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Abstract: TiO2 nanopowders modified by Nd and Sm were prepared using the sol-gel technique. It
was found by XRD analysis that the samples containing Sm are amorphous up to 300 ◦C, while those
with Nd preserve a mixed organic-inorganic amorphous structure at higher temperatures (400 ◦C).
The TiO2 (rutile) was not detected up to 700 ◦C in the presence of both modified oxides. TiO2

(anatase) crystals found at about 400 ◦C in the Sm-modified sample exhibited an average crystallite
size of about 25–30 nm, while doping with Nd resulted in particles of a lower size—5–10 nm. It was
established by DTA that organic decomposition is accompanied by significant weight loss occurring
in the temperature range 240–350 ◦C. Photocatalytic tests showed that the samples heated at 500 ◦C
possess photocatalytic activity under UV irradiation toward Malachite green organic dye. Selected
compositions exhibited good antimicrobial activity against E. coli K12 and B. subtilis.

Keywords: sol-gel; powders; thermal stability; X-ray diffraction

1. Introduction

Titanium dioxide (TiO2) remains one of the most promising materials for various
applications such as self-cleaning, gas sensors, catalytic performance, and environmentally
friendly photocatalyst [1–3]. Due to its high optical transparency, thermal stability, nontoxi-
city, chemical inertness, and environmentally friendly nature it is the preferred oxide [1,2].
However, its application in a visible light range of the solar spectrum is limited due to the
wide band gap energy (3.2 eV) and in order to increase catalytic efficiency, stability and
light absorption, it should be modified by doping of metals. Recent review papers reported
additional progress towards the efficient application of this promising material in water
and wastewater treatment under visible light [4,5]. In recent years, modification with some
rare earth (RE) metals has proven to be an efficient method of improving the photocatalytic
properties of TiO2 and broadening its absorption within the solar spectrum [3,6,7]. More-
over, it was found that the presence of RE ions slowed down the rate of the charge-carrier
recombination processes [6].

According to published literature, RE-modified TiO2 can be prepared by a wide
spectrum of methods, such as sol-gel [6,8], hydrothermal [9], solvothermal [10], electro-
spinning [11], co-precipitation [12], and electrochemical [13]. It is reported that from all
the above methods, sol-gel has the greatest possibility of homogeneous distribution of
dopant in the host material with a large surface area of TiO2 particles. Some authors found
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that combining hydrothermal treatments with the sol-gel method provided an alternative
approach for preparing TiO2 thus preventing the agglomeration of the nanocrystals [14]. It
was also established that the synthesis method significantly affects the structural, optical,
luminescence and photocatalytic properties. At present, it has been established that TiO2
modified with Y3+, Pr3+, Er3+, and Eu3+ obtained through the hydrothermal method ap-
proach exhibited a higher photocatalytic activity, while the samples prepared via the sol-gel
method approach yielded more luminescence when irradiated with 980 nm photons [15].

The rare earth elements such as neodymium (Nd), holmium (Ho), cerium (Ce), gadolin-
ium (Gd) have been also used for doping TiO2 and these studies have been summarized by
Daghrir [16]. The neodymium (Nd3+) ions are well known for improving photocatalytic
activity by decreasing the energy band gap due to the transfer of charge between the TiO2
valence/conduction band and the 4f level in rare earth ions [15,16].

However, Sm-doped TiO2 has been also investigated [17–21]. Most of the studies
concluded that Sm3+ ions increase the surface area but also enhance the photocatalytic
activity under UV or solar light irradiation [18]. With reference to organic dyes, it was
established that the presence of Sm is highly effective against Rhodamine B and Methyl
orange with an optimal doping concentration of 0.5% [22–24].

It is well known that titanium dioxide (TiO2) has been extensively studied also with
reference to antibacterial applications. Although several TiO2 nanocomposites with an-
timicrobial capabilities have been reported, they exhibit poor antibacterial activity in the
visible light region due to the large band gap of TiO2 (3.2 eV) [25]. Some new approaches
established that the rare earth doping of TiO2 resulted in antibacterial activities in the
visible light region [26–28]. Relatively few papers [22,25] reported on the antibacterial
performance of Nd-TiO2 and Sm-TiO2 nanopowders but additionally modified by coating
with Ag.

