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)is paper proposes a multivariate and online prediction of stock prices via the paradigm of kernel adaptive filtering (KAF). )e
prediction of stock prices in traditional classification and regression problems needs independent and batch-oriented nature of
training. In this article, we challenge this existing notion of the literature and propose an online kernel adaptive filtering-based
approach to predict stock prices. We experiment with ten different KAF algorithms to analyze stocks’ performance and show the
efficacy of the work presented here. In addition to this, and in contrast to the current literature, we look at granular level data. )e
experiments are performed with quotes gathered at the window of one minute, five minutes, ten minutes, fifteen minutes, twenty
minutes, thirty minutes, one hour, and one day. )ese time windows represent some of the common windows frequently used by
traders. )e proposed framework is tested on 50 different stocks making up the Indian stock index: Nifty-50. )e experimental
results show that online learning and KAF is not only a good option, but practically speaking, they can be deployed in high-
frequency trading as well.

1. Introduction

Prediction has applications in a multitude of areas such as
economics [1], business planning and production [2], and
weather forecasting [3]. However, accurately predicting the
value of a variable is one of the very basic and nontrivial
problems of the literature. In this article, we focus our at-
tention on financial time-series prediction and its applica-
tion to stock price forecasting. Stock market is often
considered as a chaotic [4], complex [5], volatile [6], and a
dynamic mixture of forces driving the movement of a stock.
Undoubtedly, its prediction is one of the significant chal-
lenges of the literature [7]. Moreover, the Efficient Market
Hypothesis [8] states that stock prices reflect all current

information, and any new information leads to unpredict-
ability in stock prices. Naturally, significant work has been
done in this area. Nevertheless, research clearly specifies that
prediction of stocks, especially the nonlinear and nonsta-
tionary financial time-series forecasting, is still challenging
[9]. In this regard, several models have been developed; for
instance, studies focused on volatility [6, 10], option pricing
[11], classification of stock movements [12], predicting
prices [13], and so on. In addition to this, studies have used a
plethora of techniques, for example, support vector machine
(SVM) [14], neural network (NN) [15], and genetic algo-
rithm [16]. Nevertheless, a true solution is yet to be found.
Moreover, during our literature survey, we found that the
paradigm of KAF is not thoroughly investigated. Although,
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there are a few papers on the topic, e.g., [17, 18], a com-
prehensive investigation conducted at a large scale eludes the
literature. )e existing literature focuses on the multiple-
kernel learning method and solves different issues such as
kernel size and step size. We follow the same line of thought
and take the existing methods [17, 19, 20] as the foundation
of the proposed work to propose a KAF-based approach for
close-price prediction.

We pointed in the previous paragraph that work has
ignored KAF as an effective tool for financial time series
forecasting. In this context, working with KAF has several
advantages. First, it is onemost favoured tools of the literature
to predict a time series [21, 22]. )e techniques in KAF have
achieved tremendous accuracy in terms of predictive capa-
bility. Second, the convergence speed of KAF-based algo-
rithms is excellent. In other words, they achieve convergence
in fewer iterations. )ird, they have universal function ap-
proximation properties [23]. )is has the mathematical
property desired for predicting a financial time series. Owing
to these reasons, we focus on predicting the financial time
series via the paradigm of KAF. Despite these advantages, one
of the issues with existing work is Batch Learning. We would
argue that Batch Learning is an ineffective tool in financial
time-series forecasting. )e rationale here is backed by the
fact that the data of a financial time series is nonstationary.
)erefore, relying onmodels trained in an offlinemanner and
expecting them to perform well in real market scenarios is a
rather strong assumption. To fix this, online learning is
proving to be a highly efficient approach [24–27]. In this
method, the basis is selected during sample-by-sample
training. Moreover, changing circumstances are quickly in-
corporated, and the algorithm changes its weight vector to
make accurate predictions. Hence, we complement the idea of
using KAF with online learning to predict a financial time
series.

In light of the challenges and the potential solution
specified in this section, we propose the paradigm of online
KAF for stock price prediction. )us, this study aims to
predict stock movements in an online manner. Although
the issue of financial series forecasting is challenging, the
goal of this article however is to take one more step towards
addressing the issue and to try and lay the groundwork for
future work. To do this, we use the National Stock Ex-
change (NSE), Nifty-50 dataset, which contains 50 leading
stocks. In order to describe the contribution of this paper,
the following points summarize the essence of the article in
brief:

(i) We propose the use of online-KAF techniques for
stock price prediction.

(ii) )e data is collected at multiple time windows, i.e.,
one day, sixty minutes, thirty minutes, twenty five
minutes, twenty minutes, fifteen minutes, ten min-
utes, five minutes, and one minute. )e proposed
idea is applied to each of these time windows to try
and find the best window for stock price prediction.

(iii) )emain objective is to predict the closing price of a
stock. To do that, we apply ten different KAF-based

algorithms and present a comprehensive discussion
detailing every aspect of the analysis. With nu-
merical testing performed on all fifty stocks of the
main index (Nifty-50), we show the work’s efficacy
in this article.

(iv) We experiment with two different years. First, we
try to predict stock prices for the year 2020. Second,
we apply the same set of parameters on the most
recent data (2021) and try to show the efficacy of the
work.)rough experiments performed on these two
different years, we have found the method proposed
in the paper outperforms similar methods in the
literature.

(v) Lastly, we also try to show that although the KAF
class of algorithms is new in the arena of stock
prediction, they nevertheless are a practically viable
candidate.

)e rest of the paper is organized as follows: In Section 2,
we discuss the related work. A discussion on different KAF
algorithms is presented in Section 3. )e experimental re-
sults are described in Section 4. Finally, the conclusion is
given in Section 5.

