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Abstract: The underground reserve (root) has been an uncharted research territory with its untapped
genetic variation yet to be exploited. Identifying ideal traits and breeding new rice varieties with
efficient root system architecture (RSA) has great potential to increase resource-use efficiency and
grain yield, especially under direct-seeded rice, by adapting to aerobic soil conditions. In this
review, we tried to mine the available research information on the direct-seeded rice (DSR) root
system to highlight the requirements of different root traits such as root architecture, length, number,
density, thickness, diameter, and angle that play a pivotal role in determining the uptake of nutrients
and moisture at different stages of plant growth. RSA also faces several stresses, due to excess or
deficiency of moisture and nutrients, low or high temperature, or saline conditions. To counteract
these hindrances, adaptation in response to stress becomes essential. Candidate genes such as early
root growth enhancer PSTOL1, surface rooting QTL qSOR1, deep rooting gene DRO1, and numerous
transporters for their respective nutrients and stress-responsive factors have been identified and
validated under different circumstances. Identifying the desired QTLs and transporters underlying
these traits and then designing an ideal root architecture can help in developing a suitable DSR
cultivar and aid in further advancement in this direction.

Keywords: direct-seeded rice; root system architecture; root plasticity; quantitative trait loci; genes

1. Introduction

Rice (Oryza sativa L., family: Poaceae or Gramineae) is the most cultivated cereal
globally (after wheat) and a staple food crop for billions of people living in developing
countries. This crop is grown under varied environments, over a wide range of latitudes,
altitudes, and topographies with varying hydrology. Rice, mostly associated with ample
quantities of water, has very low water productivity, in the sense that, to produce 1 kg of
grain, it consumes 3000–5000 L of water, and, out of the 70–80% of freshwater diverted
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toward agriculture, rice accounts for 85% of this portion globally [1]. According to pre-
dictions, roughly 39 million ha of irrigated rice might face economic or physical water
scarcity in Asia alone by 2025 [2]. The upcoming decades would be critical for transform-
ing current agricultural practices into a more holistic approach, wherein environmental
health and socioeconomic liabilities are accounted for. Therefore, it would be wise to
shift from conventional transplanted puddled rice (TPR) to other systems that increase
water productivity without any yield penalty. Direct-seeded rice (DSR) is such a system
of rice cultivation that has the potential to decrease water consumption, in addition to
lessening labor requirements and at the same time enhance resource-use efficiency and
system productivity, and check greenhouse gas emissions. In recent years, DSR has been
accepted as the principal rice establishment method in developed countries and adopted on
>25% of the area under rice cultivation worldwide [3]. It is gaining popularity in countries
such as the Philippines, India, Thailand, Cambodia, Laos, and Indonesia in tropical Asia
and in the United States, Australia, and Latin America [4].

Considering its benefits from sowing to harvesting, DSR as a whole saves about 50% of
water and labor expenses (Figure 1) [1], provides better temporal isolation for succeeding
crops, and decreases emissions of greenhouse gases [5]. Furthermore, dry-DSR could
effectively use the early-season monsoon in areas with limited moisture [6]. The DSR system
uses 60.3% vis-à-vis 92.4% by TPR in non-renewable energy consumption, with average
energy-use efficiency of 7.3 and 4.4 for the DSR and TPR systems, respectively [7]. However,
when we assess the risks involved, yield in DSR is often diminished because of intrinsic
problems such as poor seedling establishment owing to waterlogging immediately after
sowing, heavy weed infestation, low nutrient- and water-use efficiency, and susceptibility to
lodging [8]. Water stagnation on the soil surface after seeding can lead to poor germination
due to oxygen deficiency [9]. After germination, rice plants with greater seedling vigor
and anaerobic germination with good crop stands are important resources in direct-seeded
rice research to mitigate these problems. Another major problem arises from the high seed
rate involved in this type of cultivation practice compared with that of its counterpart,
TPR. The high seed rate, besides leading to a dense population, attracting more insects and
pests, and inducing nutrient competition, can be the causal reason for lodging with poor
root structure [10]. Root lodging is one of the most common problems, especially when
seeds are surface-sown under the dry-DSR system. This phenomenon is observed when
the intact culm above the crown leans to one side due to its roots’ inability to anchor aptly
in the ground. As the roots develop in this type of seeding, they produce more vertical
roots with very few surface roots [11], and the anchorage is not strong enough for the
plants to withstand heavy wind or rain, which often causes stem bending (middle of the
internode) or stem breaking (of the lower culm below the third internode) [12]. As a result,
the breaking of the stem due to lodging hinders grain filling, and transport from the source
(photosynthetically active leaves) to the sink (developing panicles) is impaired.

