by reverse tran-
scription and that DDX41 and cGAS act additively to increase the IFN response and limit
retroviral infection in vivo. Moreover, using mice with cell-type-specific knockout (KO)
of DDX41, we show that dendritic cells (DCs) and not myeloid-derived cells are likely
the major sentinel cell targets of in vivo infection. These studies reveal why multiple
nucleic acid sensors are needed to control retroviral infection and underscore the
importance of studying their role in in vivo infection.

RESULTS
DDX41, IFI203, and cGAS play independent but additive roles in the response

to MLV infection. We showed previously that MLV infection caused a rapid increase in
IFN-� RNA levels in murine macrophages that is sensitive to the RT inhibitor zidovudine
and that TREX1 depletion further increased this response (4, 9). We also showed that
depletion of DDX41, IFI203, or cGAS diminished the IFN-� response with and without
TREX1; that all three molecules bound MLV reverse-transcribed DNA; and that IFI203
and DDX41 bound to each other and STING but not to cGAS (9). These data suggested
that IFI203 and DDX41 work together in a complex to sense reverse transcripts.

We hypothesized that DDX41/IFI203 and cGAS play additive but nonredundant
roles in the STING/IFN-� activation pathway. To determine if DDX41/IFI203 and cGAS
acted synergistically to generate an anti-MLV response, we tested the effects of DDX41,
IFI203, and STING depletion in bone marrow-derived macrophages (BMDMs) and DCs
(BMDCs) isolated from cGas knockout (KO) mice that also lacked APOBEC3; APOBEC3
depletion leads to increased reverse transcript levels and higher levels of IFN induction
and thus greater assay sensitivity (4, 9). After small interfering RNA (siRNA)-mediated
knockdown, the cells were infected with MLV and the IFN response was determined at
2 h postinfection (hpi), the time of maximum response (4, 9). Despite the lack of cGAS
in these cells, MLV infection induced higher levels of IFN-� RNA that were further

Stavrou et al. ®

May/June 2018 Volume 9 Issue 3 e00923-18 mbio.asm.org 2

http://mbio.asm.org


increased by TREX1 depletion (compare mock, control, and Trex1 siRNA in Fig. 1A),
suggesting that additional sensors of retroviral nucleic acid exist in sentinel cells.
DDX41 or IFI203 depletion in cGas KO BMDMs and BMDCs diminished the type I IFN
response to the same level as STING depletion (Fig. 1A). These data show that the full
STING-dependent type I IFN response to MLV reverse transcripts requires both DDX41/
IFI203 and cGAS.

The factor PQBP1 binds retroviral DNA upon infection and functions upstream of
cGAS, since cGAMP addition to PQBP1- or cGAS-depleted cells restores the type I IFN
response (23) (diagram in Fig. 1B). To determine if DDX41 worked upstream of cGAS, we
tested whether cGAMP also would rescue the IFN response in DDX41-, IFI203-depleted
cells. siRNA-mediated depletion of IFI203 and DDX41 plus TREX1 was carried out in
NR9456 mouse macrophage cells; cGAS and STING depletion served as positive and
negative controls, respectively. At 24 h after siRNA transfection, the cells were left
untreated or transfected with cGAMP for 18 h and then infected with MLV for 2 h.
cGAMP addition did not restore the IFN-� response in DDX41-, IFI203-, or STING-
depleted cells (Fig. 1C). As expected, addition of cGAMP restored the IFN-� response in
cGAS-depleted cells (Fig. 1C). Taken together with our previously published results,
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FIG 1 DDX41 and IFI203 work together with cGAS for the maximal antiviral response. (A) Knockdown of STING,
DDX41, and IFI203 in cGas/Apobec3 double-knockout BMDMs and BMDCs. Cells were transfected with the indicated
siRNAs, and 48 h later, cells were infected with MLV. At 2 hpi, the cells were harvested and examined for IFN-� RNA
levels. Knockdown verification of the genes is shown in Fig. S1A in the supplemental material. Values are shown
as means � standard deviations (SDs) from three experiments, each with macrophages and DCs from a different
mouse. P values were determined by unpaired t tests (NS, not significant; *, P � 0.05; **, P � 0.01). (B) Diagram
shows the cGAS-cGAMP-STING pathway. The arrows labeled a and b represent the possible points of DDX41 action;
cGAMP addition would rescue DDX41 knockdown if it acted at point a but not if DDX41 acted at point b in the
pathway. The red lines represent viral reverse transcripts. (C) cGAMP rescues cGAS but not STING, DDX41, or IFI203
knockdown. NR9456 macrophages were transfected with the indicated siRNAs and 24 h later transfected with
cGAMP. At 18 h post-cGAMP treatment, the cells were infected with MLV; IFN-� RNA levels were measured at 2 hpi.
Values are shown as means � SDs from three experiments. Knockdown verification of the genes is shown in
Fig. S1B. Mock indicates mock-infected cells.
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these data suggested that DDX41/IFI203 functions independently of cGAS to activate
the STING pathway (pathway b in Fig. 1B) and that the induction of IFN by the two
sensors is additive.

