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Cardiovascular diseases are the leading cause of death around the world and the

insulin-like growth factor (IGF)-system has multiple functions for the pathological

conditions of atherosclerosis. IGF binding proteins (IGFBPs) are widely investigated as

biomarkers for pathological disorders, including those of the heart. At the tissue level,

IGFBP-1 to -6 decrease bioactivity of IGF-I and -II due to their high affinity IGF-binding

sites. By contrast, in the circulation, the IGFBPs increase biological half-life of the IGFs

and may therefore be regarded as positive regulators of IGF-effects. The IGFBPs may

also exert IGF-independent functions inside or outside the cell. Importantly, the circulating

IGFBP-concentrations are regulated by trophic, metabolic, and reproductive hormones.

In a multitude of studies of healthy subjects and patients with coronary heart diseases,

various significant associations between circulating IGFBP-levels and defined parameters

have been reported. However, the complex hormonal and conditional control of IGFBPs

may explain the lack of clear associations between IGFBPs and parameters of cardiac

failure in broader studies including larger populations. Furthermore, the IGFBPs are

subject to posttranslational modifications and proteolytic degradation by proteases, upon

which the IGFs are released. In this review, we emphasize that, with the exception of

IGFBP-4 and in sharp contrast to the preclinical studies, virtually all clinical studies do not

have structural or functional information on their biomarker. The use of analytical systems

with no discriminatory potential toward intact vs. fragmented IGFBPs represents a major

issue in IGFBP-related biomarker research and an important focus point for the future.

Overall, measurements of selected IGFBPs or more complex IGFBP-signatures of the

family of IGFBPs have potential to identify pathophysiological alterations in the heart or

patients with high cardiovascular risk, particularly if defined cohorts are to be assessed.

However, a more thorough understanding of the dynamic IGF-IGFBP system as well as

its proteases and protease inhibitors in both normal physiology and in cardiovascular

diseases is necessary.
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INTRODUCTION

In Europe (1) and in the US (2), cardiovascular diseases are
heading the statistics on causes of death. It is well-known
that the insulin-like growth factor (IGF)-system actively
contributes to the pathological conditions of atherosclerosis,
including activation of smooth muscle cells and macrophages,
angiogenesis, and restenosis (3). First of all, IGF-I and IGF-
II are potent stimulators of smooth muscle cell proliferation
(4, 5). In human arterial smooth muscle cells, IGF-I has been
identified as a potent effector of chemotaxis (4). IGF-I has
also been shown to increase the release of proinflammatory
cytokines and low-density lipoprotein (LDL) uptake, which
facilitate atherosclerosis and plaque instability (3). In addition,
it is thought that the IGF-system supports accumulation of
extracellular matrix in the vessel walls (3), which may occur
by the control of matrix degrading enzymes (6). Under
conditions of reduced IGF-I concentrations, levels of matrix
proteins (actin and procollagen 3A1) are decreased, whereas
matrix metalloproteinase levels (MMP-3 and−13) are elevated in
smooth muscle cells (6). Supplementation by IGF-I normalizes
both matrix proteins and matrix degrading enzymes (6).
Interestingly, IGF-I concentrations in in vitro cultivated smooth
muscle cells are affected when cell culture medium conditioned
by macrophages is used.

IGF bioavailability is strictly regulated by six high-affinity IGF
binding proteins (IGFBPs) that are ubiquitously produced in
most tissues. The IGFBPs bind the IGFs on a 1:1 molar basis and
prevent receptor activation, but they also serve to prolong IGF
half-life. IGFBP-3 is the most abundant IGFBP in adult serum
with a concentration of approximately 3,000 ng/mL, whereas the
remaining IGFBPs circulate at concentrations of 20–500 ng/mL
(7). Due to their affinities and high concentrations, <1% of IGF
is circulating in the free form (7, 8). The acid labile subunit
(ALS) is found almost exclusively in the circulation and binds to
preformed complexes composed of IGF and IGFBP-3 or IGFBP-
5. Due to the size of the ternary complex, approximately 80%
of all IGF-I is sequestered in the intravascular compartment. By
contrast, the IGFs are predominantly bound to the IGFBPs in
binary complexes within tissues (9). Consequently, the IGFBPs
create a reservoir of readily available IGF (primarily IGFBP-3 and
-5) and control tissue-specific efflux and distribution (primarily
IGFBP-1,-2, and -4) (1, 2). Thus, the IGFBPs serve as important
determinants of IGF actions and like the IGFs, the IGFBPs
have been suggested to play a role in the pathogenesis of
atherosclerosis. Of note, in the fetal and adult human heart,
IGFBP-3 appears to be expressed at high levels (10), and in

Abbreviations: ACS, acute coronary syndrome; ALS, acid labile subunit; AMI,

acute myocardial infarction; CAD, coronary artery disease; CASC, cardiac atrial

appendage stem cell; CHD, coronary heart disease; CT, carboxyl-terminal;

