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Abstract

Electrical waves that rotate in the heart organize dangerous cardiac arrhythmias. Finding

the region around which such rotation occurs is one of the most important practical ques-

tions for arrhythmia management. For many years, the main method for finding such regions

was so-called phase mapping, in which a continuous phase was assigned to points in the

heart based on their excitation status and defining the rotation region as a point of phase sin-

gularity. Recent analysis, however, showed that in many rotation regimes there exist phase

discontinuities and the region of rotation must be defined not as a point of phase singularity,

but as a phase defect line. In this paper, we use this novel methodology and perform a com-

parative study of three different phase definitions applied to in silico data and to experimen-

tal data obtained from optical voltage mapping experiments on monolayers of human atrial

myocytes. We introduce new phase defect detection algorithms and compare them with

those that appeared in literature already. We find that the phase definition is more important

than the algorithm to identify sudden spatial phase variations. Sharp phase defect lines can

be obtained from a phase derived from local activation times observed during one cycle of

arrhythmia. Alternatively, similar quality can be obtained from a reparameterization of the

classical phase obtained from observation of a single timeframe of transmembrane poten-

tial. We found that the phase defect line length was (35.9 ± 6.2)mm in the Fenton-Karma

model and (4.01 ± 0.55)mm in cardiac human atrial myocyte monolayers. As local activation

times are obtained during standard clinical cardiac mapping, the methods are also suitable

to be applied to clinical datasets. All studied methods are publicly available and can be

downloaded from an institutional web-server.

1 Introduction

The heart is a self-organizing dynamical system for which the mechanical contraction is regu-

lated by waves of electrical activation travelling through the cardiac wall. During cardiac
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arrhythmia complex electrical patterns emerge that often result into a rotating pattern, either

circling around an obstacle or around its own wave back [1, 2]. These vortices are also known

as rotors, or spiral waves in two dimensions (2D), or scroll waves in three dimensions (3D).

After the experimental observation of such structures in animal hearts during ventricular

tachycardia [3], it was conjectured that rotors can sustain several heart rhythm disorders.

However, the precise dynamics of rotors, the structure of the rotor core and the most efficient

manner to remove them from the heart remain incompletely understood.

A quantitative description of spiral wave motion requires localizing it in space. In first

approximation, the region around which the rotor revolves is called the spiral wave core. The

location of a spiral wave at a given time can be further narrowed down to a single point, usually

called the spiral wave tip. Different methods exist to define the tip, e.g. as the point where wave

front and wave back merge [4], as the point on a line of constant voltage that does not change

instantaneously, as an intersection between two isolines of different variables [5] or as a point

singularity of the activation phase [2, 6].

By following the tip position of a single spiral wave over time, a disc-like or star-like shape

emerges, known as the spiral wave core. Different types of cores have been observed [7], and

the non-circular cores are referred to as meandering cores. Among the meandering cores, sim-

ulations of detailed ionic models for cardiac tissue typically show so-called linear cores, as

depicted in Fig 1.

The linear-core regime arises in systems with long action potential duration (APD): If the

tip is next to a region of refractory tissue, it will follow this interface until meeting a point

where the tissue has recovered. As a result, the tip moves along an almost straight line, inter-

leaved with turning points. These dynamics have not only been observed in simulations, but

were also reported in experiments [11, 12] in the form of a line of conduction block. For this

reason, it is important to elucidate the spatial distribution of the core of the rotor.

In 3D, a spiral wave or rotor becomes a structure called a scroll wave. Within the scroll

wave, the collection of spiral wave tips forms a filament curve [13]. In numerical simulations

with linear cores and a few experimental observations [11], the straight segment in the linear

core extends to a ribbon-like filament [11]. However, these spatially extended filaments have

not been substantially included in theory development, as was done for circular-core filaments

[14].

Recent works [15, 16] have proposed to treat linear cores fundamentally different from cir-

cular cores. Specifically, classical phase analysis [2, 6] of cardiac activation patterns assumes

that there is a phase singularity (PS) located near the spiral wave tip. However, when the wave

front reaches a part of tissue that is for instance not fully recovered yet, a so-called conduction

block will form. On both sides of this conduction block line, there is a different phase, such

that the authors of [15, 16] argue that the phase representation resembles more a phase defect

line (PDL), i.e. a line where the phase changes abruptly from one side to the other. In other

words, we go from a phase singularity (PS) to a branch cut known in complex analysis. Making

the distinction between phase defects (PDs) and point singularities could have potential clini-

cal use, as current analysis methods in simulation, experiment and of clinical data are only

aiming to localize point singularities of phase.

The aim of this paper is to provide and compare several methods to numerically calculate

the phase and the corresponding PDs. We include a quantitative analysis of the results and the

performance of the algorithms.

A summary of our workflow is presented in Fig 2: An image (e.g. of the transmembrane

potential u) is in the first step converted into a phase ϕ. Where jumps in phase are detected,

the PD density ρ (see below) will be much larger than zero. If desired, the field rð~x; tÞ can be

further processed to yield localized PDLs.
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Fig 1. Qualitatively different tip trajectories of spiral waves in modelled cardiac tissue. The first row displays the Aliev-Panfilov (AP) model

[8], the second row the Fenton-Karma (FK) model [5] with modified Luo-Rudy I (MLR-I) parameters, the third row Bueno-Orovio-Cherry-

Fenton (BOCF) [9], and the last row displays optical voltage mapping data derived from monolayers of conditionally immortalized human atrial

myocytes (hiAMs) [10]. In section 3, we outline in more detail how these data sets have been obtained. The first 3 columns show different

snapshots in time and are colored according to local transmembrane voltage. Corresponding spiral wave tip trajectories are shown in the last

column. Darker coloring of the trajectory corresponds to later points in time.

https://doi.org/10.1371/journal.pone.0271351.g001
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This manuscript is organized as follows: First, we briefly review the concepts of phase, PSs

and PDs (section 2). In the methods section 3, we outline our simulation methods and present

several methods to trace PDs in excitation patterns. Results of these methods and their perfor-

mance are presented in section 4. We conclude this paper with a discussion and outlook (sec-

tions 5 and 6).

2 Theoretical background

2.1 The concept of phase

As remarked long ago by Winfree [17], many biological processes take values within a cycle

rather than on the line of real numbers. Cardiac excitation is such an example, since during an

action potential, the cell membranes depolarize and repolarize in normal circumstances along

a predefined sequence, tracing out a closed loop in state space. To keep track of the relative

state of cells along this cycle, the concept of phase can be used. In addition to the classical

phase definition, called activation phase ϕact below, an alternative phase based on local activa-

tion times (LAT) was defined by Arno et al. [16]. In this paper, a third phase ϕskew will be

defined below as an approximation of ϕact when LAT are not available (Eq (7)).

Next, we will briefly review the previously defined phases ϕact and ϕLAT.

The activation phase ϕact is the phase as seen in a space spanned by two observables Vð~x; tÞ
and Rð~x; tÞ in the system [2, 6, 13]. We henceforth assume that V is representing the activation

or depolarization of the medium, i.e. in cardiac context, we take V to be the normalized trans-

membrane potential.