DDX41 is a cytosolic sensor that acts upstream of IRF3 and TBK1. DDX41 is
found in both the nucleus and the cytoplasm (9). The ALR IFI16 senses herpes simplex
virus DNA in the nucleus and then migrates to the cytoplasm, where it signals through
STING (24, 25). The ultimate product of reverse transcription is a dsDNA that is
transported into the nucleus and integrates into the chromosomes. Unintegrated
retroviral DNA persists in the nucleus as 1- or 2-long-terminal-repeat (LTR) circles. To
determine if DDX41 sensed nuclear retroviral dsDNA, we treated cells with the integrase
inhibitor raltegravir, which increases nuclear unintegrated viral dsDNA levels, and
examined the IFN response after MLV infection. Although raltegravir treatment dra-
matically increased the levels of unintegrated nuclear viral DNA, evidenced by abun-
dant 2-LTR circle formation, this treatment had no effect on IFN-� induction (see
Fig. S2A in the supplemental material), supporting DDX41 sensing of retroviral reverse
transcription products predominantly in the cytoplasm.

To test whether DDX41 functioned downstream of STING, TBK1, or IRF3 (Fig. 1B),
we siRNA depleted DDX41, cGAS, or STING in NR9456 macrophages, infected them
with MLV, and examined IRF3 (Ser396) and TBK1 (Ser172) phosphorylation at 2 h
postinfection (hpi); lipopolysaccharide (LPS) treatment served as a positive control.
While phospho-TBK1 and -IRF3 were induced in LPS-treated BMDMs and in TREX1-
depleted BMDMs in response to MLV, siRNA depletion of DDX41, cGAS, or STING
ablated virus-induced TBK1 and IRF3 phosphorylation (Fig. 2). Taken together, these
data suggest that DDX41 works in the cytoplasm upstream of STING to induce IFN.

DDX41 recognizes RNA/DNA hybrid reverse transcription intermediates. Retrovi-
ruses generate several replication intermediates which could be sensed as foreign—
tRNA-bound DNA/RNA hybrids, single-stranded DNA (ssDNA), and dsDNA. We used
three approaches to examine which reverse transcription products were sensed by
DDX41. First, to determine if DDX41 or cGAS bound to tRNA primer-containing reverse
transcription intermediates, 293T cells stably expressing the MLV receptor MCAT1 were
transiently transfected with DDX41 or cGAS expression constructs and infected with
MLV and pulldown experiments were performed. After the pulldown experiments, DNA
was isolated from half of each sample and subjected to PCR amplification with primers
that detect early reverse transcripts (strong-stop primers PR and PU5), while cDNA was
prepared from the remaining half and amplified with PR and a 3= primer specific to
tRNAPro (PtRNA), the tRNA used by MLV RT to prime reverse transcription (Fig. 3A).
DDX41 bound to �2-fold more tRNAPro-containing reverse transcripts, while DDX41
and cGAS equally precipitated a product that amplified strong-stop DNA (Fig. 3B).
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FIG 2 DDX41 acts upstream of IRF3 and TBK1. IRF3 (left) and TBK (right) phosphorylation induced by
MLV infection requires DDX41, cGAS, and STING. NR9456 cells were transfected with the indicated siRNAs
as well as Trex1 siRNA and 48 h later infected with MLV for 2 h. Control cells were infected but received
only control siRNA. The LPS treatments were for 6 h. Equal amounts of protein from the cells were
analyzed using the indicated antibodies. Mock indicates mock-infected cells. The TBK1 and IRF3 exper-
iments were performed twice. Shown are representative Western blots.
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Second, we treated the DDX41- and cGAS-bound nucleic acids with RNase H, which
degrades RNA in DNA/RNA hybrids as well as the tRNA primer; DNase I, which cleaves
dsDNA 100- and 500-fold better than RNA/DNA hybrids and ssDNA, respectively; and
RNase A, which degrades ssRNA under high-salt conditions. DDX41 again more effi-
ciently precipitated the RNA/DNA hybrid, and RNase H treatment reduced the amount
of DDX41-precipitated nucleic acid to 3%. In contrast, RNase H digestion only modestly
affected cGAS pulldown of the product amplified with the PR/PtRNA primer pair,
suggesting that DDX41 preferentially bound the RNA/DNA hybrid while cGAS bound to
tRNA primer-bound dsDNA generated after strand translocation (Fig. 3C, left panel;
diagram in Fig. 4A). In support of this, DNase I treatment abolished cGAS-mediated
pulldown of both the PR/PtRNA- and PR/PU5-amplifiable products, while DDX41-
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mediated precipitation of nucleic acid (Fig. 3C, left and right panels) was affected to a
lesser extent. RNase A digestion in high salt had no effect on any of the pulldowns.

Finally, we used a viral mutant lacking RNase H activity. During reverse transcription,
RT’s RNase H moiety degrades the positive-strand RNA genome after the synthesis of
minus-strand [(�)-strand] DNA (Fig. 4A) (26). RNase H mutations attenuate the RNase
H function without diminishing the polymerase activity. RNase HD542N synthesizes
tRNAPro-primed (�)-strand strong-stop DNA while retaining ~10% of the wild-type (WT)
levels of RNase H enzymatic activity. As a result, the RNA remains “frozen” in a DNA/RNA
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from 3 independent experiments. *, P � 0.05; **, P � 0.01; ***, P � 0.001 (unpaired t test). Knockdown of the genes is shown in Fig. S3. Mock
indicates mock-infected cells.