2. Related Work

Stock price prediction is one of the nontrivial problems of
the literature. Numerous studies have attempted to explain
that stock price prediction is difficult to implement because
of inherent nonstationarity in the data [28, 29]. Previous
research has shown that stock market prediction is noisy and
chaotic and follows nonlinearity [4, 6, 30]. Nonlinear
modelling methodologies have been proven to be effective in
modelling systems in a variety of domains such as in [31, 32].
Various applications found different modelling approaches
to solve nonlinearity problems such as in [33–35]. In tra-
ditional prediction, the techniques were based on technical
analysis with standards of resistance, support, and indicators
using past prices [36]. Previous research has also studied
various linear techniques such as moving averages, autor-
egressive models, discriminating analyses, and correlations
[37, 38]. Much of the current literature on stock market
prediction pays particular attention to machine learning
(ML) techniques. ML has emerged as another popular area
for time series prediction. Among the available popular
techniques, machine learning methods are researched
mostly due to their capabilities for recognizing complex
pattern in stock prices [39–42].

Based on the time-varying and nonlinearity aspect of
time series, there is a massive demand for online prediction
algorithms. It follows the idea of sequential calculation and
generates faster and accurate outcomes [26]. To date, various
methods have been developed, such as neural network (NN),
kernel adaptive filter (KAF) algorithms, and online support
vector regression (SVR) [22]. However, neural networks
suffer from slow convergence and significant computing
needs. In addition, SVR and kernel methods have no
problem of falling into the local optimum. SVR has a strong
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generalization ability [43], but it is just suitable for smaller
data. In addition, a multifilter neural network (MFNN) is
also used to predict stock price movement. )e performance
of the MFNN was found to be better than other NN ap-
proaches, SVM, and random forests [44]. In [45], the au-
thors combined support vector machines for regression
(SVR) and kernel principal component analysis (KPCA) to
enhance prediction accuracy that may help investors for
short-term decisions. However, the high dimension of input
variables makes the learning process long, and the final
model computational complexity becomes very large. )ese
machine learning methods had a drawback of large time
consumption during the learning process.

To reduce the computational burden, kernel-based
online learning algorithms have become gradually popular
[44, 46]. In this respect, recurrent kernel online learning is
applied to predict the transaction price of specific products.
It was observed that the model was stable with a low de-
pendency to parameter settings [47]. Similarly, convolu-
tional neural networks (CNNs) are also suggested for
predicting the next-day prices [48]. In all, there is sufficient
literature that suggests that modelling the movement of a
stock price is nontrivial. In this respect, adaptive filtering has
proved to be a standard option for prediction model for
streaming data with nonstationary properties [49–51]. KAF
can therefore be used for sequential prediction of stock
prices by exploiting the market interdependence. KAF are
preferred because they are nonparametric, have low com-
putational complexity, and converge very fast [21, 52–55]. In
this domain, multiple algorithms are proposed for non-
stationary data. )ey are preferred due to insensitivity to-
wards design parameters [49]. Multistep predictions for
stocks using meta-cognitive recurrent kernel online learning
is proposed in [56].)e advantage of the KAFmethod is that
it solves various problems in balancing efficiency and pre-
diction accuracy.

Currently, the use of KAF approaches in the stock price
prediction is limited [19, 20]. In [19], a multiple-kernel
learning method was proposed to address KAF’s two main
issues: kernel size and step size. In [20], the idea of the local
models was proposed to learn the behavior from different
stock markets and compare with other online learning
methods such as LSTM, quantized kernel least mean square
(QKLMS), nearest instance centroid estimation (NICE),
vector autoregression (VAR), and vector error-correction
model (VECM) for daily closing price prediction. In another
research, the study in [57] proposed the idea of adaptive
stock trading strategies with deep reinforcement learning
methods focused on extracting informative financial features
via two methods: gated deep Q-learning trading strategy
(GDQN) and gated deterministic policy gradient trading
strategy (GDPG). )is paper proposes an online KAF-based
learning approach. )e selection of basis functions can be
done during sample-by-sample training in online kernel
learning, which is a more efficient option. )is method can
be incredibly efficient and successful because they only re-
quire one pass over the training data.

To the best of our knowledge, the work presented in this
article is the first wherein we comprehensively analyze the

price of a stock on multiple time windows and compre-
hensively test the application of the KAF class of algorithms
in stocks. Consequently, to discuss the novel contribution,
the following points summarize the fundamental differences
between this paper and existing work:

(i) To the best of our knowledge, we are the first to use
KAF algorithms with multiple time windows to
analyze and predict stock prices.

(ii) Stock prediction using existing online methods
requires a lot of computation time. )e article aims
to present a general framework wherein the price
prediction can be made in a significantly less
amount of time.

(iii) Stock traders can quickly sell and buy specific stocks
with numerous time windows using the proposed
strategy, resulting in larger earnings.

3. Methodology

As discussed in Section 1, we have worked with KAF-based
techniques. Furthermore, we use online prediction methods.
In this regard, KAFs work by self-tuning, where the input-
output mapping is formulated according to an optimization
criterion usually determined by the error signal. )ere are
two types of adaptive filters: linear and nonlinear. In linear
filters, the traditional system follows a supervised technique
and depends upon error-correction learning. )e filter
adaptively adjusts weights, ω(i − 1), where i denotes the
discrete-time interval. Here, the input signal vi is mapped to
an actual response ti. Correspondingly, an error is denoted
by ei. )e error signal adjusts weights by incremental value
denoted byΔωi. At the next iteration,ωi becomes the current
value of the weight to be updated. )is process is contin-
uously repeated until the filter reaches convergence; this
generally occurs when the weight adjustment is small
enough. Linear adaptive filters do not give satisfactory
performance for the nonlinear system due to the results
varied in a nonintuitive manner. In real-world problems,
where data patterns are more complex, classes may not be
separated easily by hyperplanes. Consequently, we have to
look to nonlinear methods. In this paradigm, data is pro-
jected into high-dimensional linear feature space and pre-
diction is done in this high-dimensional space. Comparing
with other existing techniques for regression and classifi-
cation, KAF has the following advantages:

(i) KAFs are universal approximators.
(ii) KAFs handle the complexity issues in terms of

computation and memory. Moreover, they follow
the property of no local minima.