In our previous papers, we presented experimental studies concerning sol-gel syn-
thesis of binary and multicomponent composite powders with good photocatalytic and
antibacterial properties [29–33]. Our studies on modification with some lanthanides (La3+,
Ce3+), TiO2 showed that doping with rare metals sometimes improved the photocatalytic
activity under UV irradiation and was not beneficial under Vis irradiation [34–36]. On the
basis of the accumulated knowledge, we continue extensive studies on the modified TiO2
powders investigating their thermal, optical, and structural properties. Our priority is to
research new combinations from compositions containing TiO2, especially those that have
not been investigated until now.

To our knowledge, a comparison of the sol-gel-derived TiO2 powders modified with
Nd5+ and Sm3+ has not been reported until now. Hence, the focus of the present work
is to pay more attention to the synthesis as well as the structural, optical, photocatalytic
activities, and antibacterial properties of the obtained powdered samples. The properties
of as-prepared samples were compared with pure TiO2 as well.

2. Results and Discussion
2.1. Phase Transformations

All gels prepared at room temperature were transparent as the modified with Sm
and Nd exhibited identical bright orange color and their visual observations are shown in
Figure 1.
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Bearing in mind the strong complexation processes occurred after the addition of
acetylacetonate during the sol-gel processes it could be suggested that the observed color is
due to the simultaneous presence of chelating agent and the rare eart ions Sm3+ and Nd3+.

The XRD patterns of the gels and the heat-treated samples in the temperature range
of 200 ◦C–700 ◦C are shown in Figure 2. The XRD patterns of the precursors used (TTIP
and TTIP/i-PrOH) were presented for comparison, as well (Figure 3). As can be seen from
Figure 2, both samples preserve the amorphous state up to 300 ◦C but the TN sample
containing 2% Nd is amorphous even at 400 ◦C. Obviously, doping with Nd suppresses the
earlier crystallization of TiO2 (anatase). Increasing the calcination temperature leads to the
appearance of the first diffraction peaks at 2Θ = 25.3, 38.4 and 48.1 corresponding to TiO2
(anatase) (JCPDS 78-2486). There is an absence of peak at 2Θ = 27.4, which corresponds
to TiO2 (rutile), which indicates that anatase is the only crystalline phase detected in
the temperature range of 500–700 ◦C in both samples. It is worth noting that the phase
transition TiO2 (anatase)-TiO2 (rutile) did not occur in the investigated samples (Figure 2)
and both rare earth ions hinder this transformation. No characteristic peaks for Nd and Sm
are observed in the modified samples, indicating that these ions do not substitute Ti4+ in the
crystal lattices, which can be attributed to the difference in the radii of Ti4+ (0.53 Å), Nd3+

(0.99 Å) and Sm+3 (0.96 Å) [37,38]. Similar results have been obtained by Bokare et al. [25]
which have suggested that possibly Nd and Sm exist in the form of Nd2O3 and Sm2O3
small particles, uniformly dispersed between the TiO2 nanocrystallite or deposited on the
surface of TiO2 nanoparticles. From Figure 2, it can be also seen that at 500 ◦C, the main
diffraction peak of anatase phase is broad and this indicated that the samples have a small
particle size.
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Looking at the XRD pattern of the pure TTIP and TTIP/i-PrOH (Figure 3), it could
be seen that both undoped samples up to 300 ◦C exhibited similar behavior to TN and TS
samples, but the difference is that the first TiO2 (anatase) crystals appeared at 400 ◦C while
at 700 ◦C, TiO2 (rutile) was registered.

At 500 ◦C, the average crystallite size (calculated using the Sherrer’s equation, based
on the strongest peak) of TiO2 (anatase) for sample TN is about 5–10 nm, while for the TS
one it is about 60 nm (Figure 2). In comparison, at this temperature, the average crystallite
size of TiO2 (anatase) is about 20 nm (Figure 3) in the undoped TTIP and TTIP + i-PrOH
samples. Obviously, the Nd dopant preserves the smaller TiO2 (anatase) particles size
dimensions. This refers to that the doping ions (Nd3+) retard the grain growth of TiO2
nanoparticles and similar results of decreasing crystalline nature of material were observed
by several authors [22,25].