Stavrou et al. ®

May/June 2018 Volume 9 Issue 3 e00923-18 mbio.asm.org 6

http://mbio.asm.org


hybrid and (�)-strand strong-stop DNA does not efficiently translocate to the 3= end of
the viral RNA to initiate full-length (�)-strand DNA synthesis (Fig. 4A) (27, 28). We
engineered the D542N mutation into an MLV molecular clone (MLVD542N) and used this
virus to infect NR9456 cells. MLVD542N generated almost 3-fold more reverse transcrip-
tion products retaining the tRNA primer than did the wild-type virus, reflecting its
poorer ability to translocate the negative-strand strong-stop DNA to the 5= end of the
RNA and degrade the tRNA primer and its known increased DNA polymerase activity
relative to wild-type virus (PR-PtRNA, Fig. 4B) (27, 29). The mutation dramatically atten-
uated reverse transcription detected with the strong-stop (PR-PU5) primers compared to
wild-type virus, since these primers detect R-U5 DNA present in (�)- and (�)-strand
strong-stop as well as full-length (�)-strand DNA; late reverse transcription (P3=R-P3=L)
products were also reduced compared to wild-type virus (Fig. 4B). Interestingly, Trex1
depletion led to increases in reverse transcription products retaining tRNA from both
the wild-type and MLVD542N viruses, suggesting that negative-strand strong-stop DNA
is also degraded by this cellular exonuclease (Fig. 4B); it has been previously shown that
TREX1 degrades ssDNA and dsDNA and DNA in RNA/DNA hybrids (8, 30, 31).

To determine whether DDX41 or cGAS was better able to recognize the early
DNA/RNA reverse transcription product, we infected NR9456 cells or primary BMDCs
with MLVD542N after treatment with Trex1 siRNA alone or in combination with Sting,
Ddx41, or cGas siRNAs. MLVD542N caused about a 5- and 2-fold increase in the IFN
response compared to wild-type virus in the Trex1 siRNA-treated and untreated NR9456
cells, respectively (Fig. 4C, left panel). DDX41 knockdown diminished the response to
both viruses to the same levels as seen with STING knockdown in both NR9456 cells
and primary BMDCs (Fig. 4C). Depletion of cGAS reduced but did not completely
abrogate the TREX1-dependent response to MLVD542N in NR9456 or primary BMDCs
(Fig. 4C). The response to the RNase H mutant virus in cGAS-deficient cells was likely
due to DDX41-mediated recognition of the RNA/DNA hybrid in these cells (Fig. 4C).

The results from these 3 complementary approaches indicate that DDX41 prefer-
entially senses the RNA/DNA hybrid generated during the earliest stage of reverse
transcription while cGAS preferentially recognizes dsDNA generated at the next step.

DDX41 is required for the IFN response in both macrophages and DCs. Mac-
rophages and DCs have both been implicated in the antiretroviral innate immune
response. We examined DDX41 expression in BMDMs and BMDCs and found that it was
expressed in both cell types at both the RNA and the protein level (Fig. 5A). Interest-
ingly, in contrast to DDX41 expression, cGas and Ifi203 RNA levels and cGAS protein
levels were significantly higher in wild-type BMDMs than in BMDCs, suggesting that the
sensors used to detect nucleic acid might be cell type specific (Fig. 5A). The lack of

BMDMs                          BMDCs

GAPDH

cGAS

DDX41

STING

FIG 5 Characterization of Ddx41 knockout BMMs and BMDCs. (A) Basal expression of the different
sensors in wild-type BMDCs and BMDMs. Shown are the averages and SDs for cells isolated from 3
different mice. The inset shows Western blot analysis of 40 �g each of extracts from BMDMs and BMDCs,
probed with antisera against DDX41, cGAS, and GAPDH. (B) Relative expression of DDX41 in BMDMs and
BMDCs. Forty micrograms of protein from cells isolated from mice of the indicated genotypes was
analyzed by Western blotting with antisera to the indicated proteins. Gels are representative of 3
independent experiments. Averages from the 3 experiments are shown in in Fig. S4B.
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anti-IFI203-specific antisera prevented us from determining whether its protein levels in
BMDMs and BMDCs reflected the RNA levels.

To determine whether DDX41 was important for IFN induction in these cell types,
we used mice with a knocked-in floxed Ddx41 allele, in which the loxP sites flank exons
7 and 9 (Fig. S4A). We crossed these mice with CMV-Cre mice, but no complete KO pups
were generated, suggesting that germline loss of Ddx41 causes embryonic lethality. We
then crossed these mice with CD11cCre and LyCre transgenic mice to generate DC- and
myeloid lineage-specific KOs, respectively. We also used BMDMs and BMDCs from cGas
KO mice and Stinggt/gt mice, which encode a mutant STING protein incapable of
signaling and whose protein levels are greatly reduced (32). BMDMs from the LyCre-
DDX41 mice and BMDCs from the CD11cCre-DDX41 mice were deficient in DDX41 RNA
and protein but had wild-type levels of STING and cGAS (Fig. 5B and S4B). Additionally,
DDX41 protein levels were significantly higher in the cGas KO BMDCs but not BMDMs
(Fig. 5B and S4B). Basal levels of IFN were not also not affected by loss of DDX41
(Fig. S4C), and fluorescence-activated cell sorting (FACS) analysis demonstrated that
DDX41 deficiency did not affect overall percentages of peripheral blood DCs or
macrophages in the CD11cCre-DDX41 or LyCre-DDX41 mice (Fig. S4D). To ensure that
DDX41 loss did not affect all innate immune responses, BMDCs and BMDMs from
CD11cCre-DDX41 and LyCre-DDX41 mice were treated with the Toll-like receptor 4
(TLR4) ligand lipopolysaccharide (LPS), the TLR3/MAVS pathway ligand poly(I·C), and
cGAMP; cells from cGas KO, Stinggt/gt, and C57BL/6N mice served as controls. The
responses to LPS and poly(I·C) were similar to those of the wild type in CD11cCre-
DDX41 BMDCs, LyCre-DDX41 BMDMs, and cGas KO and Stinggt/gt BMDMs and BMDCs
(Fig. S4E). cGAMP responses were reduced only in Stinggt/gt cells, as previously reported
(33).