CV, cardiovascular; CVD, cardiovascular disease; ECG, electrocardiogram; GH,

growth hormone; HDL, high-density lipoprotein; IGF, insulin-like growth factor;

IGFBP, IGF binding protein; IHD, ischemic heart disease; IMT, intima-media

thickness; LDL, high-density lipoprotein; MACE, major adverse cardiac events;

MI, myocardial infarction; MMP, matrix metalloproteinase; NSTEMI, no elevation

of the ST segment; NT, amino-terminal; PAPP-A, pregnancy-associated plasma

protein-A; STEMI, elevation of the ST segment; T2D, type 2 diabetes; TNF, tumor

necrosis factor.

the developing rat heart, mRNA for IGFBP-3,−4, and−5 has
been demonstrated (11). Importantly, based on the GeneCardsR

database entries, all IGFBPs can be detected in the normal
human heart. Accordingly, several IGFBPs have been suggested
as attractive cardiovascular markers, although local vs. systemic
effects of IGFBPs in the heart have not been resolved and causal
relationships between IGFBP perturbations and the development
of atherosclerosis remain to be firmly established (12). While
the biomarker potential of growth hormone (GH) or IGF-I in
heart failure has been discussed just recently (13), the present
review for the first time addresses the biomarker potential of
all IGF binding proteins (IGFBPs) in cardiovascular diseases.
In order to understand the potential effects of local IGFBP-
expression in the heart, the discussion of clinical studies is
extended by concepts and hypotheses derived from selected
functional studies of IGFBPs in the heart and entire circulatory
system. Cardiovascular disease is a group of diseases that
includes both the heart and blood vessels, and of which
most are caused by atherosclerosis, where the inside of an
artery narrows due to the accumulation of an atherosclerotic
plaque. Ischemic heart disease [IHD, alternatively coronary
artery disease (CAD) or coronary heart disease (CHD)] is the
umbrella term for stable and unstable angina, acute myocardial
infarction (AMI, commonly known as heart attack), and sudden
cardiac death. AMI and unstable angina defines the acute
coronary syndrome (ACS). Stroke is the subtype caused by a
disruption in the flow of blood to part of the brain either
due to blood vessel occlusion (ischemic stroke) or rupture
(hemorrhagic stroke). Congestive heart failure is the end stage
of several circulatory diseases and characterized by abnormal
myocardial function and insufficient ability to maintain blood
flow.

On a final note, it should be acknowledged that research in the
area is still in its early phases, and larger andmore comprehensive
investigations are needed to fully assess the biomarker potential
of the IGFBPs as well as potential redundancy function within the
IGFBP family. Moreover, it is pivotal to appreciate the relation
of cause and effect. Most theories derive from findings in cross-
sectional studies and such observations should be considered as
hypothesis generating as they cannot give evidence of causality.
Finally, in all paragraphs to come, it is urged to remember
that numerous studies have been performed using assays with
undocumented specificity toward the IGFBPs, and our evaluation
and interpretation of studies should be seen in the light of
that.