Roots are the primary organs for sensing and buffering against several abiotic stresses
(drought, flood, salinity, and mineral stress). The root system spreading inside the soil
is the key player for maintaining the aboveground parts, enhancing their capacity to
uptake more water and nutrient from the soil environment and yield higher. However,
most breeding programs have been focusing on the aboveground plant parts. This is
because root traits related to high nutrient acquisition efficiency (NAE) have never been
exploited as a selection criterion because of ignorance or inadequate screening methods.
Unfortunately, such traits have often been subjected to neutral or even negative selection
due to the practice of high-input agriculture. Designing root architecture befitting DSR has
a high potential to break both the adaptability and yield barrier. This would effectively
aid in developing genotypes on par/better performing under DSR conditions than under
TPR conditions. As the varieties suitable for TPR conditions are not fit for DSR [13],
research work should mainly identify the novel QTLs/genes associated with improving
traits under DSR to design high-yielding DSR varieties. Such an initiative would require
comprehensive knowledge about the roots, the molecular mechanisms of mesocotyl growth,



Int. J. Mol. Sci. 2021, 22, 6058 3 of 33

genes/QTLs controlling root growth, the physiological function of roots (e.g., water and
nutrient uptake), root plasticity, plant–soil–microbe interactions, hormonal secretions, and
their interactions as well as high-throughput phenotyping techniques under DSR. The
development, popularity, and adoption of DSR and varieties will be realized only if the
associated hurdles are overcome by breeding suitable varieties with high crop stand under
less water, adequate nutrient availability, high competitive ability against weed infestation,
and overcoming other related hindrances. Keeping all these facts in mind, this review aims
to expound the understanding and updated information on root system architecture (RSA),
gene networks, associated QTLs underlying root traits, and ways to exploit these QTLs
for RSA to better understand water and nutrient acquisition. In addition, we suggested a
model for an ideal RSA with necessary genes/QTLs suitable for the DSR system.
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2. Insights into Rice Root System Architecture

Roots offer an interface between plants and the complex environment of soil. The root
system architecture is a combined perception and spatial organization of root systems that
sums up various aspects of root structure and shape. RSA is regulated by many factors
such as genetics, edaphic conditions, planting density, plant size, intercropping patterns,
agronomic practices, and seasonal weather patterns. Being a monocot, the rice plant bears
the fibrous root system mainly of three distinct types of roots; embryonic roots, seminal
roots, and post-embryonic roots. The radicle is the first root to be formed from the embryo
and, after the seed germinates, the radicle is referred to as the seminal root. The parenchyma
cells at the base of the stem give rise to shoot-borne roots called the crown roots. The
lateral roots are borne initially on the seminal roots, and then the crown roots contribute to
water and nutrient uptake activity [14]. Set apart from these structures are root hairs, fine
tubular outgrowths of the epidermal layers. They are of prime importance in increasing the
surface area and reaching out to the minute pore space in the soil to acquire moisture and
nutrients (they also play a role in interaction with soil fauna) [15]. A plethora of natural
diversity in rice RSA has been reported by several researchers [16,17]. Courtois et al. [18]
identified 29 root parameters from a group of mapping populations and summarized 675
rice QTLs associated with RSA. As a consequence of the diverse, composite nature of
roots and the multiplicity of functions, research work on RSA has become a collaborative
field that includes communities from ecologists, geneticists, molecular biologists, and crop
physiologists to microbiologists. Several genes for root development have been isolated in
rice by studying abnormal root mutants [19,20]. However, unlike other traits in rice plants,
the genetic bases of RSA are not entirely understood as they are complex and controlled by
several genes and difficult to phenotype [21]. A list of root-related QTLs and their position
are presented in Table S1.

The modern agricultural system faces significant challenges in improving crop plants’
nutrient acquisition under dynamic environmental conditions. Thus, genetic improvement
in RSA can be regarded as a prerequisite for enhanced nutrient acquisition from water
stagnant to aerobic conditions. Designing a new root ideotype adapted to diverse environ-
mental factors requires amelioration of ideotype breeding with root trait QTLs through
marker-assisted selection. Therefore, it is essential to have an updated understanding of
the genetic mechanism associated, the gene networks involved, and plant requirements at
different stages of growth [22]. Introgression of specific RSA-associated QTLs will provide
genetic progress for resistance against several abiotic stresses and the ability to grow under
variable environments with a higher yield. Such research requires three steps for engineer-
ing RSA: cloning the QTLs and developing a platform of functional sequences, developing
a standardized method of phenotyping, and augmenting “omics” approaches and plant
breeding, biotechnology, plant physiology, agronomy, and other related disciplines to
develop enhanced RSA.