We then used these cells to examine the response to MLV infection. Mouse BMDCs
or BMDMs lacking DDX41 showed little or no increase in type I IFN RNA (Fig. 6A) or
protein (Fig. S5A) in response to MLV, even when TREX1 levels were reduced by siRNA
treatment. BMDCs and BMDMs from Stinggt/gt and cGas KO mice also had an abrogated
antiviral IFN-� response under the same conditions (Fig. 6A and S5A). We also tested
whether the response to HIV-1 was defective in the various mouse knockout cells, using
pseudoviruses bearing the ecotropic MLV envelope; the IFN-� RNA response to HIV was
diminished in both Ddx41 and cGas KO BMDMs and BMDCs (Fig. 6B). Thus, both sensors
are required for the full type I IFN response to both MLV and HIV in mouse cells.

The TREX1-/DDX41-dependent IFN-� response to MLV infection was much higher in
BMDCs than in BMDMs; there was a 2,000-fold increase in IFN-� RNA in BMDCs
compared to BMDMs, where the response was about 40-fold (compare y axes in Fig. 6A
and B). To determine if this was due to increased infection, we isolated splenic DCs and
macrophages from MLV-infected C57BL/6 mice at 16 days postinoculation (dpi), as well
as ex vivo infected BMDCs and BMDMs from mice of all the genotypes. Integrated MLV
DNA was analyzed by quantitative PCR (qPCR) with a B1 repeat- and MLV LTR-specific
primers. MLV infection of DCs was about 1 order of magnitude higher than that of
macrophages, after either in vivo or ex vivo infection, independent of the mouse
genotype (Fig. 6C and S6, respectively). Thus, while macrophages can be infected,
sustain reverse transcription, and mount a response to viral nucleic acids, DCs are more
infected and respond more robustly to infection.

Full suppression of MLV infection in vivo requires both DDX41 and cGAS. To
determine whether DDX41 and cGAS functioned in vivo to suppress infection, we
subcutaneously inoculated the CD11cCre-DDX41 and cGas KO mice with MLV and
measured infection levels in the draining lymph node; wild-type (Ddx41f/f mice without
Cre) and Stinggt/gt mice served as controls. The CD11cCre-DDX41 and cGas KO mice
showed significantly higher levels of infection than the wild-type mice, while Stinggt/gt

mice had the highest level of infection (Fig. 7A).
Next, we tested whether DDX41 and cGAS acted synergistically in vivo. We treated

CD11cCre-DDX41 and wild-type mice with cGAS siRNAs and cGas KO and wild-type
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mice with DDX41 siRNAs; mice injected with the in vivo transfection reagent Invivo-
fectamine alone served as controls. At 48 h after siRNA treatment, the mice were
infected with MLV in the same footpad, and at 24 hpi, RNA was isolated from the
draining lymph node and examined for MLV RNA levels (Fig. 7A) and the extent of gene
knockdown (Fig. S7). CD11cCre-DDX41 mice that received the cGAS siRNA and cGas KO
mice that received the DDX41 siRNA were infected at �8-fold-higher levels than
wild-type mice receiving no siRNA and at �3-fold-higher levels than wild-type mice
receiving the DDX41 or cGAS siRNA. Infection levels in the CD11cCre-DDX41/cGAS
siRNA group were not statistically different from those in the cGas KO/DDX41 siRNA
group (Fig. 7A). Wild-type mice receiving the DDX41 or cGAS siRNAs were �2-fold more
infected than untreated wild-type mice and were not statistically different from each
other. Stinggt/gt mice had the highest levels of infection, about 2-fold higher than cGas
KO/DDX41 siRNA or CD11cCre-DDX41/cGAS siRNA mice.

We also examined whether DDX41 expression in BMDMs or BMDCs was important
to suppress long-term in vivo infection. Newborn offspring from crosses between
LyCre-DDX41�/� and CD11cCre-DDX41�/� mice as well as newborn C7BL/6, Stinggt/gt,
and cGas KO pups were inoculated with MLV, and at 16 dpi, virus titers in their spleens
were measured; this time point has been used extensively by us and others to examine
MLV infection (4, 5, 7, 9, 34, 35). The genotyping of the intercrossed mice was carried
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mice of the indicated genotypes were infected with MLV, and at 2 hpi, IFN-� levels were measured. The data in the graph are
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out subsequent to measuring the virus titers. We thus compared infection levels
between mice with a total lack of DDX41 due to full knockout of the gene in the specific
compartment and mice with only one knockout allele and mice with no knockout of
Ddx41 (Fig. S6B).