Our results concerning the calcination temperature effect on the phase formation
concur with those reported in the literature [3,39–41]. The specific surface areas (SBET)
of samples TN and TS were measured, and they are 118 and 81 m2/g, respectively. In
comparison, the specific surface area of pure TiO2 obtained by the Ti(IV) isopropoxide
is 21 m2/g. This higher value of the specific surface area for both samples could predict
potential good environmental applications.

2.2. Thermal Stability of the Gels

The thermal stability of gels aged at room temperature was investigated by simultane-
ous thermogravimetric (TG) and differential thermal analysis (DTA). DTA/TG curves of the
used precursors are not presented but it has been studied and discussed elsewhere [42–44].
The DTA/TG curves are presented for both gels—TN (TTIP-2%Nd) and TS (TTIP-2% Sm)
(Figure 4) and several stages could be marked on them. The DTA curves of both samples
showed similar behaviour. As is seen from figure one of the common features is a stepwise
release of the organics probably as a result of the higher number of organic groups due to
the presence of solvent and chelating agent as well. The first decomposition step of the
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gels is a weak endothermic effect near 100 ◦C (Figure 4a–d). This step could be attributed
to the evaporation of physically adsorbed water and/or organic solvent (isopropanol). The
average mass loss after dehydration is about 10% for both samples. The first exothermic
peak is at about 245 ◦C and it could be related to the combustion of alkoxide groups bonded
to Ti-atom. That peak is accompanied by the mass loss of ~10% for the TN gel, while for
the TS sample this value is higher (~16.5%). The next exothermic effect in both samples is
at about 350 ◦C and it could be assigned to the combustion of residual organic groups but
in the TS sample, it may be connected to the beginning of the TiO2 (anatase) crystallization
as well. The mass loss at this stage is about 17% for the TN sample and ~10% for the TS
one. As is seen there is a difference in the thermal behavior of the investigated samples
above 500 ◦C. The comparison of the DTA-TG curves of the samples showed that one
exothermic effect at about 580 ◦C is observed in the TN gel while in the other one, three
consecutive exothermic effects were detected (at 520 ◦C, 545 ◦C, and 570 ◦C). It is also
obvious that in both cases, a mass loss of an average of 10% is observed. Obviously, in the
presence of samarium, the last decomposition is more gradual in comparison to the other
sample. On the basis of these experimental facts, it could be assumed that the effects in the
range 520–540 ◦C in the TS sample could be related to the oxidation of residual carbon and
release of CO2. The last exothermic effects at 570 ◦C (for TS) and 580 ◦C (for TN) could be
associated with the intensive crystallization of anatase for both cases (Figure 4). The results
obtained by DTA correspond well to the XRD data (Figure 2), as well as to the results
obtained by other authors for Nd and Sm-modified TiO2 powders [43,45,46].
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2.3. Structural Studies and Optical Properties

