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Shen-Qi-Di-Huang decoction (SQDHD), a well-known herbal formula from China, has been widely used in the treatment of
diabetic nephropathy (DN). However, the pharmacological mechanisms of SQDHD have not been entirely elucidated. At first,
we conducted a comprehensive literature search to identify the active constituents of SQDHD, determined their corresponding
targets, and obtained known DN targets from several databases. A protein-protein interaction network was then built to explore
the complex relations between SQDHD targets and those known to treat DN. Following the topological feature screening of each
node in the network, 400 major targets of SQDHD were obtained.The pathway enrichment analysis results acquired from DAVID
showed that the significant bioprocesses and pathways include oxidative stress, response to glucose, regulation of blood pressure,
regulation of cell proliferation, cytokine-mediated signaling pathway, and the apoptotic signaling pathway. More interestingly, five
key targets of SQDHD, named AKT1, AR, CTNNB1, EGFR, and ESR1, were significant in the regulation of the above bioprocesses
and pathways.This study partially verified and predicted the pharmacological and molecular mechanisms of SQDHD on DN from
a holistic perspective. This has laid the foundation for further experimental research and has expanded the rational application of
SQDHD in clinical practice.

1. Introduction

Diabetic nephropathy (DN), a complex and multifaceted
condition, is one of the main microvascular complications of
diabetes mellitus, especially type 2 diabetes mellitus (T2DM)
[1]. T2DM is an important cause of kidney failure, which
presents the risk of development of hypertension. In 2010,
6.4% of the world’s population was diagnosed with diabetes
mellitus, and this value is expected to increase to 7.7% in
2030, in other words, from 285 million to 439 million adults
[2]. DN is distinguished by the elevated albumin excretion
rate and/or the transient increased glomerular filtration rate
(GFR) [3]. The earliest sign of DN is microalbuminuria
(>30 mg/day), which develops into macroalbuminuria (>300
mg/day) and decreasedGFR, eventually leading to end-stage-
renal disease (ESRD) [4, 5].The pathogenesis of DN has been

associated with oxidative stress and inflammation caused by
chronic high blood glucose [6–8], glucosemetabolic disorder
[9], hemodynamics, and hemorheology anomalies [10]. The
current standard therapy includes intensive treatment and
control of hyperglycemia and blood pressure. A blockade
of the renin-angiotensin system (RAS) is also associated
[11]; however, RAS combination therapy cannot prevent the
progression of DN and is linked to an elevated rate of severe
adverse events. Novel agents have shown controversial results
or side effects [12] which makes it important to develop more
efficient treatment to cure DN and reduce side effects.

Traditional Chinese Medicine (TCM) is widely propa-
gated and used in more than 100 countries across the world
owing to its satisfactory clinical efficacy [13]. SQDHD was
documented in Shen Shi Zun Sheng Shu, which was written
by Shen Jinao in 1773 during the Qing Dynasty. SQDHD
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Figure 1: Workflow for SQDHD against diabetic nephropathy.

contains eight Chinese herbs, including Codonopsis Radix
(Dang Shen [DS]), Hedysarum Multijugum Maxim. (Huang
Qi [HQ]), dried Radix Rehmannia (Sheng Di Huang [SDH]),
Rhizoma Dioscoreae (Shan Yao [SY]), Cornus Officinalis Sieb.
Et Zucc. (Shan Zhu Yu [SZY]), Cortex Moutan (Mu Dan Pi
[MDP]), Alisma Orientale (Sam.) Juz. (Ze Xie [ZX]), and
Poria Cocos(Schw.) Wolf. (Fu Ling [FL]). Liuwei dihuang
pill (LDP), including Cornus Officinalis Sieb. Et Zucc.,
Cortex Moutan, Rhizoma Dioscoreae, Poria Cocos(Schw.)
Wolf., Alisma Orientale (Sam.) Juz., and Radix Rehmanniae
Praeparata, inhibited erythrocyte aldose reductase activity
and lowered urinary albumin excretion rate and beta2-MG
in the blood and urine in the treated group compared to
those in the control group [14]. LDP can decrease multiple
pathways including TGF-𝛽/SMADS, MAPK, and NF-𝜅B
signaling to prevent the progress of renal fibrosis and defend
glomerular mesangial cells [15]. Astragaloside IV (ASI),
active component in Hedysarum Multijugum Maxim., could
inhibit high glucose-induced cell apoptosis and decrease
TGF-𝛽1 and the activity of p38 in the MAPK pathway [16].
Dried Rehmanniae Radix reduced glucose, urea nitrogen,
5-hydroxymethylfurfural, and thiobarbituric acid- (TBA-)
reactive substance levels in DN rats [17]. Moutan Cortex
could significantly decrease blood glucose, serum creatinine,
and urine protein in DN rats and reduce transforming
growth factor beta 2 (TGF-𝛽2) in renal tissue [18]. Therefore,
SQDHD might exhibit substantial effect on DN. As SQDHD
includes many chemical compounds and adjusts a variety of