Mice with complete knockout of Ddx41 in DCs showed 5-fold-higher infection than
either wild-type mice or mice heterozygous for the DDX41 knockout allele in this cell
type (Fig. 6). cGas KO mice were also more infected, also to about 5-fold-higher levels
than wild-type mice, and the level of infection was the same as that of the CD11cCre-
DDX41 mice (Fig. 6). In contrast, Stinggt/gt mice were most highly infected with MLV,
about 10-fold higher than wild-type mice (Fig. 6). This confirms that cGAS and DDX41
are both required for full sensing of retroviral reverse transcripts and for the control of
virus in vivo. Surprisingly, MLV infection of mice with complete knockout of Ddx41 in
macrophages was the same as that in wild-type mice or heterozygotes (Fig. 6). Thus,
although DDX41 sensed MLV infection in macrophages in vitro and ex vivo, this
response in vivo was not sufficient to control infection.

DISCUSSION

The host factor APOBEC3, which both blocks reverse transcription and causes lethal
mutation of the viral genome, is likely the first line of defense against retroviruses,
although incoming retroviruses do generate ligands that activate the innate immune
system (9). We recently proposed that the major role for cytosolic sensing of reverse
transcripts that escape the APOBEC3-mediated reverse transcription block is to induce
expression of IFN-stimulated genes (ISGs), including APOBEC3 itself (9). The most highly
studied of these sensors, cGAS, is clearly a critical component of the foreign DNA
recognition pathway, leading to STING activation and the type I IFN response. However,
the role of other sensors implicated in the response to DNA generated during pathogen
infection remains controversial. These include DDX41 as well as members of the ALR
family (4, 10, 13, 36, 37). Here, we show that DDX41 is a critical sensor of viral nucleic
acids generated during reverse transcription and is required to control in vivo infection.

Retroviruses are unique in generating multiple different forms of nucleic acid during
their replication in the cytoplasm which can be recognized as “foreign” by the host cell.
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DDX41 is likely recognizing the DNA/RNA hybrid generated in the first step of retrovirus
replication, and cGAS is likely recognizing the dsDNA generated after strand translo-
cation. While we showed that DDX41 and cGAS KO BMDMs or BMDCs showed dimin-
ished responses to transfected synthetic dsDNA or DNA/RNA molecules, DDX41 pref-
erentially precipitated RNase H-sensitive, DNA/RNA hybrid reverse transcripts
generated during MLV infection, and only depletion of DDX41 specifically reduced the
IFN response to the RNase H mutant virus, which generates more RNA/DNA hybrids
than does wild-type MLV. In contrast, cGAS precipitated DNase I-sensitive reverse
transcripts, and cGAS depletion did not completely abrogate the type I IFN response to
the RNase H mutant generated at the first step of reverse transcription. Whether the
presence of the tRNA primer bound to DNA/RNA hybrids or dsDNA plays a role in the
recognition by DDX41 or cGAS, respectively, is currently not known.

DDX41 belongs to a family of RNA helicases, with distinct DEAD/H-box (Asp-Glu-
Ala-Asp/His) domains, whose members have been implicated in translation, ribosome
biogenesis, nuclear-cytoplasmic transport, organelle gene expression, and pre-mRNA
splicing (38–40). DDX41 was recently identified as a tumor suppressor gene in familial
and sporadic myelodysplastic syndrome/acute myeloid leukemia (MDS/AML), as well as
other hematological malignancies (21, 22, 39). In MDS/AML, DDX41 is thought to
interact with spliceosomal components and alter splicing, resulting in the inactivation
of tumor suppressor genes or alterations in the balance of gene isoforms, although
whether this occurs through protein-RNA, protein-DNA, or protein-protein interactions
is not known. Our data showing that DDX41 interacts with RNA/DNA hybrids are
consistent with the known ability of DEAD-box proteins’ recognition of RNA and
suggest that DDX41 may have evolved an antiviral cytoplasmic activity that takes
advantage of its unique ability to interact with both RNA and DNA, as well as proteins.
Another DEAD-box helicase, DDX3, was also recently implicated in the sensing of HIV
RNA in DCs (41). However, DDX3 sensed abortive RNA transcribed from integrated
proviruses, whereas DDX41 sensing occurred in the presence of the integrase inhibitor
raltegravir, confirming that it works at a very early step of infection.

A previous study suggested that DDX41 might be the initial cytosolic sensor in
BMDMs and that type I IFNs induced by DDX41 sensing lead to increased expression of
cGAS, which is an ISG (42). However, at 2 hpi, cGAS- and DDX41-deficient cells showed
similar decreased IFN-� RNA levels after MLV infection, suggesting that both sensors are
needed for the initial response. We showed previously that DCs get infected by MLV (5),
and here, we demonstrate that DDX41 in DCs but not macrophages was required for
in vivo control of virus infection. The innate immune response initiated by DDX41
sensing of MLV in DCs may be due to higher levels of infection than in macrophages
or because DCs are more effective at initiating antiviral responses. Whether the
cGAS-dependent response is also required to control in vivo infection primarily in DCs
is not known. Nevertheless, the results presented here contradict studies suggesting
that DCs do not get infected but serve only as carriers that deliver intact retroviral
virions to lymphocytes (43–45).