Even if there is only one variable V observed, its time-delayed version [3], time derivative

[5], or Hilbert transform [6] can be used as a linearly independent variable R. In numerical

simulations, all state variables of the system can be observed, and any pair can be chosen as (V,

R). Then, one usually defines the activation phase as the polar angle of a state in the (V, R)-

plane, relative to a reference point (V�, R�) that lies within the cycle:

�
act
¼ arctan2ðR � R�;V � V�Þ þ c ð1Þ

Fig 2. An example of the steps done in the process of constructing the PD density ρ. (A) We start from the first phase state variable u, often the

normalized and hence unitless transmembrane potential V. (B) Next, from this u and possibly other state variables, the phase, here φLAT, is calculated. How

to compute it will be introduced below in Eq (3). (C) Finally from the phase, the PD density is produced based on one of the PDL detection algorithms;

here, the phase coherence (PC) method was used, which will be introduced below in section 3.3.3. These quantities are plotted over a 2D square domain of

myocardial tissue in physical space. Color is used to represent the values of the quantities mentioned in the top left corner. The same coloring will be used

throughout this manuscript.

https://doi.org/10.1371/journal.pone.0271351.g002
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Here, the polar angle is returned by the two-argument inverse tangent: arctan2(y, x) = arctan

(y/x) if x� 0 and arctan(y/x) + π mod 2 π if x< 0. A constant c can furthermore be added to

make ϕact = 0 correspond to the resting state. The left column of Fig 3 visualizes ϕact for the

four data sets introduced in Fig 1.

We recently proposed a second definition of phase that is based on the local activation time

(LAT) of tissue [18]. The LAT, which is commonly used clinically, is defined as the time tarrival

when the tissue locally depolarizes, i.e. when the transmembrane voltage V at that point

exceeds a value V�.
In noisy circumstances (see Fig 12 below), care is taken to estimate LAT in a robust manner

by using an alternative definition of LAT with two thresholds: It has another condition that

needs to be met for LAT to be updated. This condition is that V must first decrease below a

second threshold V#
�

before an increase above the first threshold V� is considered as depolariza-

tion at the wave front and therefore as the trigger of an update of LAT. Unless noted otherwise,

we use the first definition of LAT with just one threshold.

The LAT relative to the current time is the elapsed time:

telapsed ¼ t � tarrival ð2Þ

In other words, elapsed time is the time since the start of the last local activation.

The LAT phase ϕLAT is just a mapping of telapsed onto the interval [0, 2π) by applying a sig-

moidal function:

�
LAT
¼ 2p tanhðtelapsed=tÞ ð3Þ

where τ is the characteristic time of the cyclic process. Here, we take τ equal to half of the typi-

cal APD in the medium. Note that another sigmoid function instead of tanh could also have

been chosen in Eq (3). The right column of Fig 3 visualizes ϕLAT for the same four data sets.

An asset of ϕLAT is that the curves of equal ϕLAT are precisely the isochrones that cardiolo-

gists work with during endocardial catheter mapping. Also, if τ is chosen appropriately, repo-

larized (recovered) tissue will have ϕLAT� 2π, such that this phase is not changing abruptly at

the wave front and wave back, in contrast to ϕact. A disadvantage of ϕLAT is that it requires a

dense temporal sampling (either in simulation or experiment), since otherwise staircase arti-

facts emerge. As a last remark, care should be taken when initializing ϕLAT at the start of the

observation window: If the previous LAT are unknown, so is ϕLAT until a propagating wave

has swept through the medium.

2.2 Phase singularities (PSs) and phase defects (PDs)

The analysis of spatial distributions of phase makes use of several concepts of complex num-

bers and complex analysis [19], such as contours, PSs and branch cuts. We now briefly review

these concepts in the context of cardiac excitation.

The detection of rotor cores from a spatial map of phase can be performed by calculating

the total phase difference along a closed loop (contour) C in the medium, usually taken on the

cardiac surface:

D� ¼

I

C
d� ð4Þ

Since the first and last point have the same phase, the resulting phase difference Δϕ will return

an integer multiple of 2π. Hence, one defines the topological charge circumscribed by the
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Fig 3. Illustration of the three different phases for one frame of four data sets. The color code represents the phase in modelled

myocardial tissue in a 2D square domain in the same scale as in Fig 2B.

https://doi.org/10.1371/journal.pone.0271351.g003
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contour as:

Q ¼
D�

2p
¼

I

C

d�
2p
: ð5Þ

Now, in the classical theory [3], one assumes that the phase function �ð~xÞ at a given time t is

continuous nearly everywhere, except in a few points where the phase is undefined. When

using ϕact, it can be seen that these points will correspond to V = V�, R = R�. In the immediate

vicinity of such points, all phases are present (both in the (V, R) plane and in the spatial phase

map), hence this point is called a phase singularity (PS). Note that the existence of a PS, where

all different phases touch, within the contour region C is implied by the assumption of the orig-

inal theory that the phase is a continuous function except at the PS.

In the generalized theory [15, 18], however, the phase is allowed to be discontinuous near a

conduction block line, which also happens in the core of a linear-core spiral. Then, the contour

C cannot be shrunk to surround a single point, without having the contour cross an interface

where ϕ changes abruptly. We call such transition zones phase defects (PD): phase defect lines

(PDLs) in 2D and phase defect surfaces (PDSs) in 3D. The discontinuous behavior of phase is

more easily noted with ϕLAT than with ϕact, since ϕact also shows strong gradients near the

wave front and wave back [18]. As a result, we are convinced that PS detection algorithms that

assume a continuous phase distribution are behaving non-robustly near such spatial phase

transition, which motivates this work. Here, we will provide PD detection methods that are

explicitly discriminating the PD structures, either as a sharp line, or in a probabilistic manner

using PD density.

3 Methods

3.1 Data generation and collection

3.1.1 Numerical methods for pattern generation. The methods for PD detection devel-

oped here are designed to operate on excitation patterns, regardless of their generation. How-

ever, we here test the methods on numerical simulations in a cardiac monodomain setting.

That is, in a rectangular Cartesian grid, we modeled forward evolution of a column matrix of

state variables uð~x; tÞ according to a reaction-diffusion equation [20]:

@tu ¼ PDuþ FðuÞ: ð6Þ

Here, the first component u1 of u equals the normalized transmembrane potential u1 = u = V,

and P = diag(1, 0, . . ., 0) in order to enable wave propagation by diffusion of u. The number of

state variables in u varies between the different mathematical models of cardiac myocytes,

which are encoded in non-linear reaction functions F(u). To assess the reliability of our meth-

ods, we tried several reaction kinetics: Linear cores are known to occur with the Bueno-Oro-

vio-Cherry-Fenton (BOCF) model for human ventricles [9] with parameter set ‘PB’

mimicking Priebe and Beuckelmann kinetics [21], and with the Fenton-Karma (FK) model [5]

with modified Luo-Rudy I (MLR-I) parameters. In addition, we investigated how the methods

perform when operating on a circular spiral wave core by applying them to the Aliev-Panfilov

(AP) model [8].