3. RSA: Infant to Early Vegetative Stage and Associated Traits

In a well-drained upland soil, the coleorhiza emerges first from the rice seed, whereas,
in submerged conditions, the coleoptile arises prior to the coleorhiza. The first roots to come
out of the seed are the embryonic roots (or radicle), which arise out of the coleorhiza [23].
Then, the secondary roots develop, which ultimately form the lateral roots. The embryonic
roots by this stage are desiccated and are replaced by the secondary adventitious roots (or
crown roots), generating from the meristematic cells of the culm’s underground nodes.
The crown roots are of two types: lower thick ones and thin upper ones. Their growth
angle decides the fate of the distribution of the whole root system in the soil in the DSR
system [24]. Short roots develop into a compact root system, whereas long roots help mine
water and nutrients from a depth. A schematic representation of genes required for root
development at different stages of growth and the ideal nutrient-specific transporters are
shown in Figure 2.
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Figure 2. Ideal DSR root system with root-specific traits and genes/QTLs at different stages of growth. The varying
growth stages have different requirements of root morphology and associated genes/QTLs depicted in the Figure. (1) The
germinating seed requires AG genes for germination: qEUE11.1 and qEVV9.1 for early high seedling vigor and qSOR1
for better surface rooting. (2) From the nutrient perspective, the seedling stage would require OsPT1 and OsPT8 for P
uptake, OsZIP genes for Zn uptake, and TOND1 for nitrogen deficiency tolerance, supplemented with PSTOL1 (a root
growth enhancer). (3) The vegetative stage needs DRO genes that articulate the roots working in complementation with
SOR, OsNRT, and OsAMT genes for nitrogen transport efficiency, expansin genes (such as OsEXP) for growth of root hair
and increased root length, and most of the roots are ideally at a 45◦ angle with each other measured from the base. (4) The
reproductive stage needs better anchorage and root spread, higher silicon deposition on culm supplemented with qLDG
genes for lodging tolerance, higher nutrient and moisture uptake compensated with more fine roots, new roots and root cap
development, high N uptake, and C accumulation. * The genes/QTLs for these attributes are yet to be identified.

3.1. Root Requirements and Nutrient Uptake

The desirable architecture at the initial stage of growth after germination is preferably
a shallow and well-spread surface–subsurface root system on the nutrient-use front. Studies
have confirmed the accumulation of phosphorus (P), one of the essential macronutrients, in
the shallow soil layers vis-à-vis subsurface/deeper layers [25], and the same applies to other
immobile nutrients such as potassium (K), manganese (Mn), and iron (Fe). P uptake starts
as early as 2 days after germination (DAG) [26]. It is significant to note here that this uptake
and activation of P transporter genes are independent of the seed-P reserve. Primarily,
OsPT8 and OsPT1 genes are involved at the initial stage and contribute to P uptake by roots
as early as 2–3 DAG [27,28]. Phosphorus starvation tolerance 1 (PSTOL1), a significant gene
identified in the phosphorus-deficiency tolerance QTL, phosphorus uptake 1 (Pup1), aids in
the uptake of P and enhances early root growth [29]. It helps the plant in P uptake under
rainfed/upland conditions in rice [30] and was reported in an aus-type variety Kasalath [29].
Additionally, Sandhu et al. [31] have identified QTLs regulating P uptake and length of
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root hair on chromosome 5. The key player in developing different types of the root system
in the early seedling growth are the genes controlling root angle, which determine the
development of surface and shallow subsurface roots. However, root growth angle as a
trait is determined by multiple environmental factors such as gravity, light, and water
potential [32,33]. An actin-binding protein, Rice Morphology Determinant (RMD), has been
found to govern root angle by linking actin filaments with statoliths producing shallower
crown root angle [34]. This also leads to a low intensity of auxin-driven gravitropism of
the root. Another QTL, qSOR1 (QTL for SOIL SURFACE ROOTING 1), an 812-kb long
segment located on chromosome 7 expressed in the columella cells, also operates similarly
working antagonistically with auxin [35]. It induces shallow root formation beneficial
for the uptake of nutrients from the top layers [36]. DEEPER ROOTING 1 (DRO1), a
major QTL responsible for root growth angle, is also involved in gravitropism [37] and is
negatively regulated by auxin signaling and is involved in root tip cell elongation leading
to gravitropic bending [38]. Apart from the genes mentioned above, many other QTLs for
root growth angle have been reported in rice, such as DRO2 [38], DRO3 [39], DRO4, and
DRO5 [40] detected in F2 mapping populations derived from a cross using “Kinandang
Patong” as a large root growth angle donor. Different flanking QTLs have been reported
from chromosomes 2, 4, and 7 near DRO4, DRO2, and qSOR1, respectively [41], which
can be used further. Interestingly, it is seen that the plants with shallow rooting capture
Cd from the top soil layer; thus, the shallow rooting allele is a potential genetic resource
for phytoremediation under high Cd accumulation. When considering eating purposes,
the allele for deep rooting could be useful to avoid absorbing bioavailable Cd in such soil
conditions [33]. Besides the above, the crown root has an important role in P acquisition. A
large number of crown roots (adventitious roots) contribute to shallower rooting depth, in
turn increasing P uptake from deficient soils [42]. Enhancing P uptake by introgression of
these QTLs and genes can alleviate the problem of P deficiency mainly prevalent in dry
conditions of DSR (Table S2).