IGFBP-1

Much attention has focused on IGFBP-1 as a partaker in
metabolic diseases, as it is negatively regulated by insulin,
glucose, and GH (14). In prediabetic patients, IGFBP-1 is
reduced, but as the disease progresses, so does pancreatic
secretory capacity, resulting in chronic insulin deficiency as well
as increased IGFBP-1 levels. Thus, the biomarker potential of
circulating IGFBP-1 is largely biased by conditional and age-
related insulin or GH-insensitivities. In the heart, IGFBP-1
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expression is differentially regulated by insulin (15). In smooth
muscle cells, IGFBP-1 expression (Table 1), which is increased by
interleukins and TNFalpha, exerts IGF-dependent as well as—
independent effects on cell proliferation (16). Because higher
concentrations of IGFBP-1 were found in aortic plaques, IGFBP-
1 was discussed in the context of plaque stability (16). However,
mice overexpressing IGFBP-1 present with reduced blood
pressure and increased vascular nitric oxide production, and the
overexpression prevents vascular endothelial dysfunction in the
mice on high calorie diet [107]. In patients with AMI, significant
reductions in serum IGFBP-1 (∼40 ng/ml) when compared
to healthy subjects (∼70 ng/ml) have been demonstrated (20).
Likewise, in patients with type 2 diabetes (T2D), decreased
circulating concentrations of IGFBP-1 were correlated with
cardiovascular risk factors such as low high-density lipoprotein
(HDL) cholesterol or high blood pressure (17). These correlations
have been confirmed by several consecutive studies (18, 19).
However, in patients with heart failure, IGFBP-1 levels have been
shown to be increased, although not associated with outcome
(21), and in 112 patients with unstable angina, IGFBP-1 levels
correlated with ACS disease severity and are higher in patients
with multivessel disease than those with single-vessel (22).
High circulating IGFBP-1 was also significantly associated with
morbidity and cardiovascularmortality in a study includingmore
than 500 diabetic patients with AMI (23). Thus, it was concluded
that metabolic control and hepatic insulin resistance are related
to fatal events in diabetic CVD patients. Notably, in the lowest or
highest IGFBP-1 tertile, IGFBP-1 concentrations ranged between
2 and 24 or 43 and 677µg/l, respectively (23). In diabetic patients,
IGFBP-1 concentrations were associated with those of copeptin,
which independently predicted myocardial events, and this could
in part explain the prognostic value of IGFBP-1 for heart failure
or AMI (56). However, the same association was not found in a
more recent study by the same authors (24). On the tissue level,
sonography of carotid arteries in type 2 diabetic patients revealed
a highly significant negative correlation between IGFBP-1 serum
concentrations and thickness of the combined intimal and media
compartments (25). Irrespective of diabetes, high IGFBP-1 serum
concentrations were correlated with and thus predictive for
an increased risk of cardiovascular and coronary heart disease
mortality in elderly men (26). Likewise, in survivors of a previous
(first) AMI, higher circulating IGFBP-1 concentrations predicted
heart failure as demonstrated by a prospective study (27) which
includedmale and female subjects between 45 and 70 years of age.
Interestingly, higher IGFBP-1 concentrations were informative
for mortality in subjects with no history of heart failure after
a follow-up of 8 years. Serum IGFBP-1 concentrations were
also significantly increased in patients with critical CAD when
compared to patients with less severe CAD (22). In combination
with HDL cholesterol, IGFBP-1 serum concentrations were more
sensitive and specific for the prediction of CAD (22). Lower
IGFBP-1 and IGF-I serum concentrations were associated with
an increased risk of IHD later in life or with higher cardiovascular
disease mortality in men and women at an age between 51
and 98 years (28). Nevertheless, the authors also concluded
that assessment of IGFBP-1 and IGF-I could be used for the
identification of adult subjects at an increased risk of fatal

IHD as well as for the selection of an appropriate intervention
strategy. The reasons underlying the contradictory biomarker
information of IGFBP-1 are not directly evident, because the
follow-up periods were 9–13 years in one study (28) and 8 years in
the later study (27). A possible explanation may be deduced from
the fact that the study by Janszky et al. was restricted to the risk of
heart failure but not to all-cause mortality or mortality related to
cardiovascular disease. In 335 elderly male subjects (70–89 years
of age), IGFBP-1 was not associated with increased prevalence
of cardiovascular mortality risk (29). Concentrations of IGFBP-
1 in the circulation furthermore were not correlated with the
prevalence of coronary complications in aged subjects (30).
Collectively, these findings suggest that IGFBP-1 may predict
future cardiovascular mortality and morbidity, but perhaps more
importantly, it may serve as a marker of hyperinsulinemia, which
precedes subsequent development of insulin resistance and CVD.

IGFBP-2

IGFBP-2 has been established as a marker of the metabolic
syndrome and therefore, it has been suggested that low
concentrations of IGFBP-2 could be a useful biomarker for
the assessment of cardiovascular risk factors (31). It is the
second most abundant binding protein in circulation and is also
metabolically regulated, albeit not as rapidly as IGFBP-1. Indeed,
IGFBP-2 levels are reduced in obese subjects and in T2D, and low
levels associate with elevated fasting glucose, serum triglycerides,
and LDL cholesterol (31). As a particular advantage of IGFBP-
2 as compared to IGFBP-1, circulating IGFBP-2 concentrations
are less prone to post-prandial alterations. This suggests IGFBP-
2 to represent a more robust biomarker than IGFBP-1 (31). In
a cross-sectional study that included 310 study members at an
age between 63 and 82 years, circulating IGFBP-2 concentrations
were negatively correlated with arterial intima-media thickness
(IMT), whereas IGF-II levels were positively associated with
IMT (35). Conversely, IGFBP-2 concentrations in plasma were
about 2-fold increased in 273 cases of fatal IHD and a strong
association between IGFBP-2 and death/AMI was described
(32). In 99 patients with T2D and 99 controls, IGFBP-2 was
inversely associated with pulse wave velocity, which is a measure
of arterial stiffness and thus, the degree of atherosclerosis (33).
However, these cross-sectional studies reflect associations and
give no evidence of causality. In a study by Hedbacker et al.
(57), the authors demonstrated a direct beneficial effect of IGFBP-
2 on cardiovascular risk factors in excessively obese (ob/ob)
and diabetic mice. IGFBP-2 overexpression resulted in a 3-fold
increase in hepatic insulin sensitivity and a reduction in plasma
glucose, liver triglycerides, and hepatic steatosis. As a result,
the diabetic phenotype was remedied. The same reduction in
plasma glucose was observed upon overexpression of IGFBP-2
in wild-type mice, and there was a trend for reduction in insulin
levels in both models. Considering this association between low
IGFBP-2 and multiple CVD risk factors, IGFBP-2 may serve
as a robust biomarker for the identification of individuals with
high cardiovascular risk. However, IGFBP-2 is also a biomarker
of mortality in elderly subjects (34), possibly explained by an
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TABLE 1 | Biomarker potential of IGFBPs in ischemic heart disease.