targets, the pharmacological mechanisms require a complete
clarification, which has been a challenge.

Network pharmacology, put forward by Hopkins in
2007, is used to elucidate the drugs effect on multiple
targets [19]. Network pharmacology can build networks
to reflect and clarify the interactive relationship between
multiple components, multiple targets, multiple pathways,
and complex diseases. It is also capable of interpreting
the mechanisms of functional drugs based on the network
built on public databases or available data through earlier
researches. Network pharmacology can reconstruct a “drug
target disease” network prediction model [20, 21]. TCM
herbal formulas treat and prevent disease, and is composed
of multicomponents and multitargets; thus, its mechanisms
can be investigated by network pharmacology. The study
was aimed at elucidating the pharmacological mechanisms of
SQDHD in DN treatment using the comprehensive network
pharmacology. The workflow of network pharmacology-
based study of SQDHD against diabetic nephropathy was
exhibited in Figure 1.

2. Material and Methods

2.1. Data Preparation

2.1.1. Composite Compounds of Each Herb in SQDHD. Sev-
enty-seven active compounds from the eight herbs found in
SQDHDwere screened fromdomestic and foreign literatures,
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and theTraditional ChineseMedicine SystemsPharmacology
Database [22] (TCMSP, http://lsp.nwu.edu.cn/tcmsp.php).
TCMSP is a unique pharmacology platform for Chinese
herbal medicines. Eleven compounds in Codonopsis Radix
[23–29], 7 in Poria Cocos (Schw.) Wolf [30, 31], 11 in
HedysarumMultijugumMaxim [32–34], 9 in CortexMoutan
[35, 36], 12 in Rhizoma Dioscoreae [37–40], 12 in Cornus
Officinalis Sieb. Et Zucc [41–51], 5 in Radix Rehmanniae
[52, 53], and ten in Alisma Orientale (Sam.) Juz [54–56]
were collected as well as the Canonical SMILES of all
active compounds from TCMSP. The details are described in
Table S1.Three-dimensional chemical structure data of active
compounds was found and exported from PubChem [57]
(https://pubchem.ncbi.nlm.nih.gov/).

2.1.2. Compound Targets for Each Herb in SQDHD. The
compound targets of each herb found in SQDHD were
collected from Stitch [58] (http://stitch.embl.de/, ver. 5.0), by
inputting the Canonical SMILES into SMILES string(s), with
the organism selected as “Homo sapiens” and a confidence
score >0.4. The compound targets having no relationship
with the compounds were deleted. Stitch is a resource to
explore interactions between chemicals and proteins. Input
3D structure of active compounds into PharmMapper [59]
(http://lilab.ecust.edu.cn/pharmmapper/index.php, Updated
on Nov 27, 2017), a freely accessed web-server designed to
identify potential target candidates for given probe small
molecules (drugs, natural products, or other newly discov-
ered compounds with binding targets unidentified) using the
pharmacophoremapping approach.WeusedUniProtKB [60]
(http://www.uniprot.org/) to obtain the standard compound
targets’ names. This database provides the scientific commu-
nity with a comprehensive, high-quality, and freely accessible
resource of protein sequence and functional information.
The protein names were entered into UniProtKB, with the
organism selected as “Homo sapiens,” prior to the retrieval
of the official symbol. We therefore obtained the compound
targets for each herb in SQDHD.The details are described in
Table S2.