Previous work suggested that only cGAS is important for sensing retroviruses via the
STING pathway (12, 46). These studies used vesicular stomatitis virus (VSV) G protein-
pseudotyped HIV or MLV cores. Both HIV and MLV naturally enter cells from a neutral
compartment, and it is possible that the use of VSV G, which directs entry to an acidic
compartment, might affect the accessibility of different sensors to the reverse tran-
scription complex. Additionally, these studies tested embryonic fibroblasts or BMDMs.
However, as we demonstrated previously and our ex vivo and in vivo studies here
demonstrate, DCs are likely the important targets of retroviruses (5, 47). Indeed, we also
show here that endogenous cGAS expression in DCs, the relevant cell type for con-
trolling MLV infection in vivo, is ~4-fold lower than that seen in macrophages, which
could also account for the differences in our results with previous studies. Similar
differences in cGAS expression occur in human macrophages and DCs (48).

Finally, earlier studies did not examine the effects of the different sensors on in vivo
infection. We show here that effective in vivo control of MLV infection via the STING
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pathway requires both DDX41 and cGAS. However, as we and others have shown, the
retrovirus capsid likely protects the reverse transcription complex from host sensors
and other restriction factors, including APOBEC3 proteins (9, 49, 61). This may explain
why mice lacking DDX41 or cGAS show only 5-fold-higher infection than wild-type
mice; even STING-deficient mice show only 10-fold-higher infection (Fig. 7) (9). Our data
are consistent with a requirement for both DDX41 and cGAS, the former perhaps in
complex with IFI203, to achieve the full antiviral IFN response to retroviral reverse
transcripts not protected by capsid or blocked by APOBEC3 proteins. Whether DDX41
requires interaction with IFI203 to achieve maximum effect in vivo will also be impor-
tant to determine; however, Ifi203 shares a high degree of identity in the noncoding as
well as coding regions with several other genes in the Alr locus, making a gene-specific
knockout difficult to achieve (50). How nucleic acid-bound DDX41 activates STING is
also not yet understood, although the two molecules are known to directly bind each
other (9, 13).

Our data suggest that there are multiple cytosolic sensors that recognize the
different types of nucleic acids generated during retrovirus infection. Understanding
the initial host response to infection by retroviruses is critical to our ability to determine
how these viruses establish persistent infection as well the discovery of novel ap-
proaches to intervene in these infections.

MATERIALS AND METHODS
Mice. Mice were bred at the University of Pennsylvania and the University of Illinois at Chicago.

DDX41-flp mice (C57BL/6N) were constructed by TaconicArtemis GmbH and were derived by the
University of Pennsylvania Transgenic and Chimeric Mouse Facility from in vitro fertilization of C57BL/6N
embryos with sperm from a single male. LyCre [B6.129P2-Lyz2tm1(cre)Ifo/J] and Stinggt/gt (C57BL/6J-
Tmem173gt/J) mice were purchased from the Jackson Laboratory. CD11cCre mice [B6.Cg-Tg(Itgax-cre)1-
1Reiz/J] were provided by Yongwon Choi, and cGas KO mice (Mb21d1tm1d(EUCOMM)Hmgu) were provided by
Michael Diamond and Skip Virgin (51). Apobec3 knockout mice were previously described (52). cGas/
Apobec3 double-knockout mice were generated by intercrossing the two strains. All mice were housed
according to the policies of the Institutional Animal Care and Use Committee (IACUC) of the University
of Pennsylvania and of the Animal Care Committee (ACC) of the University of Illinois at Chicago (UIC); all
studies were performed in accordance with the recommendations in the Guide for the Care and Use of
Laboratory Animals of the National Institutes of Health (62). The experiments performed with mice in this
study were approved by the University of Pennsylvania IACUC (protocol no. 801594) and UIC ACC
(protocol no. 15-222).

FACS analysis and sorting. Peripheral blood mononuclear cells were stained with anti-mouse
F4/80-fluorescein isothiocyanate (FITC) (BioLegend) and anti-mouse CD11c-phycoerythrin (PE) (BD Bio-
science) antibodies. Cells were processed using a Beckman Coulter CyAn ADP flow cytometer. Results
were analyzed using FlowJo software.

Virus. Moloney MLV (MMLV) and MLVglycoGag mutant viruses were harvested from stably infected NIH
3T3 fibroblasts, as previously described (53). Titers of all virus preparations were determined on NIH 3T3
cells and analyzed by RT-qPCR for viral RNA levels as previously described (4). To generate the RNase H
mutant virus, the D524N mutation previously described by Blain and Goff (27) was introduced into the
wild-type (WT) MLV infectious clone p63.2 (54) by site-directed mutagenesis using the QuikChange II XL
site-directed mutagenesis kit (Agilent Technologies) and the primers 5=-ACCTGGTACACGAATGGAAGCA
GTCTCTTAC-3=/5=-GTAAGAGACTGCTTCCATTCGTGTACCAGGT-3=; the mutation was verified by sequenc-
ing. The p63.2 and p63.2D524N plasmids were transfected in 293T cells using Lipofectamine 3000
(Invitrogen). The media of the transfected cells were harvested 48 h posttransfection, centrifuged at
500 � g for 10 min at 4°C, filtered through a 0.45-�m filter, and treated with DNase I recombinant RNase
Free (Roche). Virus levels were determined by the QuickTiter MuLV Core Antigen enzyme-linked
immunosorbent assay (ELISA) kit (MuLV p30) (Cell Biolabs, Inc.) and by titer determination on NIH 3T3
cells stably transfected with pRMBNB, which expresses the MLV gag and pol genes (28).