IGFBP- Patient information Biomarker association Method References

1 Aortic plaques SMC proliferation (+) plaque stability (+) mRNA (16)

1 Diabetic CV risk factors: insulin (–), blood pressure (–) RIA (17, 18)

1 Aged (m: 70–89 y) CV risk factors (–) IFA (19)

1 AMI IGFBP-1 (–) IRMA (20)

1 Heart failure Heart failure (+) RIA (21)

1 CAD Severity of CAD (+) ELISA (22)

1 Diabetic and AMI Morbidity and CV mortality (+) RIA (23)

1 ACS Copeptin as a marker of AMI (no effect) RIA (24)

1 Diabetic Carotid IMT thickness (+) IFA (25)

1 Aged (m: 65–84 y) CV and CHD mortality (+) IFA (26)

1 AMI survivor (45–70 y) Heart failure (+) RIA (27)

1 Healthy (45–70 y) Heart failure (+) RIA (27)

1 CAD Severity of CAD (+) ELISA (22)

1 Aged (51–98 y) CVD mortality (–) IRMA (28)

1 Male (70–89 y) Cardiovascular mortality risk (no effect) IFA (29)

1 Aged Coronary complications (no effect) ELISA (30)

2 Diabetic Cardiovascular risk factors (–) RIA (31)

2 IHD Death/MI (+) n.p. (32)

2 Diabetic and controls Carotid-femoral pulse wave velocity (–) IDS-iSys (33)

2 Aged (≥80 y) Mortality (+) RIA (34)

2 Aged (63–82 y) Arterial IMT (–) ELISA (35)

3 AMI IGFBP-3 (+) IRMA (20)

3 Healthy IHD later in life (+) RIA (36)

3 CHD IGFBP-3 (+) EIA (37)

3 Male Total cholesterol (+), LDL (+) IRMA (38)

3 Hypertension Carotid atherosclerosis (+) RIA (39)

3 Aged (63–82 y) Plaque instability (+) RIA (35)

3 Moderate IHD Ischemic heart failure (–) RIA (40)

3 Adult (40–60 y) CHD (–) ELISA (41)

3 Aged (≥65 y) Incident coronary events (–) ELISA (30)

3 MI IGFBP-3 (–) ELISA (42)

3 CHD IGFBP-3 (–) ELISA (43)

3 Adult/aged (≥45 y) carotid IMT (–) CIA (44)

3 Female (51–68 y) MI (no effect) SIA (45)

3 Subjects (45–79 y) CAD (no effect) RIA (46)

3 Subjects (40–79 y) Mortality (no effect) RIA (47)

3 STEMI/NSTEMI ACS (no effect) RIA (48)

4 Diabetic and controls Carotid artery remodeling (NT-IGFBP-4) and accelerated atherosclerosis TR-IFMA (33)

4 ACS PAPP-A (+) n.a./WIB (49–51)

4 MI-suspected MACE (NT-/CT-IGFBP-4 +) IA (52)

4 CVD long-term outcome (NT-/CT-IGFBP-4: no effect) IA (53)

4 Diabetic CV mortality (NT-/CT-IGFBP-4 +) TR-IFMA (54)

4 STEMI CV mortality (NT-/CT-IGFBP-4 +) TR-IFMA (55)

5 CHD IGFBP-5 (+) RIA (37)

5 CHD and healthy controls Apo A1 (+) HDL-C (+) RIA (37)

ACS, acute coronary syndrome, AMI, acute myocardial infarction; CAD: coronary artery disease; CHD, coronary heart disease; CIA, chemiluminescence immunoassay; CT-

/NT-, carboxyl-/amino-terminal); CV, cardiovascular; CVD, cardiovascular disease; EIA, enzyme immunoassay; H/LDL, high-/low-density lipoprotein; IA, immunoassay; IDS-iSYS,

Immunodiagnostic Systems (automated immunoassay analyzer); IFA, immunofluorometric assay; IHD, ischemic heart disease; IMT, intima-media thickness; IRMA, immunoradiometric

assay; MACE, major adverse cardiac event; MI, myocardial infarction; n.a., not applicable; n.p., not provided by the authors; N/STEMI, no/elevation of the ST segment; PAPP-

A, pregnancy associated plasma protein A; RIA, radioimmunoassay; SIA, 2-step sandwich-type immunoassay; TR-IFMAs, time-resolved immunofluorometric assay; WIB, Western

immunoblot.
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association between high serum IGFBP-2 and low physical
function. Thus, it might be important to also assess the functional
relevance of increased circulating IGFBP-2 levels for CVD in the
future.