Nitrogen (N) deficiency at the early stages of seedling growth can lead to the devel-
opment of long but thinner roots because starvation increases the rate of cell division and
cell elongation, thereby increasing the length of primary roots [43]. This shows the plant’s
preference for root growth as against shoot growth in such situations. Rice roots can uptake
N in both the nitrate and ammonium form. Under limited-moisture DSR conditions, the
availability of nitrate would be higher than the ammoniacal form of N. However, heavy
rainfall or flooding in rainfed lowland would change the soil environment. Therefore, roots
should have plasticity for this situation, and the presence of both nitrate and ammoniacal
forms of transporters is highly required. At the young stage, specific localized nitrate
signaling by the root helps develop lateral roots that decide the root branching system [44].
Nitrate uptake has been reported to be facilitated by transporters such as the OsNRT1.1
allele OsNPF6.5 (OsNRT1.1B), OsNPF2.4 (OsNRT1.6), OsNPF8.9 (OsNRT1.1, Os3g13274,
or AF140606), and OsNRT1.1b (AK066920) in rice [45–47] under high nitrate availability,
whereas, in a soil environment with low nitrate, OsNRT2.1, OsNRT2.2, and OsNAR2.1 come
into play [48–50]. The partner protein of the NRT family, OsNAR2.1, also helps in promot-
ing root growth. Interestingly, one of these transporters (OsNRT1.1B) is responsible for
the wide variation in nitrogen-use efficiency (NUE) observed between indica and japonica
subspecies of rice (Oryza sativa) [45]. Under oxygen-limiting conditions, rice can also rely
on ammonia for its N source. This uptake in the proper amount is carefully controlled
by ammonium (NH4

+) transporters (AMTs) [51]. A range of transporters for ammonium
intake by the plant cells have been reported such as OsAMT1.1, OsAMT1.2, OsAMT1.3,
OsAMT2.1, OsAMT2.2, OsAMT2.3, OsAMT3.1, OsAMT3.2, and OsAMT3.3 [52–54]. A study
revealed that deep rooting gene DRO1 enhanced N uptake, as longer roots could mine
nitrate ions from the lower layers of the soil [33]. They compared IR64 and Dro1-NIL for N
uptake and found that the latter had higher uptake with higher grain filling. A major QTL
on chromosome 12, Tolerance of Nitrogen Deficiency 1 (TOND1) contributes to N deficiency
tolerance in plants, also manifesting increased root length [55]. QTLs for N uptake and root
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hair density have been identified on chromosome 2 (a stretch of 3.4 Mb) [31]. Yet another
QTL, NITRATE TRANSPORTER 1.1, has been reported, which transports both nitrogen and
auxin, and this was one of the first studies to suggest a connecting link between the auxin
pathway and nitrate availability in soil [56]. In this context, it is noteworthy to mention
that, under N starvation, many phytohormone activities also become regulated, such as
Indole acetic acid (IAA), Abscisic acid (ABA), and Jasmonic Acid (JA) [57].

Besides N and P, iron (Fe) can greatly influence and limit plant growth. The peculiar
case of this nutrient is that its availability cannot be compensated by external application.
Even when it is present in the soil, it remains in unavailable form because of its solubility.
The aerobic conditions under DSR lead to oxidation of iron from its available ferrous (Fe2+)
form to its unavailable ferric (Fe3+) form [58]. Under normal conditions, rice, being a
member of the Poaceae family, proceeds through the biosynthesis and secretion of root
exudates, compounds called phytosiderophores (PSs), through the roots to facilitate the
uptake of Fe. They are produced in response to the levels of different enzymes such as nico-
tianamine synthase (NAS), nicotianamine aminotransferase (NAAT), and deoxymugineic
acid synthase (DMAS) [59]. These PSs form soluble complexes with iron (Fe(III)-PS) in the
rhizosphere and then are taken up by the root cells with the help of YELLOW STRIPE-LIKE
PROTEINS (YSLs) [60]. Rice plants, especially at the early stage, are highly susceptible to Fe
deficiency as they secrete a lower amount of deoxy-MA even under Fe-deficient conditions,
and the secretion completely stops within 7 days [61]. When iron depletion continues, the
rice root tips become chimeric, whereas the epidermal cells become necrotic. Besides this,
rice acquires Fe2+ directly from the surrounding rhizosphere through multiple transporters
such as OsIRT1 and OsIRT2 [62].

Zinc (Zn) is one of the most critical regulatory cofactors and a structural component
of several biomolecules involved in various biochemical pathways. Its deficiency can
cause multiple irregularities, including chlorosis and hampering auxin and chlorophyll
activity. Plants tolerant to Zn deficiency in soil show rapid crown root development [63].
Zinc uptake by plants is facilitated by one of two ways: directly from the soil via root
epidermal cells or via associations with arbuscular mycorrhizal fungi (AMF). The direct
uptake from the soil is similar to that of iron. Like iron, response to Zn deficiency is
related to root exudates, phytosiderophores (MA). ZmYS1, a yellow stripe gene, identified
in maize, has a range of specificity for metals, including Zn, and thus helps in uptake
and transport [64]. Many Zn transporters of the ZIP (Zrt, Irt-like protein) family have
been reported that sense and become activated in response to Zn deficiency: OsZIP1,
OsZIP3, OsZIP4, and OsZIP5 [62,65,66]. These ZIP transporters are also involved in the
transport of iron and manganese [65]. Besides root exudation, zinc uptake is facilitated by
mycorrhizal fungi (as is phosphorus). These fungi colonize the root cortical cells, extending
their hyphae into the rhizosphere [66]. This helps to supplement the existing surface area
of the roots, thereby exploring larger parts of the soil and facilitating increased uptake.
Such a symbiotic relationship can be more beneficial, especially when the nutrient in
question is an immobile one, such as zinc or phosphorus [67]. Much has been studied and
explored about AMF symbiosis in numerous crop plants, but rice AMF symbiosis is yet to
be exploited. According to reports, there was an increase of 28–57% in root colonization
when inoculation occurs in aerobic rice, owing to the non-flooded conditions [68]. This
report on AMF associations sheds light further on new dimensions to be exploited under
dry-DSR system RSA.