(iii) KAFs follow the idea of online learning and handle
nonstationary conditions well.

It was discussed that nonlinear adaptive techniques are
well suited for real-world problems. In this regard, kernel
methods transform data into a set of points in the RKHS
(Reproducing Kernel Hilbert Space). )e main idea of KAF
can be summarized as the transformation of input data into a
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high-dimensional feature space G, via Mercer kernel. For
this, the problem can be solved via inner products. )ere is
no need to do expensive computations in high-dimensional
space, owing to the famous “kernel trick.” Considering KAF,
suppose we have an input-output mapping as g: V⟶ R,
based on a well-known sequence ((v1, t1), (v2, t2), . . . ,

(vi, ti)). Here, vi is the system input with i� 1, . . ., n and ti is
equivalent to desired response.)e goal is to estimate g from
data. In KAFs, generally, the computation involves the use of
a kernel. An example of a kernel is given as follows:

κ〈v, v′〉 � exp
v − v′

����
����
2

􏼒 􏼓

σ2
.

(1)

Here, κ denotes the kernel and σ denotes the kernel
width.

3.1. Discussion on KAF Algorithms. In this section, we dis-
cuss some of the most popular methods in KAF. For reasons
of brevity, we keep the discussion short.

3.1.1. Least Mean Square (LMS) Algorithm. According to
[46], the main aim of LMS algorithm is to minimize the
following empirical risk function:

min
ω

Remp ω ∈ H1, R
L

􏽨 􏽩 � 􏽘
N

i�1
ti − ω vi( 􏼁( 􏼁

2
. (2)

Applying stochastic gradient descent (SGD), equation
(2) can be represented as

ω0 � 0,

ei � ti − ω(i−1)vi,

ωi � ω(i−1) + ηeivi,

(3)

where η is step size and ei is known as prior error.
)e weight-update equation results in the following

form:

ωi � η􏽘
N

i�1
eivi. (4)

Representing the idea in terms of inner product, we get

t � ωi(v) � η􏽘
n

i�1
ei〈vi, v〉,

ei � ti − η 􏽘
n−1

i�1
ei〈vi, v〉.

(5)

3.1.2. Kernel Least Mean Square Algorithm (KLMS).
KLMS [21] is an extension of LMS algorithm, the main
difference is input vi is transformed to Ψ(vi) in the high-
dimensional space RKHS. Applying LMS algorithm at new
sequences Ψ(i), ti􏼈 􏼉, we get

ω0 � 0,

ei � ti − ωT
(i−1)Ψ(i),

ωi � ω(i−1) + ηeiΨ(i),

(6)

where ei is the prediction error, ωi is the weight vector in G,
and η is the step size.

Using the kernel trick, KLMS can now be written as

g0 � 0,

ei � ti − gi−1 vi( 􏼁,

gi � gi−1 + ηeiκ〈vi, .〉.

(7)

KLMS assigns new unit for every input vi as the center
with ηei as its coefficient. Following the radial basis function
(RBF), the algorithms are represented as follows:

gi � 􏽘
i

j�1
bj(i)κ〈vj, .〉. (8)

3.1.3. Kernel Recursive Least Square Algorithm (KRLS).
According to [21], in KRLS, the objective function is
complemented via a regularization parameter. )is can be
represented as follows:

min
ω

􏽘

i

j�1
t(j) − ωTΨ(j)

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ Λ‖ω‖
2
, (9)

where Λ stands for regularization vector.
It is shown that ωi � ψ(i)b(i), where

b(i) � [ΛI + L(i)]− 1ti; also, ti � [t1, t2, t3 . . . ., ti]
T,

L(i) � ψ(i)Tψ(i), and ψ(i) � [Ψ(1),Ψ(2),Ψ(3), . . . ,Ψ(i)].
Complementing the previous equation with RBF, we get

gi � 􏽘
i

j�1
bj(i)κ〈vj, .〉. (10)

)e whole idea here can now be summarized as

R(i − 1) � (ΛI + L(i − 1))
− 1

,

O(i) � ψ(i − 1)
TΨ(i),

E(i) � R(i − 1) O(i),

U(i) � Λ + κ〈vi, vi〉 − E(i)
T
O(i).

(11)

Following the sequential property of KRLS, we have

g0 � 0,

ei � ti − gi−1 vi( 􏼁,

gi � gi−1 + U(i)
− 1

eiκ〈vi, .〉 − 􏽘
i−1

j�1
U(i)

− 1
eiEj(i)κ〈vj, .〉.

(12)

KRLS updates all previous coefficients through
−U(i)− 1ei E(i), whereas KLMS never updates previous
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coefficients. Here, Ej(i) is the jth component of E(i). )e
computational complexity of KRLS is O(i2).

3.1.4. Kernel Affine Projection Algorithms (KAPAs).
KAPA [58] derives the idea of KLMS while reducing
boosting performance and gradient noise. In KAPA, we
formulate with sequences t1, t2􏼈 􏼉 and Ψ(1),Ψ(2){ } to
minimize the cost function and estimate with weight vector
ω.

min
ω

emp t − ωTΨ(v)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2
. (13)

Using stochastic gradient descent, we replace covariance
matrix and cross covariance vector by local approximation
directly from the data. Hence, we get the following
equations:

ωi � ω(i−1) + ηψ(i) t(i) − ψ(i)
Tω(i−1)􏽨 􏽩, (14)

where ψ(i) � [Ψ(i − K + 1), . . . ,Ψ(i)] and K is the obser-
vation and regressor.