BMDM and BMDC cultures. BMDMs and BMDCs were isolated from hind limbs of 10- to 12-week-old
cGas KO, Stinggt/gt, LyCre-DDX41, CD11cCre-DDX41, and C57BL/6 mice as previously described (55). BMMs
were cultured in Dulbecco modified Eagle medium (DMEM) supplemented with 10% fetal bovine serum
(FBS), 10 ng/ml macrophage colony-stimulating factor (Invitrogen), 1 mM sodium pyruvate, 100 U/ml
penicillin, and 100 �g/ml streptomycin; were harvested 7 days after plating; and were seeded in 96-well
plates for infection assays. BMDCs were cultured in RPMI supplemented with 5% FBS and differentiated
with recombinant murine granulocyte-macrophage colony-stimulating factor (20 ng/ml; Invitrogen).
Both procedures result in cultures that are ~80% to 85% pure.

cGAMP stimulation of macrophages. Knockdowns with the indicated siRNAs were performed in
NR9456 macrophages (immortalized macrophage cell line derived from C57BL/6 wild-type mice) (56) (BEI
Resources, NIAID, NIH) using RNAiMAX, as previously described (9). The next day, cells were transfected
with Lipofectamine 2000 (Invitrogen) and 4 �g of cGAMP (InvivoGen), and 16 h later, the cells were
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infected with MLVglycoGag and harvested 2 hpi. RNA isolation and qPCR analysis were performed as
previously described (9).

Virus infection of macrophages and DCs. NR9456 macrophages, BMDMs, and BMDCs were siRNA
transfected. At 48 h after transfection, the cells were infected with wild-type, MLVglycoGag, or D542N
mutant MMLV (multiplicity of infection [MOI] of 2) and harvested at the indicated times after infection.
For some experiments, the cells were treated with 200 nM raltegravir for 2 h prior to infection and then
infected with MLVglycoGag virus in the presence of drug. Cells were harvested 2 hpi; RNA isolation and
RT-PCR were performed as previously described (9). Primers used for detection of actin, Trex1, and IFN-�
were previously described (4, 57). Primers to amplify the MLV 2-LTR closed circles are 5=-GAGTGAGGG
GTTGTGGGCTCT-3=/5=-ATCCGACTTGTGGTCTCGCTG-3= (58). Primers used to amplify late reverse tran-
scripts (P3=R/P3=L) are 5=-TAACGCCATTTTGCAAGGCA-3=/5=-GAGGGGTTGTGGGCTCTTTT-3=; strong-stop
DNA primers were reported previously (4).

BMDM and BMDC treatment with synthetic ligands. BMDMs and BMDCs isolated from C57BL/6,
Stinggt/gt, cGas KO, LyCre-DDX41, and CD11c DDX41 mice were transfected with 2 ng/�l poly(I·C) (Sigma)
and 4 ng of cGAMP using Lipofectamine 3000; cells were also treated with 1 ng/�l LPS (Sigma). The cells
were harvested at 6 h posttreatment. RNA was isolated, and cDNA was generated using the SuperScript
III kit (Invitrogen). RT-PCR was performed to measure IFN-� RNA levels, as previously described (4).

siRNA knockdown and knockdown verification. NR9456 cells, BMDMs, and BMDCs were trans-
fected with the indicated siRNAs (9) using Lipofectamine RNAiMAX reagent (Invitrogen). RNA was
isolated using the RNeasy minikit (Qiagen). All siRNAs used in this study were previously shown to be on
target and to decrease both RNA and protein levels (9). cDNA was made using the SuperScript III
first-strand synthesis system for RT-PCR (Invitrogen). RT-PCR was performed using the Power SYBR green
PCR master mix kit (Applied Biosystems). Primers for the verification of the knockdowns have been
previously described (4, 9).

IFN-� ELISAs. BMDMs and BMDCs were transfected with a control- or a Trex1-specific siRNA using
Lipofectamine RNAiMAX reagent (Invitrogen). Cells were then infected with MLVglycoGag, and the culture
medium was harvested 4 hpi. The levels of IFN-� in the culture media were measured using the Legend
Max mouse IFN-� ELISA kit (BioLegend) per the manufacturer’s recommendations.

HIV pseudoviruses. Retroviral vectors bearing the MMLV Env and HIV (pNL4-3) cores were produced
by transient transfection into 293T cells using Lipofectamine 3000 (Invitrogen), as previously described
(9). Pseudoviruses were harvested at 48 hpi, and the pseudoviruses were treated with DNase I (20 U/ml
for 45 min at 37°C; Roche) and concentrated using Amicon columns.