All simulations were executed on a 2D isotropic square domain of myocardial tissue using

Neumann boundary conditions and a 5-point stencil for the Laplacian. Integrating in time is

done using forward Euler stepping, with values per model given in Table 1. There, we also

present the typical APD values and other parameters that we use for the calculation of the

phases.
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The spiral wave was generated by applying a classical S1S2 protocol: The western side of the

square domain is initially excited to generate a plane wave. When the central point of the

medium has finished repolarization, the south-western quarter of the domain behind the trav-

eling wave is stimulated, such that a spiral wave (cardiac rotor) is formed. This protocol may

also be applied rotated or mirrored.

Three frames of the first model variable u for each of the three chosen models resulting

from numerical simulation were displayed in Fig 1.

3.1.2 Optical voltage mapping experiments. To test our methods on in vitro measure-

ments, in contrast to the in silico simulations, we used optical voltage mapping data derived

from 10 cm2 monolayers of conditionally immortalized human atrial myocytes (hiAMs) fol-

lowing cardiomyogenic differentiation of these cells [10]. A voltage-sensitive dye is added to

the culture, after which a real-time recording can be made of the intensity of emitted light,

which is a measure of the local transmembrane potential. For the used recordings, pixel size

was 0.25 mm and the sampling time between frames was 6 ms. The full protocols for cellular

differentiation of hiAMs and the optical voltage mapping experiments can be found in the pre-

vious publication [10].

Gaussian smoothing with a kernel size of three grid points has been applied to each frame.

The data have been rescaled such that each grid point has unit variance in time. Then, arbitrary

units have been defined such that the resting state corresponds to optical activity u equal to

zero, and the excited state to u = 1. To calculate the LAT phase ϕLAT, we use a value of

APD = 100 ms. This corresponds to a value in between the measured values of APD50 =

(36.4 ± 7.7) ms and APD80 = (136 ± 12) ms [10]. Three frames of one of these recordings can

be seen in Fig 1M–1O.

As a second variable for calculating ϕact for this data set, we use the time-delayed version of

u by 19.8 ms, which corresponds to roughly 15% of the duration of a rotation. The other

parameters needed to calculate the phases can be found in Table 1.

Table 1. Overview of the performed experiments with relevant parameters.

AP model [8] BOCF model [9] FK model [5] hiAM monolayer (OM) [10]

type in silico in silico in silico in vitro optical voltage mapping

grid size 400 × 400 1200 × 1200 450 × 450 100 × 100

Δx 1 0.25 mm 0.262 mm 0.25 mm

Δt in ms 0.01 0.009 ms 0.163 ms 6 ms

parameter set as in [8] PB MLR-I

duration 437.9 1250.01 ms 815.31 ms 12282 ms

APD 10.0 400.0 ms 128.0 ms 100 ms

parameters for LAT and ϕLAT

V u u u u
V� 0.5 0.3 0.65 0.75

parameters for ϕact and ϕskew

V u w u u
R v s 1 − v u delayed by 19.8 ms

V� 0.5 0.6 0.65 0.75

R� 1.0 0.3 0.8 0.5

ϕ0/(2π) 0.15 0.6 0.35 0.1

ϕ1/(2π) 0.7 1.0 0.55 0.75

https://doi.org/10.1371/journal.pone.0271351.t001
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Ethics statement. This study was conducted with approval of the institutional review board

of the Leiden University Medical Center (P08.087) and in compliance with the International

Code of Medical Ethics of the World Medical Association.

3.2 A third phase definition

The aforementioned phase definitions ϕact and ϕLAT have each their downsides: Gradients in

ϕact not only show PD but also wave fronts, and ϕLAT requires intense sampling over time of

the medium. We propose to combine the advantages of ϕact and ϕLAT in a new phase, ϕskew.

This phase is designed as a computationally cheap approximation of the elapsed time phase

ϕLAT that can be calculated using ϕact. By construction, it does not require the whole history of

V, but can instead be calculated using (V, R) at one point in time. In essence, ϕskew is a re-

parameterization of ϕact:

�
skew
¼ hð�actÞ; hð0Þ ¼ 0; hð2pÞ ¼ 2p ð7Þ

where h is furthermore monotonically rising. Essentially, the cycle visited by cells during the

action potential is now labeled in a more free manner than the classical polar coordinates in

the (V, R)-plane. As can be seen in Fig 4 by plotting ϕact vs. ϕLAT, ϕLAT is also a re-parameteri-

zation of ϕskew.

In principle, one could fit a function h to a plot of ϕLAT vs. ϕact, but we opt for a different

approach here and define a piece-wise linear function h:

hð�Þ ¼

0 � 2 ½0; �0�;

2p
� � �0

�1 � �0

� 2 ð�0; �1Þ

2p � 2 ½�1; 2p�:

8
>>><

>>>:

ð8Þ

Values for ϕ0 and ϕ1 were manually chosen for the different reaction kinetics models used, see

section 2.1 and Table 1.

Below, we will apply different PD detection methods on the three phases ϕact, ϕLAT and

ϕskew, to see which performs best in visualizing PD structures.

Fig 4. Correlation of the different phases. Phase data have been taken from the one snapshot in time of the Fenton-Karma simulation in Fig 3. Points for

two phase values with darker shading correspond to higher logarithmic probability density. (A) The LAT phase ϕLAT stays close to zero while the state space

phase ϕact is already increasing. It then transitions to 2π much quicker and stays relatively close to that value afterwards. (B) The skewed phase ϕskew is

designed as a re-parameterization of the state space phase ϕact such that it approximates this behavior using a piecewise linear function. (C) The skewed

phase ϕskew correlates more with the LAT phase ϕLAT, getting closer to the dotted line where ϕskew = ϕLAT.

https://doi.org/10.1371/journal.pone.0271351.g004
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3.3 Phase defect detection algorithms

3.3.1 Requirements for phase defect detection algorithms. The aim of this paper is to

provide and evaluate numerical methods that can be used as a successor of classical PS detec-

tion algorithms, but directed towards the detection of PDs instead. The following factors are

taken into account when proposing the methods.

Zero or finite thickness. Due to the formation of a physical boundary layer (either by electro-

tonic effects or numerical smoothing, see [18]), a PD has a finite width in practice. Therefore,

we see two options. A first option is to see the PD as an idealized structure with zero thickness,

situated near the steepest spatial variation of phase or a spatial discontinuity in the LAT. A sec-

ond option is to accommodate for the finite transition width, and describe the PD in a proba-

bilistic manner, e.g. by regarding the phase gradient as a kind of PD density, below denoted as

ρ. If desired, the PDL extent can then be determined by putting a threshold on ρ, a process

which becomes easier if this density is normalized between 0 and 1.