IGFBP-3

Due to its abundance in the circulation and role as the primary
IGF carrier, substantial attention has been paid to IGFBP-3.
Surprisingly, little is known about its regulation with regards to
cardiovascular disease. In the human heart, IGFBP-3 is expressed
throughout lifetime both on mRNA and protein levels and
IGFBP-3mRNA expression in the heart is higher when compared
to the liver at fetal as well as adult stages (10). Interestingly,
higher IGFBP-3 protein expression was identified by Western
immunoblotting in the ischemic as compared to the hypertrophic
or dilated heart (10). Intact IGFBP-3 is secreted by cardiac atrial
appendage stem cells (CASCs) and thought to be related to the
regenerative potential due to cardiac angiogenesis and possibly
also to some extent cardiomyogenic differentiation in the
ischemic heart as demonstrated also byWestern immunoblotting
(58). After heart transplantation, expression of IGBP-3 and
IGF-I mRNA was quantified in end-stage dilated (n = 11) or
ischemic hearts (n = 12) (59). Compared to healthy control
hearts (n = 10), expression of IGFBP-3 mRNA was significantly
increased in both pathological conditions, whereas IGF-I mRNA
was elevated only in the dilated heart (59). Expression of
IGFBP-3 was further discussed in the context of hypoxia and a
pathophysiological function of the IGF-system was proposed for
the heart. In fact, in cultivated H9c2 myocardial cells, hypoxia
increased expression of IGFBP-3, which was responsible for the
induction of apoptosis due to inhibition of IGF-signaling via
protein kinase B (60). However, on the local level, IGFBP-3
exerted antiproliferative effects on the Wnt signaling pathway in
cardiac progenitor cells (61). Thereby, the authors demonstrated
that the antiproliferative effect of IGFBP-3 depends on an intact
IGF-binding site.

Increased Concentrations of IGFBP-3
In contrast to IGFBP-1, IGFBP-3, and IGF-I levels significantly
increased after AMI (20). The authors were able to specify a
threshold of 137 ng/ml for the serum concentrations of IGF-I:
lower concentrations were correlated with a worse prognosis in
AMI patients, whereas higher concentrations of IGF-I after AMI
were associated with improved functional parameters detected
by echo cardiography (e.g., left ventricular mass or ejection
fraction) (20). It was suggested that high IGF-I immediately
after AMI fueled myocardial remodeling, and that IGFBP-3,
which generally reflects total IGF-I levels, increased in parallel.
In a prospective study, high IGFBP-3 and low IGF-I serum
concentrations in healthy subjects were correlated with an
increased risk of developing IHD later in life (36). In partial
agreement, higher levels of IGFBP-3 but also higher serum
concentrations of IGF-I were described in patients with CHD
(37). Under conditions of AMI, an elevation of the ST segment
(STEMI) on the electrocardiogram (ECG) is considered to
characterize a more severe form of the ACS when compared

to patients with no elevation of the ST segment (NSTEMI).
In a longitudinal study of 747 White and 544 Black young
males over a period of 10 years, an increase of IGFBP-3
serum concentrations over time was associated with significant
increases of total cholesterol and LDL cholesterol (38). This
study did not confirm previous cross-sectional studies describing
associations of IGFBP-3 and IGF-I with hypertension, but rather
revealed a link between IGFBP-3 and lipid concentrations in
young males. In hypertensive patients, a role of IGFBP-3 in the
formation of carotid atherosclerosis was suggested (39). In elderly
patients (63–82 years of age), higher circulating concentrations
of IGFBP-3 or IGF-I were positively or negatively associated
with plaque instability, respectively (35). The authors concluded
that IGF-I and IGFBP-3 might represent functional biomarkers
for prediction of the risk for plaque rupture or therapeutic
targets for stabilization of atherosclerotic plaques. In fact,
systemic concentrations of IGFBP-3 and IGF-I were increased
after application of the angiotensin-converting enzyme-inhibitor
Fosinopril, and the beneficial effects of treatment in IHD were
discussed in the context of the IGF-system (62).