3.2. Early Uniform Emergence and Early Root Vigor

Early uniform emergence (EUE), seedling establishment, and development are major
determinants of crop growth and subsequent yield. EUE prefers a deep root system that
acclimatizes the emerging seedlings well before the upper soil becomes dried. This is
contributed by several traits: early and high germination rate, rapid root-shoot develop-
ment, and enhanced seedling vigor. Two significant major QTLs (qEMM1.1 on chromosome
1 and qEMM11.1 on chromosome 11) for EUE derived from Moroberekan (BC2F3; Mo-
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roberekan × Swarna) were reported by Dixit et al. [69]. QTLs for early uniform emergence
(qEUE11.1) [69] and early vigor (qEVV9.1) [70] have been reported that can be used for the
improvement of dry-DSR varieties. A QTL for the seedling establishment was reported on
chromosome 11 under DSR along with grain yield and its contributing traits [31]. These
QTLs can be utilized to assist the early vigor of the seedling under DSR. Early vegeta-
tive vigor (EVV) or seedling vigor is the plant’s ability to emerge rapidly from the soil,
establish a viable seedling, and acquire a high relative growth rate (RGR) before canopy
closure [71,72]. Seedling vigor traits would include uniform germination, longer coleoptile,
and mesocotyl accompanied by rapid growth of both root and shoot [73,74], which further
contribute towards optimum DSR crop establishment and at the same time competitiveness
against the growth of weeds [75,76]. Mesocotyl, the portion between the coleoptile node
and the base of the seminal root, is one of the key players in pushing the germinating
seedlings out of the soil. Its length determines the seedling emergence and establishment.
GWAS study for mescotyl elongation in 208 accessions of rice has identified six novel loci
explaining up to 15.9% of phenotypic variations [77]. Three QTLs, namely qMel-1, qMel-3,
and qMel-6 controlling mesocotyl length, have been reported on chromosomes 1,3 and
6 respectively in backcross inbred lines developed from a cross between Kasalath and
Nipponbare [78]. The significant differences between rice cultivars under direct-seeded
rice have been well established owing to the variation in their EVV [76,79]. In the DSR
environment, EVV is associated with yield stability [80]. Several researchers [73,76,81–83]
have already identified many QTLs for these traits using mapping populations. Two major
QTL hotspots have been identified in relation to vigor traits: QTL hotspot A on chromo-
some 3 (qEV3.1, qEUE3.1, qSHL3.1, qSL3.1, qSFW3.1, qTFW3.1, qRDW3.1) and hotspot B
on chromosome 5 (qEV5.1, qEUE5.1, qSHL5.1, qSL5.1, qSFW5.1, qSDW5.1, qTDW5.1) [84].
Zhou et al. [85] have discovered two rather more stable QTLs (qFV-5-1 and qFV-10) that
contributed to vigor under both high and low water stress.

Another aspect of seedling vigor is the proper and early development of crown roots, a
major trait in rice that controls nutrient and water acquisition in the initial days of seedling
growth. Thus, their number and distribution are deciding factors of ESV, and they also help
in P uptake due to their shallow rooting. On the contrary, it has been reported that in maize,
a lower number of crown roots facilitated enhanced nitrogen acquisition from soil [86]. A
QTL for nodal roots was identified on chromosome 4, in a stretch of 760 kbp [31]. Rapid
nodal root growth, longer root, and high density of roots are imperative for EUE under
DSR [31]. For their timely normal emergence from the shoot base, seedlings with high vigor
have been reported to utilize the WUSCHEL-related homeobox (WOX) gene, WOX11 [87].
They found its action to be in coordination with both auxin and cytokinin activity. A
mutant identified in rice, crown rootless1 (crl1), showed decreased lateral root formation,
abnormal crown root formation, and compromised root gravitropism. The expression of
crl1 leads to normal root morphology. Exogenous application of IAA was also effective
in inducing the expression of the DR5 promoter in relation to the normal development
of crown roots [88]. Oscand1, a gene reported by Wang et al. [89] whose mutant develops
a defective crown root system, is due to inhibition at the cell division’s G2/M transition
phase. The peculiarity is that this gene also has auxin signaling in its functionality [89]. In
this context, one must also focus on the development of lateral roots. Both crown root (CR)
and lateral root (LR) developmental processes follow many common pathways and gene
actions. For instance, the WOX genes, OsIAA23, OsARM1, OsARM2, and CRL4/OsGNOM1,
have a regulatory function in both LR and CR development [90]. It is interesting to note
that crown root regulating significant gene, crown rootless1 gene also positively regulates the
development of LRs [22]. LRs are one of the major contributing traits to root architecture
as they contribute to root biomass and also facilitate better anchorage. However, not much
significant work has yet been reported regarding the expression and regulation of LR-
controlling genes. A recent report on lateral rootless 1 (lrt1) and lrt2 mutants suggested that
they had less sensitivity to auxin and lacked LRs [91,92]. Similar auxin involvement is also
seen in the OsWOX3A-encoding genes NARROW LEAF 2 (NAL2) and NAL3, which regulate
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LR development. NAL1 has also been identified with a role in crown root development [93].
Contrary to these facts, EVV may also sometimes hamper normal crop growth as the early
vigorous uptake of nutrients, and moisture leaves very little for the crop at later stages of
DSR when resources are limited [94]. A study on maize suggested that nitrate uptake is
optimized by long and sparse lateral roots, whereas P uptake is optimized by short and
dense lateral roots [95]. Thus, we need to incorporate both genes governing RSA into a
single genotype for optimum utilization of N and P.