3.1.5. Quantized Kernel Least Mean Square Algorithm
(QKLMS). QKLMS is a famous algorithm proposed in [50].
It is an extension of KLMS algorithm to deal with the issue of
data redundancy. Using quantization operator the core idea
can be written as

ω0 � 0,

ei � ti − ωT
(i−1)Ψ(i),

ωi � ω(i−1) + ηeiQ[Ψ(i)],

(15)

where, in feature space G,Q[.] denotes the quantization.)e
learning rule for QKLMS is

g0 � 0,

ei � ti − gi−1 vi( 􏼁,

gi � gi−1 + ηeiκ Q vi􏼂 􏼃, .( 􏼁.

(16)

QKLMS and KLMS have almost the same computational
complexity. )e only difference between the two algorithms
is that QKLMS deal with the issue of data redundancy to
locally update the coefficients of closest center.

In short, the central theme of QKLMS is given in
Algorithm 1.

3.1.6. Kernel Normalized Least Mean Square Algorithm
(KNLMS). According to [49], KNLMS algorithm is used for
dictionary designing with coherence criterion. Here, we
discuss KNLMS from the point of view of MKNLMS-CS
(multikernel normalized least mean square algorithm with
coherence based sparsification).

Assume κm: V × V⟶ R, where m ∈M: 1, 2, . . . , M{ }

is a set of M distinct kernels.
Consider Jcs

n ≔ j
(n)
1 , j

(i−1)
2 , . . . , j(i−1)

rn
⊂ 0, 1, . . . , n − 1{ }

to be the dictionary κm(., vj)􏽮 􏽯
m∈Mj∈Jcs

n

.

Here, rn ≔ |Jcs
n | is the size of dictionary. )e filter works

as per the following set of rules:

Ψcs
n (v) � 􏽘

m∈M
􏽘

j∈Jcs
n

h
(m)
j,n κm v, vj􏼐 􏼑, v ∈V,

(17)

where h
(m)
j,n ∈ R, m ∈M, j ∈ Jcs

n . )e estimated error
􏽢tn ≔ Ψcs

n (vn) of tn can be written as

Ψcs
n vn( 􏼁 � 􏽘

j∈Jcs
n

h
T
j,nκj,n,

(18)

where

κj,n ≔ κ1 vn, vj􏼐 􏼑, κ2 vn, vj􏼐 􏼑, . . . , κM vn, vj􏼐 􏼑􏽨 􏽩
T
∈ R

M
,

hj,n ≔ h
(1)
j,n , h

(2)
j,n , h

(3)
j,n , . . . , h

(M)
j,n􏽨 􏽩

T
∈ R

M
.

(19)

Let the initial dictionary be indicated as Jcs
0 ≔ ∅. )is

makes H0 to be an empty size matrix. Following algorithm,
we only add a new point n intoJcs

n if the following condition
holds:

‖κ‖max ≔ max
m∈M

max
j∈Jcs

n

κm vn, vj􏼐 􏼑
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌≤Δ, n ∈ N, (20)

where Δ> 0 is the threshold. Let η ∈ [0, 2] denote the step
size and Λ> 0 denote the regularization parameter. )e
update rule is given as follows:

(i) If equation (20) is satisfied, Jcs
n+1 ≔ Jcs

n ∪ n{ }. Also,

Hn+1 ≔ Hn + η
tn −〈Kn, Hn〉

Kn

����
����
2

+ Λ
Kn. (21)

(ii) If equation (20) is not satisfied, jcs
n+1 ≔ jcs

n . Also,

Hn+1 ≔ Hn + η
tn −〈Hn, Kn〉

Kn

����
����
2

+ Λ
Kn, (22)

where Hn ≔ Hn 0􏼂 􏼃 and Kn ≔ Kn kn􏽨 􏽩 with
kn ≔ [κ1(vn, vn), κ2(vn, vn), κ3 (vn, vn), . . . , κM (vn, vn)]T

where 0 ∈ RM is the zero vector. For KNLMS, the value ofM
is 1.

3.1.7. Probabilistic Least Mean Square Algorithm
(PROB-LMS). )e probabilistic approach to the LMS filter
is an efficient approximation method. It provides an
adaptable step-size LMS algorithm together with a measure
of uncertainty about the estimation. In addition, it also
preserves the linear complexity of the standard LMS. Some
of the advantages of probabilistic models are as follows: (1)
they force the designer to specify all the assumptions of the
model, (2) they provide a clear separation between themodel
and the algorithm used to solve it, and (3) they usually
provide some measure of uncertainty about the estimation.
It is assumed observation models to be Gaussian with this
distribution:

pr tk |ωk( 􏼁 � N tk; v
T
kωk, σ2n􏼐 􏼑, (23)
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where ωk � parameter vector, σ2n � variance for observation
noise, and vk � regression vector.

3.1.8. Kernel Maximum Crossentropy Criterion (KMCC).
)e algorithm’s main aim is to maximize crossentropy
between desired ti and actual output yi [55]. Using MCC
criterion and SGD, the algorithm can be written as

ω0 � 0,

ω(i+1) � ωi + η
zκσ ti,ω

T
i Ψ vi( 􏼁􏼐 􏼑

zωi

� ωi + η exp
−e

2
i􏼐 􏼑

2σ2
⎛⎝ ⎞⎠eiΨ(i)⎡⎢⎢⎣ ⎤⎥⎥⎦ . . .