Conditions of Decreased Circulating
IGFBP-3
In addition to IGF-I and IGFBP-3, secretion of GH was also
impaired in patients with ischemic heart failure (40). The authors
observed patient-individual GH-sensitivity related to the degree
of left ventricular dysfunction (40). In male patients between 40
and 60 years of age (41) and in adults of both genders older than
65 years (30), lower concentrations of IGFBP-3 or IGF-I in serum
were associated with CHD. In patients with AMI, serum levels
of IGFBP-3, IGF-I, and IGF-II were decreased immediately after
AMI, but returned to their normal range 1 week after coronary
intervention (42). Similarly, in 90 patients with a diagnosed CHD,
reduced levels of circulating IGFBP-3 and IGF-I were described
(43). The results are in principal agreement with a previous
report on reduced IGF-I concentrations in patients with AMI
(63). In both studies, serum concentrations of GHwere increased
under conditions of acute cardiac ischemia. Low concentrations
of IGFBP-3 and high circulating levels of IGF-I were further
associated with an increased thickness of the intima-media (44).

Lack of Biomarker Value for IGFBP-3
Concentrations
A prospective study in women at 51–68 years of age revealed
no direct relationship between IGFBP-3 or IGF-I and a risk
of AMI later in life (45). Systemic effects of IGFBP-3 or IGF-
I on the development of CAD were excluded by a prospective
study observing more than 1,000 cases and more than 2000
controls over a mean period of 6 years (46). From this study and
from an additional meta-analysis assessing 31 single nucleotide
polymorphisms present in the IGF1 and IGFBP3 genes, the
authors concluded that neither circulating IGFBP-3 or IGF-I
nor the corresponding genes were causative for the development
of CAD in human populations. At a later time point, a single
nucleotide polymorphism upstream of the IGF1 genomic region
was identified in patients at an increased risk of developing CAD
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(64). With respect to IHD, an association between mortality
and circulating concentrations of IGFBP-3, IGF-I, or IGF-II was
also excluded by a large prospective Japanese study including
more than 39,000 subjects between 40 and 79 years of age (47).
In a Turkish study including 20 STEMI patients, 10 NSTEMI
patients, and 20 healthy controls, IGFBP-3 was not affected by
ACS (48). Instead, IGF-I was severely reduced in ACS patients
with elevations of the ST segment on the ECG (48). Therefore,
IGF-I serum concentrations were suggested to represent potential
biomarkers of myocardial necrosis in the STEMI group of ACS
patients.

Age-Related Biomarker Potential of
IGFBP-3
Interestingly, age-related discrepancies exist in the IGF-
and IGFBP-concentrations after AMI as analyzed by RIA
(65). Accordingly, younger subjects (<50 years of age) are
characterized by higher absolute concentrations and lower daily
variations of circulating IGF-I when compared to more aged
subjects (>50 years of age), which may be related to higher
regenerative capacities in younger subjects after AMI (65).
Age-related differences of IGF-I and IGFBP-3 in the context
of differential prognosis after AMI also might indicate an
involvement of GH during functional recovery of the infarcted
heart. The inclusion of structural information (intact vs.
fragmented IGFBPs) could be used in order to assess age-related
control of IGF-bioactivity.

IGFBP-4 AND PAPP-A

IGFBP-4, also an abundant IGFBP, has been suggested in
numerous studies to be directly involved in the inhibition of
atherosclerosis (33, 52, 54, 55, 66, 67). As demonstrated on
the level of mRNA and protein, intact IGFBP-4 is produced
by a variety of cell types and represents the major IGFBP
secreted by myoblasts (68–70). It is considered to attenuate IGF
activity in most physiological contexts and inhibits proliferation
and differentiation during the transition from myoblasts to
myotubes (68). Studies suggest that intact IGFBP-4 modulates
cardiac development and cardiomyocyte differentiation (70) and
is actively involved in the development of atherosclerosis, with
high expression levels in aorta lesional areas (66). Moreover, mice
with an overproduction of IGFBP-4 present with smooth muscle
hypoplasia (71). IGFBP-4 has a preferential affinity for IGF-
II over IGF-I and transports them to peripheral tissues, where
proteases cleave IGFBP-4 into low binding-affinity fragments
(72–74). The enzyme pregnancy-associated plasma protein-A
(PAPP-A) has been identified as the principal, if not only,
protease responsible for this IGF-dependent cleavage of IGFBP-
4 (75, 76), and PAPP-A levels strongly correlate with the levels
of IGFBP-4 proteolytic fragments (54). PAPP-A tethers to cell
surfaces, and thus, release of the IGFs occurs in close proximity
to the IGF-IR and increases IGF bioavailability primarily at
local sites (77). Interestingly, balloon injury of porcine coronary
arteries has been shown to massively increase the expression
of PAPP-A and the subsequent degradation of IGFBP-4 in the