Nucleic acid pulldowns. DDX41myc/his, IFI203-hemagglutinin (HA), and cGAS-V5 plasmids have
been previously described (9, 59). 293MCAT cells transfected with pcDNA3.1 (empty vector), cGAS-V5,
and DDX41myc/his were infected with virus, and at 4 hpi, the cells were cross-linked with 1% formal-
dehyde in medium. Cross-linking was quenched with 2.5 M glycine, and extracts were prepared and then
incubated overnight with anti-Myc- or anti-HA-agarose beads (Sigma) or anti-V5 antibody (Invitrogen)
with G/A-agarose beads (Santa Cruz Biotechnology). The beads were washed with high-salt buffer
(25 mM Tris-HCl, pH 7.8, 500 mM NaCl, 1 mM EDTA, 0.1% SDS, 1% Triton X-100, 10% glycerol) and with
LiCl buffer (25 mM Tris-HCl, pH 7.8, 250 mM LiCl, 0.5% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA,
10% glycerol). The immunoprecipitated nucleic acid was eluted from the beads at 37°C in 100 mM
Tris-HCl, pH 7.8, 10 mM EDTA, 1% SDS for 15 min, and the protein-nucleic acid cross-linking was reversed
by overnight incubation at 65°C with 5 M NaCl. The eluted nucleic acid was purified using the DNeasy
kit (Qiagen) and analyzed with RT-PCR strong-stop primers (primers PR and PU5 in Fig. 3A) or 3= LTR
primers (primers P3=R-P3=L in Fig. 4A) (4). For analysis of the tRNA-bound MLV nucleic acid, the same
procedure was used, except that the eluted nucleic acid was reverse transcribed prior to PCR with the
PR primer and another primer that annealed to nucleotides (nt) 39 to 57 in tRNAPro (PtRNA in Fig. 3A)
(5=-GCTCTCCAGGGCCCAAGTT-3=) (60). For the nuclease treatments, after the nucleic acids were released
from the protein cross-link, they were ethanol precipitated and treated at 37°C with 50 U RNase A
(Thermo) for 20 min in the presence of 300 mM NaCl, 4 U DNase I (Roche) with the reaction buffer
provided with the enzyme for 20 min, or 3 U of RNase H (Thermo) for 20 min in the reaction buffer
provided with the enzyme. Samples were digested with proteinase K and phenol-chloroform extracted,
and the nucleic acids were subjected to qPCR analysis as described above.

MLV infection levels. NR9456 cells were infected with WT or D542N virus, and 2 hpi, cellular DNA
and RNA were isolated. RNA was reverse transcribed using a SuperScript III kit (Invitrogen), and the
resultant cDNA was used for quantitative PCR using the PR-PtRNA primers. DNA was subjected to
quantitative PCR using the PR-PU5 and the P3=LTRF-P3=LTRR primers. Bone marrow from C57BL/6 mice was
isolated and differentiated to BMDMs and BMDCs. BMDCs and BMDMs were infected with MLV (MOI of
0.1/cell). Cells were harvested at 24 and 48 hpi. For analysis of cell subset infection in vivo, newborn mice
were infected intraperitoneally (i.p.) with MLV. At 16 dpi, splenocytes were isolated and FACS sorted
directly into 15-ml collection tubes using a MoFlo Astrios cell sorter (Beckman Coulter, Inc., Brea, CA) at
the UIC Cell Sorting Facility; anti-F4/80-FITC and -CD11c-PE were used to distinguish macrophages and
DCs, respectively. DNA was isolated by using the DNeasy kit (Qiagen). Quantitative PCR was performed
to measure integrated MLV DNA using the primers 5=-CCTACTGAACATCACTTGGGG-3=/5=-GTTCTCTAGA
AACTGCTGAGGGC-3= and normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH).

Western blot analyses. Protein extracts from the BMDMs and BMDCs were run on 10% SDS-
polyacrylamide gels and transferred to polyvinylidene difluoride (PVDF) Immobilon membranes
(Thermo). Rabbit anti-STING, anti-cGAS, anti-phospho-IRF3 (Ser 396), anti-IRF3, anti-TBK1, anti-phospho-
TBK1 (Ser 172), and horseradish peroxidase (HRP)-conjugated anti-rabbit antibodies, all from Cell
Signaling Technology; mouse monoclonal anti-DDX41 (Santa Cruz Biotechnology); and HRP-conjugated
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anti-mouse antibody (Sigma-Aldrich) were used for detection, using either ECL Western blot detection
reagent or ECL prime Western blot detection reagent (GE Healthcare Life Sciences).

In vivo siRNA knockdown. siRNAs were purchased from Ambion (Life Technologies, Inc.). The
Invivofectamine 3.0 starter kit (Invitrogen Life Technologies, Inc.) was used according to the manufac-
turer’s protocol. Each siRNA solution (2.5 nmol/�l) was combined with complexation buffer and Invivo-
fectamine reagent for 30 min at 50°C. Footpad injections of the siRNA/Invivofectamine complex or
Invivofectamine alone were carried out 48 h prior to infection with MLV (2.5 � 105 infectious center [IC]
units/mouse) in the same footpad. Each mouse received 20 nmol of siRNA. After 24 hpi, mice were
euthanized and draining lymph node tissues were collected and harvested for RNA isolation. MLV RNA
levels were measured by RT-qPCR, as previously described (34). Knockdown of the siRNA-targeted gene
was also verified by RT-qPCR as described above.

In vivo infections. For systemic infections, 2-day-old mice (C57BL/6N, cGAS KO, STINGgt/gt, and the
tissue-specific DDX41 KO mice described in Fig. S7B in the supplemental material) were infected
intraperitoneally with 2 � 104 infectious center (IC) units of MLV and then harvested at 18 dpi, and virus
titers in spleens were measured by IC assays, as previously described (4). The in vivo infection studies
were performed at both the University of Pennsylvania and the University of Illinois. The DDX41 knockout
mice were housed side by side with the STINGgt/gt and cGAS mice and crossed with BL/6N mice from our
colony.

Statistical analysis. Each experiment was done with 3 technical replicates/experiment. Data shown
are the averages from at least 3 independent experiments or as indicated in the figure legends. Statistical
analysis for the various experiments was performed using GraphPad Prism software.

Accession number(s). All raw data are deposited in the Mendeley data set at https://data.mendeley
.com/datasets/j4mgm4v9t3/3.
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