Vertex-based or edge-based detection. Our algorithms take phase data on a set of nodes as

input. We discriminate methods based on whether their output is on the nodes, edges or faces

of the grid. Since the PDs have co-dimension one, it is natural to consider them as being situ-

ated on edges of the computational grid, either in 2D or 3D. However, the result of an edge-

based method is not located on the original grid, such that methods that return values on the

vertices of the grid (i.e. collocated with local phase data) can also be useful. Both edge-based

and vertex-based methods are in contrast with PS detection: since PS have co-dimension 2,

they are naturally calculated on the faces of the grid [5, 22]. Below, we provide for most PD

detection methods an edge-based and vertex-based variant. We currently test our methods on

a 2D Cartesian grid only and leave the extension to 3D and irregular meshes to future work.

Taking phase differences. Since phase is a cyclic variable, phase differences should be taken

with care. Spatial derivatives are implemented in such a manner that an integer multiple of 2π
is added in order to bring the result as close as possible to zero. Also trigonometric functions

are adjusted such that they are indifferent to 2π differences. In some methods, the complex

number z = eiϕ is calculated and the absolute value |z| is taken afterwards to obtain the phase

instead of just using ϕ. This will make sure that a large jump in phase is not just attributed to

the phase being cyclic.

Performance. In the results section (section 4), the different algorithms are compared in

computational speed and relative performance. The location of PDs depends on the choice of

algorithms for phase and PD calculation. To still make a comparison between methods possi-

ble, we designed an in silico experiment where the ground truth location of a PDL is known.

In the remainder of this section, nine different PD localization methods will be briefly pre-

sented. For the vertex-based algorithms, the output is a discretized scalar field: a non-negative

PD density rð~x; tÞ at time t that is defined in the points where phase is available to calculate

the defect from (here either ϕact, ϕLAT or ϕskew). For the edge-based algorithms, the output is a

number σab computed from the pair of phases �a ¼ �ð~xaÞ, �b ¼ �ð~xbÞ found at the vertices

connected by that edge, which could be regarded as making up a vector field.

3.3.2 Interpolation between vertex-based and edge-based methods. In what follows,

~xa;~xb; ::: are positions of vertices a and b, ra ¼ rð~xaÞ, �a ¼ �ð~xaÞ and σab is a quantity defined

on the edge of the mesh between~xa and~xb. The set of neighbor vertices connected to vertex a
is N ðaÞ, containing Na elements. In a 2D Cartesian grid, Na = 4 inside the medium, but on the

boundary of the domain or near obstacles, this value will be lower. In this case, the following

formulas can still be applied with lower Na. In a 3D Cartesian grid, Na = 6. See Fig 5 for graphi-

cal depiction of ρa and σab on a portion of a Cartesian grid.
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If a quantity arises naturally along an edge (e.g. a gradient), it can be interpolated onto the

vertex grid using

ra ¼
1

Na

X

b2N ðaÞ

sab: ð9Þ

Conversely, if a quantity is found at vertices, it can be allocated to the edges using linear inter-

polation:

sab ¼
1

2
ðra þ rbÞ: ð10Þ

To distinguish between methods, the name of the method will be added in superscript, e.g.

σCM, ρPC, etc.

3.3.3 Overview of phase defect detection algorithms. In the following, we will present

several different methods to detect PDs. A tabular overview of all the methods is given in

Table 2.

Cosine method (CM). Tomii et al. [15] introduced the following quantity to visualize PDs

along an edge:

~sCMab ¼ cosð�a � �bÞ: ð11Þ

This method returns a value in [−1, 1], where low values indicate the presence of a PD.

To derive a normalized PD density with values in [0, 1], we modify this to:

sCMab ¼
1

2
½1 � cosð�a � �bÞ�; ð12Þ

We define a vertex-based version of this quantity via Eq (9), which we denote with rCMa .

Gradient of local activation time (GLAT). It is expected that around a PD, the LAT does not

vary smoothly but instead jumps across this line. This implies that the gradient in the

Fig 5. Overview of vertex- and edge-centered quantities. For vertices a and b at positions~xa and~xb, for which the

phase ϕ has been calculated, we denote by ρa the vertex-centered PD density, and ρb, respectively. For the edge a$ b
between the two vertices a and b, we denote the edge-centered PD density by σab. The vertices that a is connected to

are a’s neighbourhood N ðaÞ.

https://doi.org/10.1371/journal.pone.0271351.g005
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neighbourhood of the PDL should be much larger than further away where neighbouring ver-

tices are activated subsequently.

This relation is easily expressed using edges:

sGLATab ¼ tarrivalð~xaÞ � tarrivalð~xbÞ ð13Þ

Note that we are using a second condition here: If the elapsed time since excitation of either

vertices is exactly zero, we still set sGLATab to zero. The rationale here is that the jump is due to

the wave front passing instead of pointing to a PD.

A vertex-based variant is found by averaging over all edges leaving the same vertex, see Eq

(9), applied to the absolute value of the LAT difference:

rGLATa ¼
1

Na

X

b2N ðaÞ

jsGLATab j: ð14Þ

Real phase gradient (RPG). In previous work [16], we considered phase gradients, disre-

garding 2π phase differences:

sRPGab ¼ jmodð�a � �b þ p; 2pÞ � pj; ð15Þ

returning values in [−π, π]. The normalized cosine method (Eq (12)) can be seen as a mapping

of this interval to a PD density taking values in [0, 1].

Complex phase gradient (CPG). The next method works in a similar fashion, but to avoid

the modulo operation, we look for gradients in the complex number z = eiϕ:

sCPGab ¼ je
i�a � ei�b j: ð16Þ

From this a vertex-based density can be computed using Eq (9).

Phase coherence (PC). Inspired by the literature of phase oscillators [24], we define the

phase coherence of a vertex a with neighbours b as:

pa ¼
1

Na

X

b2N ðaÞ

ei�b
�
�
�
�
�

�
�
�
�
�
: ð17Þ

The PD density is then defined as

rPCa ¼ 1 � pa; ð18Þ

Table 2. Overview of existing and proposed algorithms for PD detection.

abbr. name rationale centered calc. time source

CM Cosine Method Jumps in phase mod 2π are okay, in between: PDL. on edges 3.74 s [15]

GLAT Gradient of Local Activation Time LAT jumps at PDL and wave front. on edges 2.13 s

RPG Real Phase Gradient Phase jumps at PDL. on edges 4.90 s [16]

CPG Complex Phase Gradient Phase jumps at PDL. on edges 13.31 s

PC Phase Coherence Phase is not coherent at PDL. on edges 10.03 s

DM Dipole Moment Points on opposite side of PDL have opposite “charge”. on vertices 13.74 s

SVF Spatial Vector Field Rotation of gradient is close to zero, except at PDL. on vertices 8.37 s

AM Angular Momentum Use the classical topological charge also known as angular momentum. on vertices 1.47 s [23]

IPM Inflection Point Method Change of sign of the phase Hessian. on edges 10.62 s

Calculation times are for 500 frames in a medium of 450 × 450 pixels on an Intel Core i7–10875H processor in a Numpy implementation without specific optimization

for speed.

https://doi.org/10.1371/journal.pone.0271351.t002
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such that ρ is large when the coherence is low, since a low phase coherence is expected near a

PDL. This index ρPC is normalized in [0, 1] with large values indicating high PD probability.