The IR spectroscopy was used not only for verifying the phase transformations occur-
ring with heat treatment (in the temperature range 200–500 ◦C) but also to evaluate the
rate and degree of hydrolysis and condensation processes. The IR spectra of investigated
samples are depicted in Figure 5. The vibrational spectra of pure Ti(IV) isopropoxide
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(TTIP) as well as of isopropanol were shown and discussed already elsewhere [42,47]. By
analogy with our previous papers, the assignments of the vibrational bands of separate
structural units are made on the basis of well-known spectral data for TTIP, isopropanol
and crystalline TiO2 (anatase) [42,47]. Looking at Figure 5, it is seen that intensive bands
are observed in the IR spectra of the gels, but their intensities decreased with the temper-
ature increasing. Moreover, it is obvious that there is a similarity regarding the position
and intensity of the bands for the heat-treated samples in the range 200–500 ◦C. A de-
crease in the intensity of organic groups is registered after heating in the range 200–300 ◦C.
These groups disappeared completely above 300 ◦C. Generally, the bands located between
1500–1300 cm−1 are assigned to the bending vibrations of CH3 and CH2 groups. The band
at 1120 cm−1 is characteristic for the stretching vibrations of Ti-O-C, while those at 1190
and 1020 cm−1 are assigned to the vibrations of terminal and bridging C-O bonds in alkoxy
ligands [47]. The absorption bands below 1000 cm−1 in the samples correspond to C-H, C-O
and deformation Ti-O-C vibrations [48,49]. In our previous investigations [50,51], it was
found that the absorption region 1100–1020 cm−1 is very complex due to the overlapping
of the vibrations of different structural units from the alkoxide and solvent. Inspite of that,
many authors [52–54] use these bands for the interpretation of the degree of hydrolysis-
condensation processes. Bearing in mind the similarity of the spectra of investigated
samples, it is difficult to evaluate the completeness of the hydrolysis–condensation reac-
tions. However, the absence of a weak band at about 1120 cm−1 in the IR spectra of TS
gel gives us reason to suggest that more completed hydrolysis reactions occurred in that
sample. The bands below 800 cm−1 correspond to the vibrations of TiO6 units [52,53].
Bearing in mind that the typical Sm-O and Nd-O stretching vibrations are in the range of
510–430 cm−1 [55,56] overlapping between the inorganic structural polyhedra is suggested.
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UV-Vis Spectroscopy

Aiming to evaluate the completeness of the hydrolysis–condensation processes, as well as
to gain additional structural information, UV-Vis spectroscopy has been applied. Figure 6
shows the spectra of as-prepared TN and TS gels, which are compared to those of TiO2
gel obtained from Ti(IV) isopropoxide. The interpretation of the UV-Vis spectra is made
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on the basis of literature data as well as our previous results obtained in various systems
containing TiO2 [21,44,49,52–54,57]. In Figure 6, several peaks could be distinguished: for
undoped TiO2—250, 320 nm while for the Sm- and Nd-modified TiO2—260 nm as well as
one broad band in the region 345–365 nm.
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As it is known, the isolated TiO4 units exhibited the ligand-to-metal charge transfer
band in the region 200–260 nm, while in a titania network (anatase), the charge transfer
in TiO6 groups is above 300 nm data [49]. During the hydrolysis–condensation processes,
coordination geometry is changed and as a result, polymerized Ti species (Ti–O–Ti links
between TiO6 units) are formed [49,52–54,57]. Hence, an increase in the UV absorption peak
above 300 nm (instead of that at 250–260 nm) occurred. Bearing in mind the higher intensity
of the bands above 300 nm in comparison to these below 300 nm for the Sm and Nd-
modified TiO2 samples, it could be suggested that the hydrolysis-condensation processes
are more complete in these samples in comparison to the undoped TiO2. Moreover, the
widening of the band in the range 345–365 nm could be also attributed to the f-f transitions
of Sm3+ or Nd3+ [58,59].

UV-Vis spectroscopy was also used in order to investigate the optical properties of
the investigated samples (Table 1). As can be seen, a red shift of the absorption edge in the
Sm- and Nd-doped TiO2 powders (431.98 nm—2% Sm and 474.24 nm—2% Nd) is clearly
observed in comparison to pure TiO2 gel (367.69 nm). It is obvious that the TN sample
exhibited a higher cut-off value (474.24 nm) and increased absorption in the Vis region.
The red shift in the doped samples can be ascribed to the charge transfer between the TiO2
valence band and 4f levels of modified ions (Nd3+ and Sm3+) [21].
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Table 1. Observed cut-off and calculated optical band gap values (Eg) of the obtained gels.