4. Stress during Germination

Roots face several stresses, both during and after germination. It is well understood
that the early vegetative/seedling stage exposed to drought, heat, osmotic stress, and
nutrient deficiency leads to alteration of the plant’s root-shoot ratio as an adaptive strategy.
At the initial stage, the belowground organ (root) sends signals to the aboveground portion
and alters both the root and shoot architecture. Roots inherently possess adaptive mecha-
nisms to cope with such stress by expressing stress-responsive protein and biochemical
pathways. The following sections will discuss such stress conditions.

4.1. Anaerobic Germination and Regulation of Associated Root Traits

Water, when available in excess, can be a limiting factor in the early stages, hampering
the pathway of germination. This is one of the most common stresses that a germinating
seed faces, i.e., anaerobic soil conditions. Even though DSR conditions ideally should
be aerobic, at the beginning of seed germination, surplus water stagnation causes major
germination failure. On the contrary, this can aid in weed control during the initial stages.
Few rice cultivars have the ability to germinate, grow, and survive under such oxygen-
deficient conditions is commonly known as anaerobic germination (AG) tolerance in the
crop. Such a condition of low oxygen can sometimes lead to hypoxia. Generally, lowland
rice cultivars can germinate without oxygen as they can synthesize the enzymes required
for starch degradation even in oxygen-depleted soil layers [96]. However, when we breed
for DSR cultivars, we cannot overlook the menace of anaerobic conditions prevailing in
this system. The Os-EXP4 expansin gene helps in seed germination in anaerobic conditions
or submergence. This gene might be involved in the expansion of the epidermal cells
to form long coleorhizal hairs [97]. Among the several QTLs detected for anaerobic
germination, qAG-9-2 was traced to the locus AG1 (trehalose-6-phosphate phosphatase
gene family) controlling coleoptile elongation under submergence [98]. A similar coleoptile
elongating gene (AG2) has also been reported. These genes (AG1 and AG2) have displayed
surprisingly higher survivability under anaerobic conditions in the introgressed lines
than in the recurrent parent, Dongan, a japonica cultivar [99]. However, SOR1 (SOIL
SURFACE ROOTING 1) remains the most useful gene adapted to anaerobic conditions
under DSR. Its mechanism enables roots to grow toward the soil surface and acquire
oxygen directly from the air [100]. Uga et al. [101] identified an 812-kb interval (7L),
delimited by markers RM21941 and RM21976, and it was designated as QTL qSOR1. This
SOR gene is reported explicitly in the Bulu genotype from Indonesia. The evolution of
this gene might be attributed to the selection pressure to withstand anaerobic growth
conditions. Unlike lowland ecotypes that develop thinner superficial roots after the panicle
initiation stage, Bulu ecotypes develop thick crown roots above the soil surface beginning
at the seedling stage. A similar mechanism is adopted by Arabidopsis using an allele
of CYTOKININ OXIDASE 2 (CKX2), which promotes shallower root growth aiding in
surviving hypoxia due to snow [102]. Exploiting such QTLs can help overcome hypoxia
and anaerobic germination and also aid in the uptake of P. A recent report on identifying
underlying QTLs for anaerobic germination [103] highlighted major QTLs on chromosomes
3, 5, 6, 7, and 8 in two mapping populations using a common parent (Kalarata) with the
anaerobic germination trait. Of the five QTLs identified in the study, qSUR6-1 was a
novel one for anaerobic germination. The Korean weedy rice, photoblastic rice (PBR),
was identified with potential for anaerobic condition survivability with high germination



Int. J. Mol. Sci. 2021, 22, 6058 10 of 33

percentage [104]. Jeong et al. [105] developed a mapping population using PBR, and the
authors reported three QTLs involved in imparting tolerance of flooding: qAG1, qAG3, and
qAG11. Other genes have also been reported, such as the QTLs qAG-9–2 (AG1) and qAG-7–2
(AG2) [106]. QTLs located on the short arm of chromosome 7, qAG7.1 and qAG7.2 [107], and
the functional allele of qLTG3-1 in Ouu 365 and Arroz da Terra inbred lines [108] were found
to promote efficient germination under anaerobic conditions. The National Rice Research
Institute (NRRI), Cuttack, in collaboration with the International Rice Research Institute
(IRRI), has started several breeding programs for the introgression of reported QTLs for
anaerobic germination (qAG9.1, qAG9.2) to develop high-yielding DSR varieties [109].