Note that applying the PC method to only two vertices connected via an edge delivers

sPCab ¼
1

2
jei�a þ ei�b j ð19Þ

returning
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ~sCMab

p
.

Dipole moment (DM). Along a PD, the phase values that surround a given point are

expected to be divided into two groups, one on either side of the PDL. We could perhaps detect

this splitting by using the concept of the dipole moment of a charge distribution, where the

complex number z = eiϕ takes the role of charge:

~pa ¼~pð~xaÞ ¼
X

~xb2N ðaÞ

½~xb � ~xa�e
i�b : ð20Þ

The point-based PD density is then found by taking the norm of this complex vector:

rDMa ¼k~pa k¼
ffiffiffiffiffiffiffiffiffiffiffiffi
~p�a �~pa

p
: ð21Þ

where � denotes complex conjugation.

When two vertices are connected by one edge, the edge-based implementation will recreate

the CPG method. For this reason, no direct implementation of the latter was done. Still, edge-

based values can be computed via interpolation, see Eq (10).

Spatial vector field (SVF). When Stokes’ law is applied to the expression of topological

charge, one finds

Q ¼
Z

C

~r� � ~d‘ ¼
Z Z

S

~r � ~r� � ~dS ð22Þ

where C is the boundary curve to the region S. Since for a continuous field ϕ, the rotation of

the gradient ~r � ~r� vanishes everywhere, a continuous phase field cannot bear non-zero

topological charge. Nevertheless, computing Q for all faces of the grid has been used to find

PSs [3].

Inspired by the right-hand side of Eq (22), and replacing ϕ by z = eiϕ to get easier differenti-

ation, we propose:

rSVF ¼k ~r � ~rz k : ð23Þ

The motivation for this method is that a PD is essentially a discontinuity in the field ϕ. At such

a discontinuity the rotation of the gradient may be different from zero. In our current imple-

mentation, we calculate the gradient in a vertex-based manner, e.g. @xu(x, y) = [u(x + dx, y) −
u(x − dx, y)]/(2dx), such that the result is also vertex-based.

Angular momentum (AM). A classical method to detect the central region in a spiral wave is

using the pseudo-vector: [23]

~L ¼ ~rV � ~rR: ð24Þ

Far away from the spiral core, the activation resembles a plane wave, making ~rV nearly paral-

lel to ~rR, such that~L �~0 except near the core of the spiral. Since PS can be seen as a limit of a

PDL with vanishing length, we will visualize

rAM ¼k ~L k : ð25Þ
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An edge-based method can be derived by taking:

sAMab ¼ ðr
AM
a þ r

AM
b Þ=2: ð26Þ

Inflection point method (IPM). Given that a PDL in practice connects two regions of differ-

ent phase in an abrupt but continuous manner, it is interesting to look where the phase transi-

tion is the steepest, and localize the PD there.

For 1D functions, an inflection point is found where f0(x) changes sign. This can be trans-

lated to the condition f00(x) = 0. To find the same region for a 2D function, we express that we

want an inflection point when stepping in the direction of the local phase gradient. With~eg as

the normalized gradient vector:

~r� ¼~g ¼ g~eg ; ð27Þ

the spatial derivative in the gradient direction is @g ¼~eg � ~r. With this, @g ϕ = g, and the con-

cavity in the direction of the gradient becomes:

Fð~xÞ ¼
X

i;j

gigj@2

ij� ¼
X

i;j

gigjHij; ð28Þ

where the Hessian of the phase is Hij ¼ @
2

ij�. Hence, the PD can be found as the set of points

where Fð~xÞ ¼ 0. This method is unlike the mentioned algorithms above, since it immediately

returns a line, i.e. PDL of zero thickness. Note that in practice, one needs to impose a minimal

value of ||ρGLAT|| such that the background region with low PDL density is filtered out.

To compare this method to the other algorithms, we color the edges where Fð~xÞ changes

sign with the phase gradient along that edge, i.e.

sab ¼ s
RPG
ab H½� Fð~xaÞFð~xbÞ� ð29Þ

with the Heaviside function H, which takes the value 1 for inputs larger than zero and 0

otherwise.

3.4 Visual representation of the methods

For the methods that return a vertex-based PD density ρ, we simply color the pixels in the rect-

angular grid according to ρ. For the methods that return an edge-based PD indicator σ, we

color the dual grid, i.e. we color every point in the plane according to its nearest edge. This

results in a coloring of the plane using pixels that are 45˚ tilted and centered around the mid-

point of edges in the original grid. In this way, interpolation between edges and vertices does

not affect the presented results.

3.5 Post-processing of phase defects

Having obtained a PD density rð~xÞ using one of the methods, we keep only points above a

threshold value ρc to obtain a set of points on the PDL, and connect it using the minimal span-

ning tree graph algorithm. Thereafter, the smallest branches of each tree are cut to gain a dis-

crete representation of a PDL, centered at the vertices of the image grid.

To measure PDL length L, the PDL points are connected by line segments; the sum of their

lengths is taken as an estimate to the PDL length.

To measure PDL precession speed, we first selected a spatial region where only one PDL

was seen during the timespan of interest. Then, we performed principal component analysis

(PCA) to the point cloud of the PDL at all time instances to obtain the main vector of align-

ment~e1. The angle between this vector and the positive x-axis is taken to be β, after which
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linear regression of β(t) = β(0) + ωt yields an estimate for the precession frequency ω and the

precession period T ¼ 2p

o
.

3.6 Performance tests

3.6.1 Data sets with Gaussian additive noise. The data sets we are working with in this

paper are quite smooth in the sense that there is very little noise in them. This is due to the

data from in silico simulations being smooth by design and the optical voltage mapping data

being pre-processed with Gaussian smoothing before calculating the phase and phase defects

(section 3.1.2).

To gauge how well the algorithms are able to deal with noise, we have added noise following

a normal distribution with different signal to noise ratios (SNRs) to the data sets.

In the context of our work, we define SNR as the ratio of the standard deviation of the signal

u to the standard deviation of the noise n

SNR ¼
stddev u
stddev n

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðu � huiÞ2i
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hðn � hniÞ2i
q ð30Þ

with hf i ¼
PN

k¼1
f ð~xk; tkÞ on all N points of the space-time grid.

3.6.2 Data sets at lower spatial resolution. In many contexts, the only available data are

at much lower spatial resolution than the in silico simulations and optical mapping experi-

ments considered in this work. For instance, there are electrode arrays that are inserted via bal-

loon catheters with 64 electrodes [25].

To still be able to assess the effectiveness of the phase and PD algorithms at such resolu-

tions, we down-sample our data by a factor of N 2 N by pooling N × N grid points together

using the arithmetic mean. Vertices that are not inside the medium are not included in this

mean.