Gels Composition, mol %
UV-Vis Results

Eg, eV Cut-Off, nm

TiO2 (Ti(IV) isopropoxide) 3.37 367.69
TS (2% Sm) 2.90 431.98
TN (2% Nd) 2.61 474.24

Another peculiarity of the UV-Vis spectrum of TN gel is the presence of a weak peak in
the visible region (~580 nm) which could be attributed to the f-f electronic transition to Nd3+

in the coordination environment of TiO2 nanostructures [60,61]. The calculated optical
band gap values (Eg) of pure and modified TiO2 gels are 3.37, 2.90, 2.61 eV, respectively
(Table 1). Our findings correlate well to those obtained by other teams [22,25,62].

2.4. Photocatalytic and Antibacterial Properties
2.4.1. Photocatalytic Activity

The photocatalytic action of pure and modified TiO2 powders heated at 500 ◦C for
1 h was tested for degradation of MG dye water solution illuminated with UV and visible
light. As it is well known, MG was selected as a model pollutant because of its intensive
use in industrial processes. The degradation ratios (C/Co) of MG as a function of time
for all samples were investigated and it is represented in Figure 7a,b. Blank tests of the
photodegradation of the dye in the absence of a photocatalyst indicate that the photolysis
can be ignored as less than 2% of MG was removed after 2 h illumination under UV or
visible light. The MG dye degradation was also followed in the presence of Degussa P25
TiO2 in order to evaluate the photocatalytic ability of synthesized powders in comparison
with the key photocatalyst (Figure 7a,b). It was found that the photocatalytic performance
under UV light of sample TS is better than that of TN and pure TiO2 samples under the
same conditions (Figure 7a). It is believed that small particle size and large specific surface
area could be beneficial for photocatalytic activity. The particle size of the Nd-doped
TiO2 was found to be about 10 nm (Figure 2). However, as the particle size is lowered
below a certain limit, surface recombination processes can become dominant because
of the increased surface-to-volume ratio and an optimum particle size for maximum
photocatalytic efficiency exists [63]. Probably the lower photoactivity of the sample TN
could be explained by the small size of its particles.

Bearing in mind the obtained experimental results it could be suggested that the
specific surface area has little effect on the photocatalytic activity. Despite its lower specific
surface area (81 m2/g) sample TS exhibited better photocatalytic properties in comparison
to TN one (118 m2/g). According to Sun et al. [8], the possible reason could be the
crystallization of TiO2 (anatase) at the earlier temperature of 400 ◦C while the TN sample
preserved the amorphous state at the same temperature, as shown in Figure 2. As was
already found, the anatase phase can contain more adsorbed water and hydroxyl groups
on the surface of titania which helps to improve the photocatalytic activity of TS sample [8].
These data compare well with those obtained by XRD where it was shown that the Nd
doping hinders earlier growth of TiO2 (anatase) particles (Figure 2).

The results of the photocatalytic test under illumination with visible light (Figure 7b)
reveal that dopping with Nd and Sm was not beneficial for the degradation of the MG
dye at our experimental conditions. As can be seen in Figure 7b, the photocatalytic
performance of synthesized TiO2 under visible light is comparable to that of the best
commercial photocatalyst Degussa P25.

The absorbance spectra of MG versus visible light illumination time for the synthesized
photocatalyst are shown in Figure 8. As irradiation time increases the height of peak at
618 nm decreases, which is a result of photocatalytic degradation of MG.
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It is well-documented in the literature that the initial step in the TiO2-mediated
photocatalysed degradation involves the generation of electron-hole (e−/h+) pair, leading
to the formation of hydroxyl radical (•OH) and superoxide radical anion (O2•−). It has
been suggested that these radicals are the primary oxidizing species in the photocatalytic
oxidation processes and are highly reactive to attack the organic molecules [1–3]. The
literature confirms that the appropriate dopping influences the photoactivity by electron or
hole traps. When such a trap can cause formation of highly reactive species, the dopant
introduction has a positive effect. If dopant introduction cannot decrease electron-hole
recombination, such modification is ineffective in the degradation process [64,65].

The disagreements under visible and UV irradiations can be explained by whether the
dopants act as electron and hole trappers or as recombination center of both the charges.

It can be suggested that the lower photocatalytic efficiency of doped samples in this
study can be explained by the prevalence of the recombination processes.