� η􏽘
n

i�1
exp

−e
2
i􏼐 􏼑

2σ2
⎛⎝ ⎞⎠eiΨ(i)⎡⎢⎢⎣ ⎤⎥⎥⎦,

(24)

where σ is the kernel width and η is the step size.
)e complete prediction and error calculation can be

summarized as

yi � η􏽘
n

i�1
exp

−e
2

􏼐 􏼑

2σ2
⎛⎝ ⎞⎠eiκ〈vi, vn〉⎡⎢⎢⎣ ⎤⎥⎥⎦,

ei � ti − yi.

(25)

3.1.9. Leaky Kernel Affine Projection Algorithm (LKAPA).
)e LKAPA [58] is the extension of KAPA discussed in
Section 3.1.4. According to equation (14), weight updation is
a difficult task in high-dimensional space. Here equation (14)
is modified. )is can be done as follows:

ω0 � 0,

ψ(i)
Tω(i−1) � 􏽘

i− 1

j�1
bj(i − 1)κi− K+1,j, . . . , 􏽘

i− 1

j�1
bj(i − 1)κi− 1,j, 􏽘

i− 1

j�1
bj(i − 1)κi,j

⎡⎢⎢⎣ ⎤⎥⎥⎦

T

,

ei � ti − ψ(i)
Tω(i−1),

ωi � ω(i−1) + ηψ(i)ei

� 􏽘
i�1

j�1
bj(i − 1)Ψ(j) + 􏽘

K

j�1
ηej(i)Ψ(i − j + K),

(26)

where κi,j � κ(v(i), v(j))

)eweight vector is computed using the following criterion:
ωi � 􏽘

i

j�1
bj(i)Ψ(i), ∀i ≥ 0. (27)

Initialization: Determine quantization size εV ≥ 0, step size η> 0, kernel parameter σ > 0.
Output: )e center set and coefficient vector: D(1) � v1􏼈 􏼉, b1 � [ηt1]

Conditions:
while vi, ti􏼈 􏼉(i> 1) is available

(i) Calculate the result of the adaptive filters as
yi � 􏽐

size(D(i−1))
j�1 bj(i − 1)κ(Dj(i − 1), vi)

(ii) Calculate the error between actual and desired output ei � ti − yi

(iii) Calculate the distance between vi and D(i − 1)

distance(vi, D(i − 1)) � min1≤j≤size(D(i−1))‖vi − Dj(i − 1)‖

(iv) If the distance (vi, D(i − 1))≤ εV then codebook does not require any changes: D(i) � D(i − 1). Quantize vi to the closest code
vector: bj∗(i) � bj∗(i − 1) + ηei

where, j∗ � argmin1≤j≤size(D(i−1))‖vi − Dj(i − 1)‖,
(v) Otherwise update the codebook with new center and update center D(i) � D(i − 1), vi􏼈 􏼉 and bi � [b(i − 1), ηei].

end while

ALGORITHM 1: )e central idea of the QKLMS algorithm.
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From the perspective of empirical risk minimization, we
minimize the following objective function:

min
ω

emp t − ωTΨ(v)
􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌
2

+ Λ‖ω‖
2
. (28)

)en, we get

ωi � (1 − Λη)ω(i−1) + ηψ(i) t(i) − ψ(i)
Tω(i−1)􏽨 􏽩, (29)

where ψ(i) � [Ψ(i − K + 1), . . . ,Ψ(i)]

Finally, coefficient bκ(i) is updated as

bκ(i) �

η ti − 􏽘
i−1

j�1
bj(i − 1)ki,j

⎛⎝ , k � i,

for i − K + 1≤ k≤ i − 1{ },

(1 − Λη)bk(i − 1) + η t(k) − 􏽘
i−1

j�1
bj(i − 1)κk,j

⎛⎝ ⎞⎠,

1≤ k< i − K + 1, (1 − Λη)bk(i − 1).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(30)

3.1.10. Normalized Online Regularized Risk Minimization
Algorithm (NORMA). NORMA [58] is one of the kernel-
based version of LKAPA described in Section 3.1.9. It is also
correlated with the KLMS algorithm summarized in Section
3.1.2. NORMA includes the regularization and nonlinear
functional approach. It allows to reject old values ones in a
sliding window manner.

3.2. Problem Formulation. In this section, we discuss the
results of stock prediction using all the ten discussed algo-
rithms. )e purpose of stock prediction is to determine the
future values of a stock depending upon the historical values.
As discussed in the Introduction section, our main aim is to
predict the close price. To this end, we calculated the per-
centage change in close price. Subsequently, we apply the idea
of autoregression of the order m to predict the future change
in the stock price. An autoregressive (AR) model forecasts
future behavior using data from the past. When there is a
correlation between the values in a time series and the values
that precede and succeed them. In such situations, ARmodels
have shown tremendous potential. In context of the work
presented here, the problem is formulated as

Ψ Vi( 􏼁 � 􏽘
m

i�1
ω(i−1)Ψ Vi( 􏼁. (31)

Ψ(Vi) is the close price in the high-dimensional space,
and ω is the weight vector. Since we follow the AR model, it
is imperative to estimate the weight vector. To estimate the
weight vector, KAF techniques discussed in the previous
section are used. A sample of the formulation is shown in
Table 1. In this table, we have shown problem formulation by
considering the daywise closing price.)is type of procedure
is followed commonly in multivariate time series prediction,
e.g., [59, 60]. It should be noted here that the procedure was
followed for all the window sizes. Subsequently, the problem

became autoregression-based next percentage prediction.
)e actual closing can then be computed from the per-
centage change easily. )e overall framework followed in
the article is shown in Figure 1. )e experiments were
performed on the Nifty-50 dataset, and the data used in
the experimentation is available at shorturl.at/lnvF2. )e
kernel adaptive filtering (KAF) algorithms that were used
in this work is available at https://github.com/steven2358/
kafbox.