3.6.3 Data sets: Recovery of an obstacle. There is no ground truth in the exact location of

the PD as it depends on the choice of algorithms for phase and PD calculation. Still, experi-

ments are possible where the expected location of a PDL is known. We have conducted such

an experiment in silico where we add an elongated, thin obstacle for a rotor to attach to.

For this, we have taken the last frame from the experiment using the FK model as the initial

state of this experiment and placed such an obstacle at the core of the observed rotor.

For the length of the obstacle, we have chosen roughly the previously observed PDL length.

We choose its width to be less than eight grid lengths 8Δx, such that when we downsample the

data by a factor of eight as in section 3.6.2, all pixels in the medium are again active. To put it

briefly, the obstacle is designed such that it is too thin to be detected directly at that lower spa-

tial resolution. Instead, we use phase defect detection to recover the obstacle.

For this experiment, we used the parameters for the FK model as in Table 1, except for the

time step Δt = 0.1 ms and duration 800.1 ms.

To recover the obstacle from the simulation, we have used the different phase and PD algo-

rithms to calculate PD densities rð~x; tÞ. Recall that all methods are designed such that high

rð~x; tÞ corresponds to high likelihood of a PD being located there. We calculate a prediction of

the location of the obstacle wð~xÞ based on rð~x; tÞ as follows:

1. For a duration of at least one rotation of the spiral, calculate the mean value of the PD den-

sity rð~x; tÞ at each point in space. Call this quantity �rð~xÞ.

2. As rð~x; tÞ is close to zero except for at the phase defect, the distribution of values in �rð~xÞ
will also be heavily skewed towards lower values. Therefore, we clip �rð~xÞ to the interval
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from the 40th percentile to the 99th percentile to get rid of both small fluctuations around

zero and outliers.

3. To obtain wð~xÞ, we finally rescale to the interval [0, 1] and then round to {0, 1}. This quan-

tity can be thought of as an approximation of the characteristic function ŵð~xÞ of the set of

points in the obstacle.

Finally, to be able to judge how well the obstacle has been recovered, we calculate the classi-

fication error as the fraction of misclassified points by the prediction wð~xÞ with respect to the

ground truth ŵð~xÞ.

4 Results

We here apply the different proposed detection methods for the three phases ϕact, ϕLAT, and

ϕskew. We do this in three cardiac monodomain models and compare performance of the

methods (section 3.1.1). Finally, we apply a selection of methods to an experimental dataset

obtained by optical voltage mapping of a monolayer culture of cardiac cells (section 3.1.2).

4.1 Comparison of different phase definitions

Fig 3 shows the three phase definitions applied to a snapshot of the three monodomain mod-

els, the Aliev-Panfilov (AP) model [8], the Fenton-Karma (FK) model [5], the Bueno-Orovio-

Cherry-Fenton (BOCF) model [9], and an optical voltage mapping experiment.

The AP model shown in the first row of Fig 3 produces a rigidly rotating spiral. With ϕact

and ϕskew, a PS is seen. However, due to the thresholding on V used to determine LAT, the

inner part of the core region is never excited, such that ϕLAT shows an abrupt change at the tra-

jectory of the classical PS, which will be picked up as a PD below.

In the simulations with linear core (FK and BOCF models), ϕact shows sudden transitions

at the rotor core and the wave front, while ϕskew and ϕLAT only show a distinct phase gradient

near the conduction block line.

The optical voltage mapping experiment in Fig 3J–3L shows apparent PSs for ϕact and

ϕskew, but an extended PD for ϕLAT. Hence, at first sight, it resembles the AP spiral, but this

relation will be further investigated below using the PD detection techniques outlined above.

Fig 4 shows a scatter plot between the different phases for the FK frame shown in Fig 3. We

took the convention that the phase at the resting state is 0. The skewed phase ϕskew with param-

eters tuned as outlined above resembles the elapsed time phase ϕLAT much closer than the state

space phase ϕact. In short, ϕskew is an approximation to ϕLAT that does not require observation

of the system during the previous excitation sequence.

4.2 Comparison of phase defect detection methods in simulations

We have applied all PD detection methods (section 3.3) to all experiments, for all phases. For

definiteness, we only show the result for the FK model in Figs 6 and 7, but the others can be

found in the S1–S4 Figs.

In the following, we will present a selection of the results exhibiting the common features

and our main observations regarding the different methods.

In general, all methods return low densities away from the wave front and PDL and higher

values near the region of interest, although the precise PD density distribution is different

between the methods.

In Fig 6B, the GLAT method clearly shows the conduction block line at the rotor core.

Since LAT is discontinuous there, the set of points is thin such that small gaps can be seen. At

the rightmost part, the PDL doubles, since the process of reaching and leaving the rightmost
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Fig 6. Overview of PD detection methods for one snapshot of the FK data set. The PD on vertices ρ or edges σ is measured in arbitrary units. The same

coloring as in Fig 2C is used here. As the PDL has a width of only a few grid points, we zoom in around the turning point to get a better view of the

structure on the grid. For reference, we also show the corresponding frame of the transmembrane voltage V = u in panel A.

https://doi.org/10.1371/journal.pone.0271351.g006
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Fig 7. Overview of more PD detection methods for one snapshot of the FK data set as in Fig 6. Each row shows a detection algorithm, applied to the

three different phase definitions.

https://doi.org/10.1371/journal.pone.0271351.g007
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turning point, both leave a discontinuity in LAT. Moreover, the PDL’s precise location

depends on the chosen threshold V�.
The AM method (Fig 6C) locates only the site where the wave front meets on the PDL. Also

it can be seen that ρAM is located at the wave front, though with much lower magnitude. This

is consistent with this method traditionally being used for PS detection.

The other methods in Figs 6 and 7 are phase-based. In each case, the wave front is most

clearly seen as an artifact using ϕact, less visible using ϕskew and absent in ϕLAT.

The CM, RPG and CPG methods (Fig 6D–6L) and PC and DM methods (Fig 7A–7F) give

all qualitatively similar results: With ϕact and ϕLAT, not only the PDL but also the end point of

the wave front (tip) is stressed. The ϕLAT-variant distinctly shows the PDL, as the wave front is

filtered out by the definition of ϕLAT.

The IPM method shows a line that is only one pixel wide, as it was designed to localize the

PD at the site of steepest phase variation.

Finally, the SVF method yields many points in the region of interest, but the result is noisy

even in this idealized simulation.

4.3 Comparison of phase defect detection methods in an optical voltage

mapping experiment

We also applied the different phase definitions and detection methods to the excitation

sequence observed in a hiAM monolayer, as detailed in section 3.1.2. In Figs 8 and 9, we show

the results of this process for all of those methods. Fig 8A shows the optical intensity at a given

time in a multiple-spiral state. The non-phase methods GLAT and AM in Fig 8B and 8C show

non-zero densities at several positions that are similar in both methods. The four most intense

points, at which either a PS or PDL could be present, are confirmed by the other methods

(CM, RPG, CPG, PC, DM, IPM) using ϕact and ϕskew. When using ϕLAT, the same 4 points are

prominent, but they extend to a line (PDL) since the LAT and ϕLAT keep track of the recent

history of excitation. Compared to the simulation data, more background structures are seen

in the optical voltage mapping data, such as borders of excited regions and a staircase effect in

LAT due to the time sampling.