neointimal and medial layers, peaking at 4 weeks after treatment,
thus causing possible hyperplasia and coronary restenosis (71).
In a study of patients with T2D and healthy controls, IGFBP-
4 fragment levels were associated with the normalized wall-
index, which is a measure of carotid artery remodeling and
accelerated atherosclerosis (33). In murine models, deletion of
the PAPP-A gene resulted in an 80% reduction in atherosclerotic
area, whereas transgenic overexpression of PAPP-A accelerated
plaque progression (66, 78). Inhibition of the PAPP-A substrate
binding site with a neutralizing monoclonal PAPP-A antibody
caused a 70% reduction in plaque area (79). Importantly, when
PAPP-A is deprived of its proteolytic activity, intact IGFBP-4
levels increase and diminish the actions of IGF-I. Collectively, the
findings suggest that high PAPP-A and low IGFBP-4 levels may
exacerbate the pathophysiological processes underlying plaque
development. Under conditions of myocardial damage, PAPP-A
concentrations are also increased in the circulation (49). In 2001,
Bayes-Genis et al. were the first to demonstrated that PAPP-Awas
ubiquitously expressed in human eroded atherosclerotic plaques,
and serum levels were elevated in patients with ACS (50). This
initiated a large interest to study PAPP-A as a candidate marker
of plaque burden and CVD. However, it was later revealed that
administration of heparin to AMI patients, which is part of the
standard initial treatment, results in a rapid increase in PAPP-A
concentrations, possibly through a displacement of cell surface
attached PAPP-A (51). Instead, Postnikov et al. proposed that
quantification of the PAPP-A generated, cleaved amino-terminal
(NT) and carboxyl-terminal (CT) fragments of IGFBP-4 could
be reflective of PAPP-A enzymatic activity and hereby serve as
prognostic biomarkers (12, 52). In patients with symptoms of
IHD, both fragments were increased in the case of short-term
cardiac events (coronary bypass, AMI, or cardiac death) (52).
However, in a follow-up study by the same authors, neither
IGFBP-4 fragments nor PAPP-A sufficed to predict the long-term
outcome in patients with stable cardiovascular disease (53). The
varying results may relate to differences in follow-up period and
number of patients and hence, events. Recently, the fragments
were shown to prognosticate cardiovascular mortality in 330 type
1 diabetes patients without cardiovascular disease at baseline
during 12 years of follow-up (54) and in 656 patients with
STEMI followed for 5 years (55). Importantly, it was also verified
that the IGFBP-4 fragments, unlike PAPP-A, were unaffected
by heparin treatment of coronary patients (80). Interestingly,
accumulating evidence argues for multiple IGF-independent
functions of IGFBP-4. In IGF-insensitive colorectal cancer cells,
recombinant human IGFBP-4 was able to efficiently block colony
formation (81), and in P19CL6 or in embryonic stem cells,
knockdown of IGFBP-4 was shown to alter cardiomyogenesis
and cardiac regeneration (70). The mechanism was mediated
through inhibition of canonical Wnt signaling and not through
IGF. In mice, an IGFBP-4 variant blocked translocation of
beta-catenin to the cell nucleus in the ischemic heart (82).
Injection of IGFBP-4/H95P directly after AMI prevented beta-
catenin related DNA-damage in cardiomyocytes and reduced
infarct size 4 weeks after AMI in the mouse (82). Because
IGFBP-4/H95P is lacking the intact IGF-binding domain, the
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protective effect of mutated IGFBP-4 in the ischemic heart is
IGF-independent.

IGFBP-5

IGFBP-5 is produced and secreted by numerous cell types,
including vascular smooth muscle cells, and its expression
is increased within atherosclerotic plaques (83). Furthermore,
atherosclerotic arteries exhibit staining of IGFBP-5 staining along
intimal plaques (84). In a cross-sectional study of 95 male CHD
patients and 92 healthy controls, elevations of IGFBP-5 and
acid labile subunit (ALS) were measured in serum (37). In
addition, IGF-I, IGF-II, IGFBP-3, and ALS were increased under
conditions of CHD in the patients (37). In serum, concentrations
of IGFBP-5 were significantly correlated with the levels of IGF-I
and -II or IGFBP-3 (37). The increased concentrations of IGFBPs
including IGFBP-5 and ALS could be causative for the larger
amounts of IGF-I and -II in CHD patients (37).

Under ischemic conditions, local expression of IGFBP-
5 mRNA, which succeeds the initiation of IGF-II mRNA
expression, is thought to terminate cardioprotection exhibited
by IGF-II (85–87). In fact, a dual role has been suggested for
IGFBP-5, with positive effects on IGF-I-stimulated differentiation
of myoblasts in vitro, yet inhibitory effects on IGF-II activity
(68). Thus, the association of IGFBP-5 with atherosclerosis may
indicate a direct stimulatory effect of IGFBP-5 on smooth muscle
cell proliferation and plaque formation.