2.1.3. DN Targets. The DN targets were obtained from the
Therapeutic Target Database [61] (TTD, https://db.idrblab
.org/ttd/, Updated in Sep. 10, 2017), Online Mendelian
Inheritance in Man� [62] (OMIM, http://omim.org/about/),
DrugBank [63] (https://www.drugbank.ca/, Updated in Dec.
20, 2017, ver. 5.0.11), and the Genetic Association Database
(GAD, https://geneticassociationdb.nih.gov/). TTD provides
information regarding the known and explored therapeutic
protein and nucleic acid targets, the targeted disease, pathway
information and the corresponding drugs directed at each of
the targets. Seventeen targets for DN were collected and the
details are described in Table S3. OMIM is a comprehensive,
authoritative compendium of human genes and genetic
phenotypes that is freely available and updated daily. The
full-text, referenced overviews inOMIMcontain information
on all known mendelian disorders and over 15,000 genes.
TheDrugBank database is a comprehensive, freely accessible,
online database containing information on drugs and drug
targets. The GAD is a database of genetic associational

data from complex diseases and disorders. After serving the
scientific community for more than 10 years, GAD has been
retired and all data is “frozen” as of 09/01/2014. However, all
GAD data as of 08/18/2014 will continue to be available.

2.1.4. Protein-Protein Interaction Data. All protein-protein
interaction (PPI) data were derived from STRING [64]
(https://string-db.org/, ver. 10.5), and the organism was
selected as “Homo sapiens” and a confidence score >0.7. The
STRING database, an update on the online database, collects
and presents known and predicted PPI with a confidence
score and accessory information. The score represents the
interaction confidence of the protein, which has a positive
relationship [65].

2.2. Network Construction

2.2.1. Network Construction Method. The network construc-
tion was performed as follows: (1) the active compounds-
active compounds target network of SQDHD was built, (2)
the herb-compound target-DN target network was built via
linking the eight SQDHD herbs with compound targets of
each herb, andDN targets, and (3) the compound targets-DN
targets-other human proteins network was built.

We used the network visualization software Cytoscape
[66] (http://cytoscape.org/, ver. 3.5.0) to build all networks.
Cytoscape is an open source software platform for complex
network analysis and visualization. It visualizes molecular
interaction networks and biological pathways and integrating
these networks with annotations, gene expression profiles,
and other state data.

2.2.2. Network Topological Feature Set Definition. We used
three indices to evaluate every node in the network.

The three indices contain degree, betweenness, and
closeness of nodes. Degree represents the number of edges
between a node and another node in the network [67].
Betweenness evaluates the participation of a node in the
shortest parts of the network and reflects the ability of nodes
to deal with the rate of information flow in the network aswell
[68]. Closeness is the inverse of the sum of the distance from
a node to other nodes. The three indices play an important
role in the network, and the level of the indices has a positive
association with the importance of node in the network [69].

2.3. Gene Ontology Enrichment Analysis. The Database for
Annotation, Visualization, and Integrated Discovery [70]
(DAVIDBioinformatics Resources, https://david.ncifcrf.gov/,
ver. 6.8) was utilized for theGeneOntology (GO) enrichment
analysis. DAVID provides a comprehensive set of functional
annotation tools so that investigators can understand the
biological meaning behind large lists of genes.

3. Results and Discussion

3.1. Compound-Compound Target Network Analysis. Thenet-
work consists of 181 nodes (50 compounds in SQDHD
and 131 compound targets) and 551 edges, as shown in
Figure 2. The network suggests that many compound targets
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can be adjusted by multiple compounds, while the number
of compound targets such as VEGF-A, CLC, AKT1, and
PIK3CG can be regulated by just one compound. PIM1 can
be regulated by 24 compounds, and STS, MAOB, CA2, and
BMP2 can be regulated by 20 compounds, whichmay be vital
compound targets in SQDHD. From the network, we can
make a rough observation of the relationship between active
compounds and compound targets.

3.2. Herb-Compound Target-DN Target Network Analysis.
This networkwas built to show the relationship between eight
herbs, compound targets, and DN targets. In Figure 3, the

network consists of 139 nodes (eight herbs, 76 compound
targets, and 55 compound targets/DN targets) and 300 edges.
The network shows that the compound targets are also
controlled by drug targets (DN targets), which suggests that
drugs may indirectly regulate disease-related proteins, while
SQDHD can directly affect these proteins. SQDHDmay also
indirectly affect drug targets by controlling related proteins
(compound targets). We also found SZY (58) having the
highest connection with other nodes, followed by HQ, MDF
(56, 45). This suggests their significance in the network.