4.4 Properties of PDLs in silico and in vitro
The presented methods allow to characterize the observed PDLs in terms of length L and ori-

entation angle β, which is a further step in the quantitative analysis of excitation patterns.

Fig 10 shows the length over time of one PDL, in simulations and experiment. The PDL is

detected using the LAT phase ϕLAT as input for the phase coherence method (PC). We observe

that the PDL length varies over time. Its time-averaged value is summarized in Table 3.

In both simulations and experiment, we also estimated the precession period T of the PDL,

see Table 3 and Fig 11. The orientation of the PDL changes almost linearly in all cases, hence,

we observe quite low variance along the fit linear functions. On the one hand, in the FK and

BOCF simulations, we see that β almost stays constant, but slightly precesses in one direction.

On the other hand, in the AP model and optical voltage mapping data, the precession takes

place in a much shorter period of time: T is just 1.5 to 3 times longer than the APD in both of

those cases.

4.5 Robustness to noisy data

We have also investigated how the methods perform under noisy conditions. For this we con-

sidered noisy data which were obtained as outlined in section 3.6.1. We then ran the different

PD detection algorithms on those sets as well.

PLOS ONE Numerical methods for the detection of phase defect structures in excitable media

PLOS ONE | https://doi.org/10.1371/journal.pone.0271351 July 12, 2022 19 / 31

https://doi.org/10.1371/journal.pone.0271351


Fig 8. Overview of PD detection methods for one snapshot of the optical voltage mapping data. The data are presented in the same way as in Fig 6.

https://doi.org/10.1371/journal.pone.0271351.g008
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Fig 9. Overview of more PD detection methods for one snapshot of the optical voltage mapping data as in Fig 8.

https://doi.org/10.1371/journal.pone.0271351.g009
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A general observation is that if the input data V is noisy, so are the state space phases ϕact

and ϕskew, which then can be seen in ρ as well.

Another effect can be observed for ϕLAT, as it is based on LAT: When V increases such that

it crosses the threshold V�, the value of LAT is updated to the current time. This can be trig-

gered by noise which is especially critical right after V decreases falling below the threshold. A

random fluctuation due to noise can then push it above the threshold again.

To counter this effect, we use a second threshold value V#
�

in the calculation of LAT and

ϕLAT (section 2.1). A good value for V#
�

can be obtained by decreasing V� by an offset that is

proportional to the SNR. This value also depends on the wave back in the tissue model.

V#
�

must be chosen low enough such that it suppresses LAT triggering due to noise at the

wave back, but high enough that the tissue always repolarizes below it before the tissue can be

excited again.

As an example, we show the PD ρ as determined by the PC method based on the LAT phase

ϕLAT for the FK data set at three different levels of noise in Fig 12. We choose V#
�
¼ 0:5 and V�

= 0.65. It can clearly be seen that this method succeeds to locate the PDL for SNRs above a crit-

ical value. In this example this critical value is around 10 dB. Here it can be seen that at various

pixels in the medium a random fluctuation due to noise has pushed the input data from below

V#
�

to above V�. At this stage it is still quite clear where the PDL is located. With more noise

than this, however, this effect takes over. This leads to being unable to distinguish the PDL

from the noise artifacts in the very noisy case with SNR = 5 dB.

4.6 Performance at lower spatial resolution

We also applied the PD detection algorithms to the data sets at different, lower spatial resolu-

tions (section 3.6.2). In Fig 13, we present a frame of the input data V and the phase defect ρ

Fig 10. Length of detected PDLs over time. For one of the PDLs detected by the PC method for ϕLAT, we show how its length changes over time. This

length fluctuates around an average value.

https://doi.org/10.1371/journal.pone.0271351.g010

Table 3. Statistics of one PDL’s length and precession over time.

model / experiment average length L precession period T
AP simulation (15.07 ± 0.67) (33.123 ± 0.011)

FK simulation (35.9 ± 6.2) mm (1223 ± 29) ms

BOCF simulation (76.1 ± 7.8) mm (57508 ± 87) ms

hiAM optical voltage mapping (4.01 ± 0.55) mm (169.2 ± 9.3) ms

We observe similar values for other PDLs in the data.

https://doi.org/10.1371/journal.pone.0271351.t003
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for PC method and the LAT phase ϕLAT. It can be seen that even at those resolutions, the PDL

can still successfully be identified. For grid lengths larger than the length of a PDL, only few

pixels have high enough ρ to be considered a PD. This illustrates that PSs and PDLs can not be

distinguished from one another when resolution is too low.

Fig 11. PDL orientation over time. For these figures, we use the same PDLs as in Fig 10 and Table 3.

https://doi.org/10.1371/journal.pone.0271351.g011

Fig 12. Effect of additive white Gaussian noise on the detection of PDs in the FK data set. The PD has been determined using the PC method applied to

the LAT phase ϕLAT with two thresholds V#
�
¼ 0:5 and V� = 0.65. In the three columns, we vary the SNR. The data are presented in the same way and same

point in time as in Fig 6.

https://doi.org/10.1371/journal.pone.0271351.g012
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Also note that the jump in phase due to the wave front and back passing through an area is

larger at lower spatial resolution. As a PD is a large jump in phase, our methods detect this

jump as well. The wave front is therefore harder to distinguish from a PD at low resolutions.

This effect is much stronger when using ϕact but can be reduced by using ϕLAT or ϕskew.

4.7 Recovery of an obstacle

In section 3.6.3, we designed an experiment such that a ground truth location for a PDL is

known. An elongated obstacle was placed such that a rotor could attach to it.

Looking at the resulting data, we see that in fact the rotor has attached to this obstacle. A

PDL formed around the obstacle.

With these recordings in u and v for the FK model, we moved on to calculate the phases ϕ,

PD densities ρ, and the approximation of the characteristic function χ of the obstacle for all

different methods. In Figs 14 and 15, we present the recovered obstacles by each of the

methods.

It can be seen that all methods perform well at recovering the obstacle leading to a classifica-

tion error of around or less than 1%. We have therefore validated the methods and shown that

they are able to locate PDLs.

Fig 13. Performance of PD detection at different spatial resolutions for the BOCF data set. The PD has been determined using the PC method applied

to the LAT phase ϕLAT. The data are presented in the same way as in Fig 6.

https://doi.org/10.1371/journal.pone.0271351.g013
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Fig 14. Recovery of the location of an obstacle based on each of the PD detection methods. As outlined in section 3.6.3, we calculate an

approximation of the characteristic function wð~xÞ of the obstacle for each of the methods. We then calculate the classification error comparing this

prediction to the ground truth ŵð~xÞ.

https://doi.org/10.1371/journal.pone.0271351.g014
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The AM method is also able to predict the obstacle well, even though it is based on PSs.