4. Experimental Results

4.1. Dataset Description. In this section, we have described
the experimental details of the Nifty-50 dataset. Nifty-50 is
the largest stock exchange in India according to the rate of
total and average daily turnover for equity shares. We
collected the data of all stocks from 9 :15 to 3 : 30. In ad-
dition, we collected the data for two different periods of
years. First, we try to predict stock prices for the year 2020
from January 01, 2020, to December 31, 2020, and second,
from the most recent data (2021) between January 01, 2021,
and May 31, 2021. )e original data was available for one-
minute open, high, low, and close (OHLC) prices. From this
granular data, we clubbed the OHLC quotes to get the data
for other time windows. In particular, we created and
preprocessed the dataset according to nine prediction
windows (one day, sixty minutes, thirty minutes, twenty five
minutes, twenty minutes, fifteen minutes, ten minutes, five
minutes, and one minute). Recall that we focused on pre-
dicting the percentage changes in close price. To that end, we
also normalized the data between the range of 0 to 1. )en,
ten distinct KAF algorithms were applied to the final pre-
processed data for every stock. Finally, it is worth noting that
the experimental findings obtained with the KAF algorithm
on the Nifty-50 dataset demonstrate the work’s superiority
and could serve as a new benchmark for the field’s future
state of the art.

4.2. Evaluation Criterion. To evaluate and compare the
performance of various KAF algorithms, we use standard
error evaluation metrics such as mean squared error (MSE),
mean absolute error (MAE), and directional symmetry (DS).
)e metrics are elaborated in the following text.

4.2.1. Minimum Square Error (MSE). MSE is also known as
mean squared deviation (MSD) which calculates the average
squared difference between the actual and predicted
observation:

MSE � 􏽘
n

i�1
ai − pi( 􏼁

2
. (32)

4.2.2. Mean Absolute Error (MAE). MAE calculates the
average magnitude between actual and predicted observa-
tions in a set of predictions, without observing their di-
rections, i.e., the average prediction error.
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MAE �
1
n

􏽘

n

i�1
ai − pi

􏼌􏼌􏼌􏼌
􏼌􏼌􏼌􏼌. (33)

4.2.3. Directional Symmetry (DS). Directional symmetry in
terms of time series analysis measures the model’s perfor-
mance to predict positive and negative trends from one time
period to the next.

DS �
1
n

􏽘

n

i�1
di, (34)

where

di �
0, otherwise,

1, ai − ai−1( 􏼁 pi − pi−1( 􏼁≥ 0,
􏼨 (35)

where n is the time-step, ai represents the actual values, and
pi represents the predicted output. In the following pro-
cedure, we discuss the details to compute error values.

4.3. Procedure: Error Computation.

(1) We worked with Nifty-50 firms with 2020 and 2021
datasets, as mentioned in Section 1. Moreover, it was

also pointed out that we work with ten different
algorithms. )e parameters listed in Table 2 were
tuned manually. In order to find the optimal values
of the parameters, multiple experiments were
performed.

(2) To compute the error values for each stock and every
algorithm, we formulated the problem as an
autoregressive problem (see Section 3.2) and com-
puted the error values for all 50 stocks. In total, we
get 50X3 error values, one for MSE, MAE, and DS.
Moreover, we pointed out that we have nine different
prediction windows. Hence, error estimation was
done for all stocks, all windows, and all ten
algorithms.

(3) Subsequently, for a particular algorithm, and for a
single time window, we take the average of all 50-
error metrics (one for every stock) to come up with
the final number. )e number is presented in the
article. )is number shows the overall predictive
capability of the model on all fifty stocks.

4.4. Prediction, Convergence, and Residual Analysis. In this
section, we analyze the performance of KAF algorithms for
close price prediction. In this regard, the prediction graph
for one stock (Reliance) with KRLS is considered. Figure 2

Table 1: Time window of 1 day (stock-Reliance).

Day Actual price Change in price
1 day 1987.5 0.1685
2 day 1990.85 −1.2431
3 day 1966.1 −2.6372
4 day 1914.25 −0.16194
5 day 1911.15 1.17991
6 day 1933.7 −1.8849
7 day 1897.25 3.1519
8 day 1957.05 −0.9325
9 day 1938.8 1.1244
10 day 1960.6 —
If we choose M� 3, then Input� [{0.1685,-1.2431,-2.6372}] and Output� [{−0.16194}].

Nifty-50 Dataset

Open High Low Close

Data Preprocessing

Close-Price Prediction

Perform percentage change and
apply min-max normalization

Selection of different embedding
dimension M ∈ {2,3,4,5,6,7} 

Time -Windows
1-day, 60 m,, 30 m, 25 m, 20 m,

15 m, 10 m, 5 m, and 1 m.

Kernel adaptive filtering (KAF)
algorithms

Predict close price and evaluate
model performance

Figure 1: Proposed close price prediction framework.
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shows the results for 2020 and 2021 datasets. It is visible from
the figure that we are getting good results. It should be noted
here that we have presented the result for one stock (Re-
liance) and one prediction window (sixty minutes). Similar
results were obtained for other companies in the dataset. It is
also visible from the figure that although the prediction is
not cent percent accurate, it is close. It, therefore, implies the
superior performance of KAF algorithms in prediction. It
should be noted here that although we are getting good
results, there are always chances of overfitting. In this article,
since we are using online learning, the architecture itself
naturally minimizes the chances of overfitting, but it is
possible that the superior results might be due to overfitting.