4.2. Limited Moisture during Germination and Regulation of Associated Root Traits under DSR

Approximately half of the world’s rice production is dependent on rainwater and is
grown in aerobic upland or rainfed lowland systems, and the plants are often exposed to
unmitigated drought stress [110]. Breeding approaches for high-input agriculture have
favored a shallow root system that absorbs nutrients from the top layer of the soil. On
the contrary, plants bred to sustain themselves in a low-input rainfed ecosystem require
a robust and deeper root system to acquire most of the water and nutrients to achieve
their potential [111]. In plants, roots are the primary organs that sense moisture stress and
initiate a signaling cascade at the molecular level. It has been seen that rice roots respond
to drought or water stress in the following ways: osmotic adjustment within the root cells,
enhanced root penetration into the soil by increasing root length, increased root density,
and a higher root-to-shoot ratio [112]. These responses are always determined by the plants’
genotype, intensity, and period of exposure to the stress. Drought affects rice production
in three common ways: early water stress (causes a delay in transplanting of seedlings),
mild sporadic stress (having cumulative effects), and late stress (near to flowering) [113].
However, the basic adaptive response in the DSR system lies with traits such as root length,
root thickness, and root hair growth to reach moisture at greater depths. Root elongation is
facilitated by auxin signaling and the expansion of the cells. Several factors control root
length as a trait, for instance, cell wall loosening regulated by the endo-1,4-β-D-glucanase
protein encoded by the gene ROOT GROWTH INHIBITING (RT)/OsGLU3 regulates root
length [114]. Kitomi et al. [115] identified two QTLs for maximal root length, QUICK ROOT-
ING 1 (QRO1) on chromosome 2 and QRO2 on chromosome 6. The rt/osglu3 mutants
exhibit short roots as a decrease in longitudinal cell elongation occurs but with no effect on
root differentiation, root cell division, or shoot development. OsEXPA8, a turgor-driven cell
elongation root-specific α-expansin, works similarly by loosening the cell wall and then
resulting in an increased seminal, crown, and lateral root length [116]. An extensive meta-
QTL analysis across populations and environments, reported by Courtois et al. [18], has
shed light on 119 QTLs distributed among hotspots of chromosomes 1 and 9. Most of them
were related to root length. Many other genes controlling root elongation have also been
found to be effective, such as GNA1, which encodes a glucosamine-6-P acetyltransferase;
OsCYT-INV1 (an alkaline/neutral invertase) [19]; Osglu3-1 (a putative membrane-bound
endo-1,4-beta-glucanase) [117]; OsRPK1 (a Ca2+-independent Ser/Thr kinase [118]; QTL
Dro1 (DEEP ROOTING 1) for deep rooting (with an increased gravitropic response) [101];
and O. sativa CELLULOSE SYNTHASE-LIKE D1 (OsCSLD1) [119]. Wang et al. [120] identi-
fied the QTL qRL7 (657-kb interval on chromosome 7), and Qu et al. [121] identified qRL8
that regulates root length at later stages of plant growth, specifically the heading stage.
Besides root length, upland cultivars with a thicker coarse root system and with high root
length density respond better to water stress [122]. Root thickness determines the water
uptake, nutrient acquisition, and penetration of the roots [91,123]. QTL qRT9 that has a
function regulating both root length and root thickness has been identified. It encodes
a basic helix–loop–helix (bHLH) transcription factor, OsbHLH120. Its level of expression
is in turn steered by drought-response phytochemicals such as salt, polyethylene glycol,
and ABA [124]. In addition to these traits, increased root hair can increase the surface
area and enhance moisture and nutrient acquisition from the finest soil pores that remain
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inaccessible to the root apex [125]. Like root length and thickness, root hair is also linked to
a bHLH transcription factor encoded by O. sativa ROOT HAIRLESS 1 (OsRHL1) controlling
cell epidermal transformation [126].

Besides water stress, in optimal growth conditions, root hair growth is triggered by
several factors that include cytoskeleton restructuring, cell wall loosening (as also seen
for root elongation), calcium ion concentration, pH of the cells, and auxin and ROS levels
(accumulated under stress) [127]. Two SNPs, S5_15470847 and S5_15470880, identified for
root length and root density associated with the genes OsIPT3 [128] and OsEXPA3 [129]
were also found to be active in the regulation of the length of vascular bundle cells in the
root, length of the primary root, and its density. As mentioned earlier, expansin genes play
an important role in most root traits. It is obvious that whole root system architectural
development is an interrelated and correlated manner of growth. Root length-controlling
expansin genes OsEXPA17, OsEXPA30, and OsEXPB5 all conserved domains for root hair-
specific elements (RHEs) tightly linked with root hair initiation [130,131]. Reduced or short
root hair has been observed in mutants of O. sativa SEC14-NODULIN DOMAIN PROTEIN
(OsSNDP1) that encodes a phosphatidylinositol transfer protein [132] and short root hair 2
(srh2) mutant, with a mutation in the XYLOGLUCAN XYLOSYLTRANSFERASE 1 (OsXXT1)
gene [133]. Root pulling resistance, a trait that has a high positive correlation with root
length, root thickness, branching number, and dry mass in rice [134], is also an indication
of drought tolerance (possessing a larger root system).