As it is known, the photocatalytic activity of doped TiO2 depends on many factors,
such as synthesis procedure, amount of dopant, light source, particle size, surface area, etc.
Obviously, at our experimental conditions, the modification with ions of Nd and Sm did
not impove the photoactivity under visible light illumination.

2.4.2. Antibacterial Activity

The antibacterial activity of the investigated materials was tested against strains
B. subtilis NBIMCC 3562 and E. coli NBIMCC K12 by measuring the inhibition zones
formed around the materials and monitoring the dynamic of bacterial growth in their
presence in a liquid medium. As well, the antibacterial properties of samples TS and TN
were compared to those of the sol-gel-derived TiO2. The growth-inhibiting effect of the
materials against the two bacterial strains was shown in Figure 9. Compared to the control
samples (without materials added), all samples exhibited good antibacterial activity against
both bacterial strains but their behavior during the analyses is different. It is worth noting
that the TN sample showed the highest growth inhibition (about 77%) against the Gram-
positive B. subtilis NBIMCC 3562, while the TS one demonstrated 100% growth inhibition
against the Gram-negative E. coli NBIMCC K12 (Figure 8). The other two samples showed
similar antibacterial activity (about 70% growth inhibition) towards both bacterial strains.
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Another approach applied to estimate the antibacterial properties of the investigated
samples refers to the measurement of the zones, which are free of bacterial growth. The
obtained results revealed well-formed inhibition zones around materials, containing TS,
TN and undoped TiO2. Comparison between results obtained showed that materials
exhibited higher antibacterial activity against B. subtilis NBIMCC 3562 than E. coli NBIMCC
K12. Also, the TS (2% Sm) sample demonstrated the highest antibacterial activity against
B. subtilis NBIMCC 3562 (inhibition zone = 20 mm), whereas the lowest one was observed
in the pure TiO2 sample (inhibition zone = 13 mm) (Figure 10). The highest inhibition
zone against E. coli NBIMCC K12 was observed in the TN (2% Nd) sample (inhibition
zone = 14.5 mm). The pure TiO2 sample again showed the lowest antibacterial activity
against the Gram-negative test microorganism (inhibition zone = 11 mm).
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The high antibacterial activity of the modified with Sm and Nd TiO2 samples could be
explained with their lower bandgap which enhances the visible light absorption ability. On
the other hand, their relatively higher surface area also results in the formation of highly
reactive oxygen species (ROS) which are responsible for bacterial cell damage. Our results
compare well to those obtained by other authors [25].

3. Materials and Methods
3.1. Materials and Reagents

Ti(IV) isopropoxide—TTIP (>98%, Merck, Darmstadt, Germany) Neodymium oxide,
Nd2O3 (99,9 %, Janssen Chimica, Antwerpen, Belgium), Samarium oxide, Sm2O3 (Janssen
Chimica, Anwerpen, Belgium 99.9%) and isopropanol, i-PrOH (>99.5 %, Merck, Darmstadt,
Germany) have been used as main precursors for the obtaining titania powders. The
acetylacetonate (AcAc, Sigma-Aldrich, Darmstadt, Germany) was used as a chelating agent
to form stable complexes with TTIP. Commercial Degussa P25 TiO2 powder was kindly
donated by Evonik Industries AG. All the reagents used were of analytical grade and were
used without further purification.

3.2. Preparation of Nd and Sm-Modified TiO2 Gels

The experimental conditions for obtaining the initial solutions consist of several steps.
The first solution was prepared by mixing of TTIP, i-PrOH and AcAc with vigorous stirring
while keeping the molar ratio TTIP/C3H7OH/AcAc = 1:30:1 [66]. Several drops of nitric
acid were added to obtain a clear solution. During the procedure, the molar ratio of
AcAc/TTIP >2 was preserved. The obtained sol was transparent, with an orange color
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indicating the retention of the AcAc ligand in the xerogel [67]. The other solution was
obtained by Nd2O3 or Sm2O3 dissolved in 1.5 mL HNO3 and isopropanol. Finally, both
solutions were mixed with vigorous stirring. During the experimental procedure, no
additional water was added. The sol-gel hydrolysis reaction was accomplished only in
the presence of air moisture. The pH of the resulting solution was measured and found
equal to 4–5. The gels’ ageing was performed in air for several days in order to allow
further hydrolysis. Aiming to verify the phase transformations, all gels were subjected to
stepwise heating in air from 200 ◦C to 700 ◦C for 1 h exposure time at each temperature
value. The investigated samples were denoted as follows: (TTIP, TTIP/i-PrOH, TN (TTIP-
2%Nd) and TS (TTIP-2%Sm). It has to be mentioned that the dopant concentration has
been chosen based on several reasons: i.e., the literature survey on the TiO2 doping, our
previous investigations [42,43] as well as the necessity of satisfactory performance against
degradation of the selected organic dye and antibacterial test.