In Figure 4, according to the GO enrichment analysis,
compound targets, DN targets, and compound targets/DN
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targets are significantly associated with response to oxida-
tive stress (GO:0006979; Fold Enrichment = 4.45;P =0.011),
response to reactive oxygen species (GO:0000302; Fold
Enrichment = 8.36;P =0.011), response to glucose (GO:
0009749; Fold Enrichment = 10.79;P< 0.001), regulation
of systemic arterial blood pressure by renin-angiotensin
(GO:0003081; Fold Enrichment = 40.76;P= 0.0021), regu-
lation of blood pressure (GO:0008217; Fold Enrichment =
13.79;P< 0.001), regulation of cell proliferation (GO:0042127;
Fold Enrichment = 4.41;P< 0.001), cytokine-mediated sig-
naling pathway (GO:0019221; Fold Enrichment = 4.36;P=
0.0054), apoptotic signaling pathway (GO:0097190; Fold
Enrichment = 5.74;P =0.011), and intracellular receptor sig-
naling pathway (GO:0030522; Fold Enrichment = 8.58;P
=0.011). The details are described in Table S4.

In the network (Figure 4), there are numerous DN-
related biological processes, including response to oxidative
stress (GO:0006979), response to glucose (GO: 0009749),
regulation of blood pressure (GO:0008217), regulation of cell
proliferation (GO:0042127), and cytokine-mediated signal-
ing pathway (GO:0019221). These processes are the potential
mechanisms involved in the treatment of DN. Some literature
has reported several biological processes obtained using
DAVID. Hypertension and hyperglycemia play vital roles in
the processes of DN. Cytokines (vascular endothelial growth
factor (VEGF), CC chemokine receptor 2 (CCR2), TGF-𝛽,
protein kinase C (PKC)), oxidative stress, and inflammation
are also key elements in the processes of DN. Currently, stan-
dard treatments for DN include controlling hyperglycemia
and blood pressure by inhibiting RAS [13, 71, 72]. The RAS
may increase renovascular resistance and intraglomerular
pressure, leading to renal damage [73], hyperglycemia, rise

in matrix production, or glycation of matrix proteins. These
processes subsequently lead to hyperglycemia, which results
in vessel injury followed by kidney mesangial expansion and
injury [13].

Intracellular reactive oxygen species (ROS) increases the
secretion bymitochondria in glucose stimulation.This occurs
through five main pathways including the pathogenesis of
complications: polyol pathway flux, increased formation of
advanced glycation end products (AGEs), increased expres-
sion of the receptor for AGEs and its activating ligands, acti-
vation of PKC isoforms, and overactive hexosamine pathway.
Elevated ROS leads to ischemia and defective angiogenesis
and then activates many proinflammatory pathways [74–
76]. NO can negatively control mitochondrial oxidative
metabolism, by binding to cytochrome c oxidase. ROS
directly decreases eNOS activity [77]. The chronic hyper-
glycemicmilieumarkedly increases AGEs in both the cellular
and extracellular compartments in various tissues [78, 79].
AGEs binding to the receptor forAGEs (RAGE) increase ROS
production. ROS can regulate PKC pathway in mesangial
cells and increase TGF-𝛽 which is associated with kidney
fibrosis. Meanwhile, ROS can also activate NF-𝜅B in mesan-
gial cells, leading to inflammatory response. ROS results in
glomerular mesangial expansion and renal tubulointerstitial
fibrosis, via disturbing cell function, and signal transduction
cascades [9, 80, 81]. Insulin-dependent diabetic BB rats and
NODmouse had elevated expression of TGF-𝛽 in the kidney,
and plasma and urine of DN patients had higher VEGF.
This suggests the urinary VEGF might be used as a sensitive
marker of DN and for predicting disease progression [82, 83].

In Figure 5, according to KEGG enrichment analysis,
compound targets, DN targets, and compound targets/DN
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targets are significantly associated with TNF signaling path-
way, Chagas disease, steroid hormone biosynthesis, tubercu-
losis, VEGF signaling pathway and others.Themost enriched
pathways involving significant differential expression are
TNF signaling pathway [84], steroid hormone biosynthe-
sis [85, 86], colorectal cancer [87], pancreatic cancer, glu-
curonate interconversions [88], and VEGF signaling pathway
[89]. The details are described in Table S5.