IGFBP-6

IGFBP-6 exerts both IGF-dependent and -independent effects
in various cell types (88). In endomycardial biopsies from
12 patients, IGFBP-6 mRNA expression was increased after
explantation of a left ventricular assist device when compared
to biopsies sampled during implantation (89). Because other
proteins in the IGF-system, including IGF-I, IGF-II, and IGFBP-
4, were also increased after reverse remodeling of the heart, it
was concluded that local effects of the IGF-system are active
during heart recovery (89)—yet, a direct link to IHD remains
unestablished. However, increased expression of IGFBP-6 after
prolonged hypoxia has been observed in vascular endothelial
cells (90). Notably, the IGFBP6 gene promotor contains several
hypoxia response elements, which could explain the increased
expression of IGFBP-6 (90). IGFBP-6 levels were also increased
after hypoxia in vascular endothelial cells (90). However, since
expression of IGFBP-1 was increased as an earlier response
to hypoxemic conditions (91, 92) than IGFBP-6, this may be
interpreted as an example of molecular job sharing between
distinct members of the IGFBP-family.

SUMMARY AND CONCLUSIONS

So far, clinical studies have demonstrated positive or negative
associations and a number of studies have also concluded that
the IGFBPs show no prognostic value in the assessment of
cardiovascular risk. Certainly, one reason for the controversies

present in the literature could be the fact that the IGF system is
involved in so many biological processes, and hence, the complex
nature and multifunctional properties of the IGFBPs. Firstly,
alterations in IGFBP levels may represent a phenomenon caused
by the disease per se. However, most patients receive medical
therapy, which affects several components of the IGF-system and
constitutes a significant confounder. The effect of heparin on the
IGFBP-4 protease PAPP-A is an example of that. Acute patients
often also present with an altered peripheral tissue perfusion,
allowing leakage of tissue-localized IGFBPs. Furthermore, IGFBP
levels may also fluctuate due to compensatory mechanisms or be
affected by age or metabolism. It is well-established that IGFBPs
are controlled by both GH and insulin, and under conditions
of acute or prolonged illness, altered secretory patterns of GH
and insulin can increase or decrease levels of IGFBPs (65,
93). Secondly, assessment of IGFBP biomarker potential highly
depends on accurate measurements of the IGFBP. Thus, it is
important to know of the factors that can potentially skew
these measurements and it is crucial that immunoassays are
based on antibodies that recognize all clinically relevant forms
of the analyte. Unfortunately, most studies use immunoassays
without information on target epitopes, and it is well-known
that many assays exhibit cross-reactivity toward structurally
similar IGFBPs or are unable to discriminate between various
IGFBP forms (80). Since the IGFBPs can be proteolytically
degraded by proteases, resulting in circulating IGFBP fragments,
it is crucial that the assays can distinguished between intact
and fragmented IGFBP. Several proteases have been identified,
and although these proteases, like most other members of the
IGF system, appear under the strict control of paracrine and
endocrine influences, our knowledge on factors that control
protease activity and tissue distribution is far from sufficient
(12). Additionally, the IGFBPs are subject to post-translational
modifications such as phosphorylation and glycosylation and
may also be partially truncated or in complex with other proteins.
Indeed, it is known that the glycosylation patterns of many
proteins are altered in various disease states (94, 95), and it is
likely that both proteolysis and post-translational modifications
of the IGFBPs are influenced by an acute setting and differs from
that of stable patients (96). Thus, the use of analytical systems
with no discriminatory potential toward intact or modified
IGFBPs represents a major issue in IGFBP-related biomarker
research, and we prospectively need to include structural and
functional information on the IGFBPs. This issue, which is not
restricted to CVC patients, further raises concerns regarding the
reliability and consequently, the utility of IGFBPs, and at present,
identification of patients with high CVD risk cannot solely rely
on IGFBP measurements.

It should be noted that research in the area is still in its early
phases, and we advocate that larger and more comprehensive
investigations are implemented before evaluating the biomarker
potential of the IGFBPs. Investigations so far have mostly
been limited to cross-sectional studies and animal studies,
and cautious interpretation is necessary, as data should be
confirmed by longitudinal and mechanistic studies. Accordingly,
broader population studies including more complex settings of
pathophysiological conditions in their subjects may come to the
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conclusion that no associations are present between circulating
IGFBPs and cardiovascular parameters. We speculate that the
inclusion of patients with a higher degree of overlap with respect
to their pathophysiology could improve the assessment of the
biomarker potential of the IGFBPs.

Our understanding of the IGFBPs has advanced throughout
recent years, and the clear link between the IGFBPs and a
number of pathological conditions has preserved the interest
in identifying novel biomarkers that may help improve future
diagnosis and prognosis. However, studies regarding CVD have
been varying and discrepant, and it remains unknown to what
extent IGFBP measurements possess clinical value, in particular
in the absence of structural and functional information on
the IGFBPs. Further understanding of the IGF system in both

normal physiology and specifically in CVD is necessary to avoid
misinterpretations.
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