3.3. Characterization

The thermal stability of selected gels was determined by differential thermal analysis
(LABSYSTM EVO apparatus) with Pt-Pt/Rh thermocouple at a heating rate of 10 K/min in
air flow, using Al2O3 as a reference material. The accuracy of the temperature was ±5 ◦C.
Heating of the samples was limited up to 600 ◦C. Gases evolved (EGA) during the thermal
treatments were analyzed by mass spectrometry (MS) with a Pfeiffer OmniStarTM mass
spectrometer (Pfeiffer Vacuum Technology AG, Wetzlar, Germany). Mass spectra recorded
for TTIP and TTIP/i-PrOH (Figure 4b,d) show m/z of 14, 15, 18 and 44 ascribed to CH2, CH3,
H2O and CO2, respectively. Powder XRD patterns were registered at room temperature
with a Bruker D8 Advance diffractometer using Cu-Kα radiation. The specific surface
area of samples heat-treated at 500 ◦C was measured using BET analysis (Quantachrome
Instruments NOVA 1200e apparatus, Anton Paar GmbH, Graz, Austria). The optical
absorption spectra of the powdered samples in the wavelength range 200–1000 nm were
recorded by a UV-VIS diffused reflectance Spectrophotometer “Evolution 300” (Thermo
Electron Corporation, Madison, WI, USA) using a magnesium oxide reflectance standard
as the baseline. The absorption edge and the optical band gap were determined following
Dharma et al. instructions [29]. The band gap energies (Eg) of the samples were calculated
by the Planck’s equation, where Eg is the band gap energy (eV), h is the Planck’s constant,
c is the light velocity (m/s), and λ is the wavelength (nm). The infrared spectra were
registered in the range 1600–400 cm−1 using the KBr pellet technique on a Nicolet-320 FTIR
spectrometer with 64 scans and a resolution of ±1 cm−1.

Eg =
h·c
λ

=
1240

λ
(1)

3.4. Photocatalytic Experiments

The photocatalytic activities of pure and modified with Nd and Sm TiO2 powders
were characterized by photodegradation of the dye malachite green (MG) as a model
pollutant. For the degradation experiments, the initial concentration of the MG aqueous
solution was 5 ppm. A fixed amount of 100 mg of each catalyst was added to 150 mL
dye solution to form suspension and the suspensions were sonicated for 10 min. Before
irradiation, the suspensions were magnetically stirred in the dark for 30 min in order to
establish an adsorption-desorption equilibrium of the dye on the catalyst surface. The time
at which the light was turned on was noted as starting point (t = 0) of the reaction at which
time the concentration of the dye was denoted as Co.

Irradiation with UV-light was provided by a black light blue lamp (Sylvania BLB 50 Hz
8W T5, (Erlangen, Germany) with the major fraction of irradiation occurring at 365 nm. The
lamp was fixed at 10 cm above the solution surface. The visible light source was a 500 W
halogen lamp (Sylvania, Erlangen, Germany) fixed at 40 cm above the treated solution.
All photocatalytic tests were performed at a constant stirring rate (450 rpm) and room
temperature of 25 ◦C. Sampling was performed at regular intervals during the reaction.
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In order to separate the supernatant liquid from the solid particles the collected aliquot
samples of the dye mixtures were centrifuged at 5000 rpm for 10 min. The phototocatalytic
degradation of the dye was monitored by measuring the absorbances of clear supernatant
aliquots by Jenway 6505 UV-Vis (designed and manufactured in UK) and Jenesys 10S
UV-Vis spectrophotometers (made in China, design by USA) at the maximum absorption
wavelength of MG—618 nm. The experimental data are the average from two or three
measurements differing from each other by about 5%.