3.3. Compound Target-DN-Other Human Proteins’ PPI Net-
work Analysis. We built the compound target-DN target-
other human proteins’ PPI network to evaluate the signifi-
cance of compound targets. The network has 1626 nodes (123
compound targets, 82 DN targets, 8 compound-DN targets,
and 1413 other human proteins which have a connection with
compound targets or DN targets) and 36768 edges (Figure 6).
The significant targets are 400 nodes, which have 13,722 edges
evaluated by the three indices including degree, betweenness,
and closeness (degree ≥ 60, betweenness ≥ 270.71207, and
closeness ≥ 0.41004288). Finally, we selected 40 main nodes,
which play an important role in the network (Figure 7). The
details are described in Table S6.

Furthermore, the significant compound Target-DN-
Other Human Proteins’ PPI Network has 400 major nodes
and 13,722 edges, with the 40 main nodes include five
compound targets, 1 compound target and/or DN target, and
34 other human proteins interacting with the compound
or DN targets. In Figure 8, according to GO enrichment
analysis of the 40 main targets, a significant connection
with a negative regulation of the apoptotic process (GO:
0043066; Fold Enrichment = 8.74;P < 0.001), regulation of
signal transduction by p53 class mediator (GO: 1901796; Fold
Enrichment = 23.69;P< 0.001), positive regulation of nitric
oxide biosynthetic process (GO: 0045429; Fold Enrichment =
48.81;P< 0.001), positive regulation of cell proliferation (GO:
0008284; Fold Enrichment = 8.10;P< 0.001), response to stress
(GO: 0006950; Fold Enrichment = 27.52;P< 0.001), a negative
regulation of the TGF-𝛽 receptor signaling pathway (GO:
0030512; Fold Enrichment = 26.23;P< 0.001), and regulation
of nitric oxide synthase activity (GO: 0050999; Fold Enrich-
ment = 48.43;P= 0.0016). The details are described in Table
S7.

In Figure 9, according to KEGG enrichment analysis,
compound targets, DN targets, and other human proteins are
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Figure 6: Compound Target-DN-Other Human Proteins’ PPI Network (pink nodes, yellow nodes, blue nodes represent compound targets
and DN targets, the significant targets, and other human proteins interacting with the compound or DN targets, respectively).

significantly associated with the PI3K-Akt signaling pathway,
cell cycle, MAPK signaling pathway, and others. The details
are described in Table S8.

The largest number of targets, biological processes, and
pathways related to SQDHD and DN has been reported
in some literature. Nitric oxide (NO) is one such example
that has actively been associated with the kidneys through
several segments consisting of the regulation of renal hemo-
dynamics, renin secretion, inhibition of tubular sodium

reabsorption, tubuloglomerular feedback (TGF), and renal
sympathetic nerve activity [90, 91]. NO synthase (NOS),
including neuronal NOS (nNOS or NOS1), inducible NOS
(iNOS or NOS2), and endothelial NOS (eNOS or NOS3),
can promote the synthesis of NO that dilates blood ves-
sels. NOS inhibitor (L-NAME) was used for Otsuka Long-
Evans Tokushima Fatty spontaneous diabetic rat models and
Long-Evans Tokushima Otuska rat models as age-matched
controls. As a result, the diabetic group had lower urinary
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NO2 + NO3 and higher urinary protein compared to the
control groups.TheNOS inhibitor was observed to aggravate
the diabetic kidney disease [92]. Research has reported that
posttranslational regulation and phosphorylation of nNOS
and eNOS play vital roles in activating and inhibiting NO
synthesis in the kidney [91]. Sedentary Zucker diabetic fatty
(Sed-ZDF) rats had lower eNOS and nNOS expression than
male ZDF rats with exercise for 8 weeks [93].

Chronic elevated blood glucose level in diabetics results
in oxidative stress and inflammation associated with diabetic
complications such as DN. ROS/NS overproduction caused
by elevated glucose levels and enzymatic and nonenzymatic
antioxidant defense deficiency can lead to oxidative stress.
The influence of ROS/NS in cell signaling pathways has
been linked to tissue metabolism, cell proliferation, and cell
death [94]. The markers for ROS/NS damage is also seen to
rise in diabetic kidneys. Research has reported that TGF-𝛽
in the diabetic kidney cortex is related to oxidative stress,
vascular cell adhesion molecule 1 (VCAM-1), and monocyte
chemotactic protein 1 (MCP-1) [9].