It is expected from any machine learning algorithm that
it should converge as we train the model with more in-
stances; in other words, the error as we progress through the
training should decrease to an acceptable range. In this
regard and in addition to presenting the results for pre-
diction in Figure 2, we have also presented the result of

convergence in Figure 3 for 2020 and 2021 datasets, re-
spectively. Similar to the previous case, we have only plotted
the result considering single stock (Reliance) and one pre-
diction time window. )e convergence graphs of the al-
gorithm were plotted taking MSE as the error metrics.
Figure 3 shows the error convergence graph for both the
datasets and KRLS algorithm for the Reliance stock. In
Figure 3, x-axis shows the number of instances and y-axis
shows the MSE. It can be seen from Figure 3 that the al-
gorithm reached convergence very quickly. In fact, the al-
gorithm reached convergence at 1000th data point.
Convergence is very important in KAF as it shows the ability
of the algorithm to adapt itself and learn from the data
quickly. )ough, there are minor fluctuations in the end, but
it nevertheless is acceptable as there will always be minor
changes in the new data.

To complement the prediction results, we have also
presented the distribution of error residuals in Figure 4 for
2020 and 2021 datasets, respectively. As visible from the

Table 2: Parameter description for close price using ten different KAF algorithms.

Parameter KAPA KLMS KMCC KNLMS KRLS LKAPA LMS NORMA PROB-LMS QKLMS
(σ) 4.0 4.0 4.0 4.0 3.0 5.0 7.0 3.0
(η) 1.7 1.1 1.5 1.7 0.09 1.1 1.2
(ε) 1E-4 1E-2 0.3
(Λ) 1E-4 1E-2 0.4
(σ2n) 2
(σ2d) 6
mu0 0.2 2 0.2
(P) 20 20
nu 1E-2
τ 500
tcoff 0.9
σ � kernel width, σ2n � variance of observation noise, σ2d � variance of filter weight diffusion, η� step size, ε� regularization parameter, Λ�Tikhonov
regularization, tcoff� learning rate coefficient, τ �memory size (terms retained in truncation), mu0� coherence criterion threshold, P�memory length, and
nu� approximate linear dependency (ALD) threshold.
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Figure 2: Prediction for one stock (Reliance) using KRLS: (a) 2020 dataset and (b) 2021 dataset.
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figure, the residuals are following a normal distribution.
)is type of behavior is excellent as there are very few
outliers. Moreover, the overall variance of the residuals is
also less, showing the excellent prediction potential of the
algorithm.

4.5. Comprehensive Evaluation of KAF Algorithms. In con-
trast to batch learning techniques, which generate the best
predictor by learning on the full training dataset at once, we
employ an online learning concept in which data becomes
available in a sequential order (sample by sample training)
and is used to update the best predictor for future data at
each step. As we have used ten different algorithms, it is
logical to compare the performance of all algorithms. In
this regard, we have shown the result in two different
datasets. First, we attempt to forecast stock prices for 2020.
Second, we use the same set of parameters on the most
recent data (2021) to demonstrate the work’s efficacy. To

evaluate the performance of KAF-based methods, we try to
experiment with different values of M (the embedding
dimension). We vary the underlying dimensions from 2 to
7 with a step size of 1, i.e., M ∈ 2, 3, 4, 5, 6, 7{ }. With this
setup, the results are presented in Tables 3 and 4. It is visible
from the table that once again, KRLS performed well in
terms of error minimization. )e best number for the
embedding dimension is two when we consider MSE and
MAE. However, when it came to DS, the numbers and the
algorithms are different because a market trend is a term
used to describe how a market moves over time. A trend
can generally move upward or downward. For instance,
considering daily data (1 day in the table), the best per-
forming algorithm is LKAPA with embedding dimension
(M) � 5. In fact, for this metric (DS), we see much conflict
in terms of the best algorithm. Nevertheless, the experi-
mentation revealed the superiority of KRLS, PROB-LMS,
and LKAPA.
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Figure 3: Error convergence for one stock (Reliance) using KRLS: (a) 2020 dataset and (b) 2021 dataset.

-15 -10 -5 0 5 10
Error

0

50

100

150

200

250

300

350

400

450

500

Fr
eq
ue
nc
y

(a)

-4 -3 -2 -1 0 1 2 3 4
Error

10

20

30

40

50

60

70

80

90
Fr
eq
ue
nc
y

(b)

Figure 4: Error residuals for one stock (Reliance) using KRLS: (a) 2020 dataset and (b) 2021 dataset.
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4.6. Comparison with Other State-of-the-Art Methods. We
compared our result with other learning methods such as
[61–63], among other learning approaches. )e deep
learning (DL) algorithms were taught and assessed over a
period of 25 epochs utilizing an 80 : 20 split. )e amount
of time taken to train and make prediction was recorded.
Based on the architecture details and hyperparameter
settings provided in the relevant articles, the DL-based
method [61–63] stocks were reimplemented. All of the
techniques were trained on the Nifty-50 dataset. We chose
fifty equities for the sixty-minute time periods to maintain
uniformity across different ways for experimentation. In
terms of MSE, RMSE, and execution time, all of the ap-
proaches were then compared to the suggested KAF
method (KRLS). For the 2020 and 2021 datasets, Tables 5
and 6 summarize the comparative outcomes learning
approaches. )e results in Tables 5 and 6 show that the
proposed approach outperforms previous stock predic-
tion methods in the literature.

We must point it out here that since all the models
belong to the same category of kernel adaptive filtering, the
complexity of all the models is almost similar. For neural
networks used in the article, we collect the architecture from

their respective papers [61–63]. It should be noted here that
KAF is also analogous to the neural network architecture
with a single layer. Furthermore, even though it has a single
layer, it is giving good results.