3.5. Antibacterial Assay
3.5.1. Test Microorganisms, Media and Culture Conditions

The bacterial strains Bacillus subtilis NBIMCC 3562 and Escherichia coli NBIMCC
K12 were selected as test microorganisms and were obtained from the National Bank for
Industrial Microorganisms and Cell Cultures (NBIMCC, Bulgaria). Exponential cultures
(OD 610 nm = 1.9) of both strains were obtained in Nutrient broth (NB)/Luria-Bertani (LB)
broth, after cultivation in a shaker-incubator ES-20/60 (Biosan, Riga, Latvia, 120 rpm) at
30/37 ◦C for 24 h.

3.5.2. Antimicrobial Activity Assay

The bacterial growth-inhibiting effect of the tested materials was investigated by
studying the reduction of viable cells after exposure to them. To this end, 100 µL strain
suspension of B. subtilis NBIMCC 3562 or E. coli NBIMCC K12, pre-adjusted to the turbidity
of a 0.5 McFarland standard, and 10 mg of each material were added to flasks, containing
100 mL NB or LB broth, respectively. Samples, containing only bacterial cells (without
materials added), were used as controls. The incubation process was performed on a shaker-
incubator (120 rpm) at 30/37 ◦C for 24 h. The antibacterial activity of the investigated
materials was determined by cell counts, calculated from the colonies, grown on NB/LB
agar after 24 h of incubation at 30/37 ◦C and expressed as a percentage of cell reduction,
according to Bachvarova-Nedelcheva et al. [33]. All tests were performed in triplicates and
the results obtained showed the mean values.

In addition, the antibacterial activity of the materials against the two test microor-
ganisms was also determined by the agar-well diffusion method [68]. Sterile NB/LB agar
plates were inoculated with an exponential culture of the test strains, according to the
spread-plate method. The investigated materials in the amount of 100 mg were loaded
onto the marked wells in the agar plates and were then cultured in an incubator (Binder,
Germany) at 30/37 ◦C for 24 h. The antibacterial activity was assessed by measuring the
diameter of the obtained inhibition zones. Three replicates were made from each sample
and the results show the mean values.

4. Conclusions

Transparent samarium- and neodymium-modified titania gels are prepared from
Ti(IV) isopropoxide. The key role of the chelating agent (AcAc) for obtaining gels on the
ground of Ti(IV) isopropoxide and isopropanol is confirmed. The presence of neodymium
stabilizes the amorphous state of the sample up to higher temperature (400 ◦C) as com-
pared to the other one containing samarium. It was established that the neodymium and
samarium doping hinders the anatase-to-rutile phase transition and enhances the stability
of the anatase phase at higher temperature values (700 ◦C). The DTA revealed that in the
presence of samarium, the organic combustion occurs at higher temperatures (of 340 ◦C)
when compared to that of neodymium (of 250 ◦C). The UV-Vis results showed that the
investigated gels exhibited a red shifting of the cut-off in comparison to the pure sol-gel-
derived TiO2 gel. Using IR spectroscopy, it was found that a more completed hydrolysis
reaction occurred in the TiO2 sample modified with samarium. The photocatalytic activity
under UV light of modified with Sm sample was better than that of Nd-modified and
synthesized pure TiO2 sample. The doping with Nd and Sm was not beneficial for the
degradation of the MG dye under visible light. However, the photoactivity of synthesized
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TiO2 under the same conditions was comparable to that of the commercial photocatalyst
Degussa P25. The materials obtained demonstrated good antibacterial activity against
B. subtilis 3562 and E. coli K12. It is found that the Sm-modified TiO2 is more sensitive
against B. subtilis, while Nd-doped TiO2 exhibited 100% reduction of cells against E. coli.
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