Several growth factors and cytokines, including TGF-𝛽,
VEGF, PDGF, CTGF, and others, are likely mediators of the
influence of high blood glucose level on the kidneys. TGF-
𝛽1 has been proven as the vital cytokine that is linked to the
glomerular pathology of the extracellular matrix (ECM) that
is typically seen inDN. TGF-𝛽1 prevents cell proliferation and
apoptosis, although inducing hyperplasia and hypertrophy
of mesangial cells. Diabetic animals had increased TGF-𝛽 in

the glomerular [95]. TGF-𝛽1-dependent and protein kinase
C dependent pathways induce CTGF in high glucose, and
CTGF may be a mediator in the process of matrix produc-
tion driven by TGF-𝛽1 [96]. VEGF-A, a family of secreted
glycoprotein isoforms, is an endogenous protective factor and
mainly produced by podocytes in glomeruli. Elevated VEGF-
A protects the glomerular microvasculature in diabetics,
prevents apoptosis of vascular wall cells, and prevents the
development of DN [97, 98]. Targets such as FBXO6, HSPAS,
HSPA5, SIRTT, and the pathway involved have shown that
the SQDHD compound targets, DN target, and other human
proteins have great relationship in cancer regulation, though
the reported research lacks vital information. Therefore, the
role of SQDHD in the regulation of cancer should be further
studied.

Intensive treatment of hyperglycemia and hypertension is
the primary treatment for DN.Western medicines, including
ACEI and ARB, can protect renal function of DN; owing to
shortage, a sufficient amount is lacking to delay or retard the
progression of DN. TCM has been used in treating diabetes
and preventing its complications. Hachimijiogan (HJG),
consisting of Rehmannia radix, Fructus Corni, and others,
could decrease TGF-𝛽1 and iNOS levels in the kidney cortex
and reduce urinary protein, serum glycosylated protein and
AGEs. LDP, including Rehmannia glutinosa, Fructus Corni,
cortexMountain,Dioscorea opposita, Poria Cocos, andAlisma
Orientale, decreases urinary albumin excretion rate levels.
Astragalus (Huang Qi in Chinese) could prevent the early
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Figure 9: Differentially expressed gene PATHWAY enrichment point diagram of compound Target-DN-Other Human targets.

proliferation ofmesangial cell, AGEs-mediated cell apoptosis,
and reduceTGF-𝛽1 expression.Moutan cortex can ameliorate
inflammation via targeting RAGE in vitro or in vivo.Rehman-
nia Radix (Di Huang) can reduce TGF-𝛽1, CTGF, and Ang
II in high fat diet-fed plus STZ-induced diabetic rats [99,
100]. In Figure 8, according to KEGG enrichment analysis,
compound target-DN target-other humanproteins are signif-
icantly related to pathways in cancer, the estrogen signaling
pathway, cell cycle, and, as previously mentioned, the PI3K-
AKT signaling pathway, thyroid hormone signaling pathway,
and MAPK signaling pathway. PI3K-AKT signaling pathway
has been indicated as the source of glomerular hypertrophy
and ECM accumulation [101, 102]. Some research reported
that the thyroid hormone, triiodothyronine (T3), can inhibit
transcriptional activation of TGF-𝛽/SMAD via binding to
its nuclear receptors (TRs) [103]. A reduction in the activity
of the Akt signaling pathway, which is controlled by hyper-
glycemia,may activate p38MAPK, inflammatory and fibrotic
markers, further leading to DN [104]. P38-MAPK in vascular

smooth muscle cells and aorta can be phosphorylated by
hyperglycemia in diabetic rats [105].

Therefore, previous research as well as our study has
shown that SQDHD can treat and prevent diabetes and its
complication, including DN, via regulating several targets
linked to the NO biosynthetic process, nitric oxide synthase
activity, cell apoptosis, cell proliferation, and stress. Some
mechanisms of SQDHD on DN covered by network phar-
macology have been reported, and new mechanisms can be
further verified with animal and cell experiments.

4. Conclusion

The TCM herbal formula, a vital type of complementary
and alternative medicine, is widely used to treat diabetes
mellitus and complications. The study shows that SQDHD
may attenuate high glucose level, high blood pressure,
oxidative stress, cell apoptosis, and proliferation related to
DN, through the adjustment of its candidate targets and
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pathway by employing network pharmacology. Uncovering
the pharmacological mechanism and demonstrating these
prediction targets with experiments are required in future
studies.
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