This is because PSs follow the PDL. While the PD based methods show the full extent of the

line, the PS based AM method only returns a point-like region.

While there is only functional re-entry in the optical voltage mapping data set, we can still

use the same algorithm to recover the long-term location of the PDL in the OM data using the

PC method and LAT phase. As can be seen in Fig 16, the cores of the spirals can successfully

be detected using this method. Our prediction wð~xÞ of the sites of functional obstacles via

PDLs can be compared to so-called driver domains, specifically to driver-density maps which

are based on PSs [26].

Fig 15. Recovery of the location of an obstacle based on each of the PD detection methods as in Fig 14.

https://doi.org/10.1371/journal.pone.0271351.g015
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5 Discussion

In this paper, we provide and compare several numerical methods to detect a PDL, a recently

proposed structure present at the core of a rotor as an alternative for the classical PSs [15, 16].

Here, we attempt to improve the simple PDL detection methods from these works (CM &

RPG) and tested them on simulations and experimental data.

Several phase-based algorithms were applied, not only the classical phase ϕact but also the

recently introduced LAT-based LAT phase ϕLAT [16], since the LAT better keeps the spatio-

temporal activation and therefore more clearly shows extended PDs. In addition to a system-

atic comparison between detection methods, we also introduce a third phase, the skewed phase

Fig 16. Prediction of the characteristic function χ of the effective obstacles based on ρPC(ϕLAT) for the OM data set. Due to the functional re-entry, the

PDLs in the centres of the spirals observed in this recording effectively form functional obstacles. These differ from anatomical obstacles in the way that

functional ones could excite and do in fact excite in this case before the rotors form. We recover those obstacles via χ as outlined in section 3.6.3.

https://doi.org/10.1371/journal.pone.0271351.g016
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ϕskew in this work. ϕskew was designed as a way to estimate ϕLAT from a single snapshot. This is

useful in the post-processing of data from experiments or simulations, where a sparse time-

sampling was used.

As ϕact transitions on small scales at the wave front and back, they may wrongly be identi-

fied as PDLs for this phase definition. Although ϕskew filters the wave front and back better

than ϕact, we still find that direct measurements of LAT and ϕLAT produce better-resolved

PDLs (cf. Fig 6). Still, in the regime of fast depolarization, wave front and wave back can be

considered PDs. These can be distinguished from PDLs due to conduction blocks via two

criteria:

1. Wave fronts propagate in space.

2. Wave front and wave back connect always the same phase values, while PDLs connect other

values.

When comparing the different methods to convert phase into a PD, we find a good perfor-

mance and strong correlation between the previously coined cosine method [15] and the real

phase gradient method [16]. Both methods are based on the same idea (measuring angular dif-

ferences along a circle) and therefore the correlation comes as no surprise. Qualitatively similar

performance is found by related methods (CPG, CM, PC). The IPM method also works well.

Some advanced methods such as DM, and SVF actually performed worse in terms of contrast

and noise suppression. Of special interest is the classical AM method [23], which consistently

finds the end point of the wave front, even if lying on a PDL, and the GLAT method. The gra-

dient of LAT correctly identifies the PDL and locates it very sharply (by construction); how-

ever, its precise location depends on the chosen threshold (V�) to classify tissue as excited or

not. Regarding the calculation time, we find that the CM, AM and GLAT are the fastest and

therefore recommended to use for processing larger datasets, e.g. extended in time or in three

spatial dimensions.

To calculate the state space phase for the OM data, we have used a time-delayed version of

the observed variable u to be able to calculate the state space phase ϕact. Note that this tradi-

tional approach is unable to detect PDLs, as it gives distinct points where ϕact is high, corre-

sponding to classical PSs. This explains why line shaped PDs were not investigated closer

before. In the panels of Figs 8 and 9 that use the LAT phase, it is however apparent that regions

with different LAT do indeed touch each other and therefore form a PD. Depending on the

time resolution of the LAT map, staircase artifacts can be seen. However these can be filtered

away by thresholding at an appropriately high value of ρ, as at those artifacts ρ is still much

lower than at the PD.

To show the power of these methods, we applied them to a simulation and an OM experi-

ment to find the length and orientation of PDLs over time. Here we conclude that using a

method sensitive to PDLs allows to also identify linear rotor cores in experiment. However,

having identified linear cores (PDLs) in optical voltage mapping of intact rabbit hearts [16]

and human immortalized atrial myocyte cultures (in this work) does not allow to draw general

conclusions. Therefore, we propose to use the suggested methods also on other datasets, start-

ing with existing optical voltage mapping results. Then, the presented methods can be used to

characterize PDL size and rotation. Such measurement would give another handle to judge the

degree to which mathematical models of the heart resemble reality, in addition to e.g. repro-

ducing restitution curves and observing basic spiral dynamics in terms of meander and

stability.

We have verified that the proposed methods also work well when only noisy data or data at

low resolution is available. In another experiment where the location of a thin, elongated
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obstacle was known as ground truth, we have seen that all proposed methods successfully are

able to recover its location. We conjecture that therefore the methods also work well to recover

PDLs in the setting of anatomical re-entry. More work is needed to better characterize the

defect line analogues of functional and anatomical re-entry. In certain cases, the anchoring site

may be a hybrid version of this classical distinction: Part of the linear rotor core can lie at an

obstacle, or a functional region (PS or PDL) can be attracted to a inhomogeneity in the

medium, to stay in place there, see Fig 16.

The methods used here are available as Python scripts from our online repositories, see the

data availability statement. Please cite this paper when using the implementation. Note that

some methods were originally introduced elsewhere: The AM method [23], the CM method

[15] and RPG method [16]. The algorithms have currently been tested on dense Cartesian

grids in 2D, but can naturally be extended to 3D and time, and unstructured grids (meshes),

where the distinction between vertex-based densities ρ and edge-based densities σ will play a

more prominent role.

6 Conclusion

In this work, we demonstrate that in order to visualize PDs in dense 2D data, it is recom-

mended to use LAT-based methods or to use the skewed-phase to derive it from snapshots.

Several algorithms were proposed to highlight the PDs visually, for which the simple methods

(CM, RPG, CPG, PC) were most effective.

We applied the methods to simulations and an optical voltage mapping experiment; in the

latter case we found that in a hiAM cell-culture, the average PDL length in a multi-spiral state

was (4.01 ± 55 mm) and precession period T was (169.2 ± 9.3) ms. We made our detection

methods publicly available on our institutional repository and hope it can serve to further help

understanding the building blocks of cardiac excitation patterns.
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S1 File.

(TXT)

S1 Fig. Overview of PD detection methods for one snapshot of the AP data set. The data

are presented in the same way as in Fig 6.

(TIF)

S2 Fig. Overview of more PD detection methods for one snapshot of the AP data set as in

S1 Fig.

(TIF)

S3 Fig. Overview of PD detection methods for one snapshot of the BOCF data set. The data

are presented in the same way as in Fig 6.

(TIF)

S4 Fig. Overview of more PD detection methods for one snapshot of the BOCF data set as

in S3 Fig.

(TIF)
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