Table 3: Best embedding dimension for all time windows
according to evaluation metrics MSE, MAE, and DS (2020).
Time
window MSE Best embedding

dimensions Algorithms

1 day 0.014 3 2 KRLS
60 minutes 0.003 4 2 KRLS
30 minutes 0.002 0 2 KRLS
25 minutes 0.001 8 2 KRLS
20 minutes 0.001 5 2 KRLS
15 minutes 0.001 2 2 KRLS
10 minutes 0.000 8 2 KRLS
5 minutes 0.000 4 2 KRLS
1 minute 0.00010 2 KRLS
Time
window MAE Best embedding

dimensions Algorithms

1 day 2.132 4 2 KRLS
60 minutes 0.660 2 2 KRLS
30 minutes 0.466 6 2 KRLS
25 minutes 0.431 7 2 KRLS
20 minutes 0.381 2 2 KRLS
15 minutes 0.329 5 2 KRLS
10 minutes 0.266 7 2 KRLS
5 minutes 0.188 6 2 KRLS
1 minute 0.085 2 2 KRLS
Time
window DS Best embedding

dimensions Algorithms

1 day 0.501 3 5 LKAPA
60 minutes 0.491 9 5 KRLS
30 minutes 0.491 3 5 KRLS
25 minutes 0.492 5 3 KRLS

20 minutes 0.4881 2 PROB-
LMS

15 minutes 0.489 3 7 QKLMS
10 minutes 0.490 2 2 KRLS

5 minutes 0.491 0 2 PROB-
LMS

1 minute 0.471 5 2 KRLS

Table 4: Best embedding dimension for all time windows
according to evaluation metrics MSE, MAE, and DS (2021).

Time window MSE Best embedding dimensions Algorithms
1 day 0.034 2 2 KRLS
60 minutes 0.0081 2 KRLS
30 minutes 0.004 7 2 KRLS
25 minutes 0.004 2 2 KRLS
20 minutes 0.003 3 2 KRLS
15 minutes 0.002 8 2 KRLS
10 minutes 0.002 0 2 KRLS
5 minutes 0.001 1 2 KRLS
1 minute 0.000 3 2 KRLS
Time window MAE Best embedding dimensions Algorithms
1 day 1.6901 2 KRLS
60 minutes 0.548 0 2 KRLS
30 minutes 0.3961 2 KRLS
25 minutes 0.3671 2 KRLS
20 minutes 0.323 8 2 KRLS
15 minutes 0.280 3 2 KRLS
10 minutes 0.225 9 2 KRLS
5 minutes 0.1601 2 KRLS
1 minute 0.072 9 2 KRLS
Time window DS Best embedding dimensions Algorithms
1 day 0.487 0 4 NORMA
60 minutes 0.493 0 4 KNLMS
30 minutes 0.484 9 4 KRLS
25 minutes 0.487 8 6 LKAPA
20 minutes 0.4891 7 LKAPA

15 minutes 0.4881 2 PROB-
LMS

10 minutes 0.4891 2 PROB-
LMS

5 minutes 0.484 6 2 PROB-
LMS

1 minute 0.4751 2 KRLS

Table 5: Comparison of the proposed work with other state-of-the-
art stock prediction method for 60-minute time window (2020
dataset) from January 01, 2020, to December 31, 2020.

Method MSE RMSE Execution time (s)
Gao et al. [61] 0.51917 0.7205 400.39
Moghar et al. [62] 0.518 00 0.7197 1265.11
Nikou et al. [63] 0.518 38 0.7199 5006.19
Proposed method 0.003 4 0.0583 5.234

Table 6: Comparison of the proposed work with other state-of-the-
art stock prediction method for 60-minute time window (2021
dataset) from January 01, 2021 to May 31, 2021.

Method MSE RMSE Execution time (s)
Gao et al. [61] 0.702 02 0.8378 362.67
Moghar et al. [62] 0.697 5 0.8351 1082.90
Nikou et al. [63] 0.702 32 0.8380 2250.87
Proposed method 0.0081 0.09 4.256

Computational Intelligence and Neuroscience 11



4.7. Experimentation with Dictionary Size. In addition to
the experiment conducted in the previous section, we
have also experimented with the dictionary size of KAF
algorithms. )e result for this experiment is presented in
Table 7. As visible, increasing the dictionary size de-
creases the performance of the system. Moreover, in-
creasing the dictionary size also increased the execution
time. It should be noted here that the execution time for
predicting the next closing price for a single stock with
dictionary size 500 is 0.675 seconds. )is figure
(0.675 seconds) clearly shows the applicability of the KAF
class of algorithms in high-frequency trading, where
latency is a key factor.

4.8. Important Note: Error Minimization and Profitability.
From Tables 3 and 4, we can see that KRLS performed well
in minimizing error. Moreover, the lowest error (MSE)
that we get is in the order of 10− 4. It should be noted here
that we got this error for the time window of one minute.
In this regard, it is common sense that if we minimize the
error, we can get close to the actual values, which is indeed
true. However, considering the time window of one
minute, there is an issue. In this interval, the fluctuation in
the price is low. )is means that minimizing error will not
result in too much profit. In other words, the volatility in
one minute is less. Hence, predictions are very close.
However, the chances of taking a position and getting
profit in a low volatile environment is also very less.
)erefore, one has to maintain a balance between error
minimization and profitability.

5. Conclusion

)is paper introduces a framework to predict stock prices
using KAF. We comprehensively analyzed the Indian
Financial Sector, Nifty-50, and showed the predictive
results of all 50 stocks in the main index. We experi-
mented with ten different algorithms belonging to the
KAF class of algorithms. Experimentation was performed
on nine different windows starting at one minute and
progressing to one day. )is is the first time, to our
knowledge, that numerous KAF algorithms have been
implemented at such granular levels. )e evidence offered
in the Experimental Results section demonstrated the
work’s overall predictive capability. It was discovered that
the KAF class of algorithms not only outperformed other
algorithms in terms of error minimization but also had a

very short execution time, underlining its usefulness in
the field of high-frequency trading.

For future work, we would test the framework via the
application of hyperparameter optimization. )is would be
beneficial because KAF algorithms must deal with a wide
range of hyperparameter settings. We will also use several
hyperparameter optimization strategies to improve the
model’s accuracy.
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