Different intensities of drought induce different responses in plasticity. Plasticity
in the roots can range from root length density [135,136] to lateral root length and/or
branching [137–139], influencing a variety of traits such as shoot biomass, water uptake, and
photosynthesis under moisture limited condition in rice. The plasticity in the development
of arenchymatous cells and lateral root growth [140] resulted in higher grain yield [141] as
well as shoot dry matter [142] when the plants were subjected to transient drought stress.
Two loci (id1023892 and id1024972) tracked to a region near qDTY1.1, a major-effect drought-
yield-related QTL on chromosome 1, provided plastic responses to drought by regulating
root and shoot growth [143] and also enhanced the level of deep roots in the OryzaSNP
panel [144]. Apart from the above, the recent reports on the role of aerenchyma tissue that
aids tolerance to moisture stress. The formation of lysogenous cortical aerenchyma cells
helps the plant to reduce the metabolic cost and allowing for greater water uptake from
soil [145]. As DSR conditions are mostly aerobic systems, developing a drought-tolerant
root architecture expressing the required genes and morphological traits is essential.

4.3. Cold Stress and Salt Stress during Germination

Low temperatures at the seedling stage can diminish yield by inhibiting germination
and photosynthesis, retard growth, and slow down different biochemical pathways [146].
Apart from this, low-temperature stress can lead to the accumulation of cell membrane-
damaging entities such as reactive oxygen species (ROS) (singlet oxygen, superoxide
anions, hydrogen peroxide, etc.) leading to electrolyte leakage and lipid peroxidation [147].
Cold stress most commonly decreases the hydraulic conductivity of the roots, thereby
decreasing the supply of nutrients to the shoots [148]. During cold stress, a multifold
increase is seen in root aquaporin gene expression (OsPIP2.5) as a result of a shoot-to-root
signal [149]. There seems to be a relationship between decreasing hydraulic conductivity
and increasing aquaporin activity of roots under cold stress, especially in rice [150]. Several
aquaporins belonging to intrinsic protein families have been reported to regulate hydraulic
conductivity in cold stress [151], and that needs to be exploited further.

The problem of salinity or salt stress has been increasing gradually, resulting mostly
from faulty agricultural practices (frequent light irrigation, higher use of fertilizers such as
muriate of potash and ammonium sulphate and summer fallowing) [152–154]. The damage
caused by salt stress starts right from seed germination; lower water uptake, decreased rate
of photosynthesis, and consequently oxidative stress [155], which is ultimately responsible
for decreased growth. Similar to cold stress, plants under salt stress undergo oxidative stress
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and produce peroxidases leading to cell wall stiffening [156]. A general study for screening
tolerant genotypes for these stresses (both cold and salt stress) would be to look for plants
producing oxygen-scavenging elements [157], detoxifying ROS, and methylglyoxal (MG).
Another detrimental effect of a saline soil environment is that the higher concentration of
sodium ions (Na+) near the root zone antagonistically inhibits potassium ion (K+) uptake
by the roots [158]. As K+ is responsible for maintaining membrane potential and turgor
pressure inside cells, its absence leads to impaired cellular activity. Besides K+, a decrease in
the uptake of P and Zn occurs. Additionally, because of an increased accumulation of Na+

and Cl−inside the cell, several biochemical processes such as the synthesis of biomolecules
such as proteins and their enzymatic activities are deregulated [159]. Several genes have
been reported for salt tolerance with respect to shoot growth, but little work has been
reported on the root front. However, from the root perspective, the desirable trait would
be to form a hydrophobic barrier; for instance, suberin lamellae (SL) and Casparian bands
(CBs) are hydrophobic barriers in roots that block the apoplastic leakage of water and ions
into the xylem in various plants [160].

5. RSA: Vegetative to Reproductive Stage

The seedling stage is delimited by the appearance of the first tiller and then the
vegetative growth stage starts. When the plant reaches the vegetative stage, ground cover
occurs faster due to EVV, and this lessens soil evaporation and weed growth and accelerates
root uptake of soil water and nutrients. In terms of higher acquisition of nutrients and
water, the roots at this stage should preferably be deep. This can increase uptake from
deeper soil layers (as topsoil and subsoil layers must have already been exhausted by now)
and help overcome drought or water stress at the later stages of plant growth. It was seen
that premature leaf senescence occurred due to lower root length and root number, which
made N availability limited in DSR conditions [161]. Generally, under DSR conditions, the
roots are shallow, but, if this trait is improved, then lodging can be controlled. During the
grain-filling stage, N application can lead to an increase in root length and root area. This
enhancement can maintain active root activity for a more extended period. Consequently,
leaf senescence can be delayed and the active photosynthesis period prolonged, resulting
in higher grain filling [162]. This would also facilitate higher water- and nutrient-use
efficiency. A study using different densities of DSR sowing along with different rates of
N was carried out by Deng et al. [163], who found a significant association between grain
yield and total root length. Additionally, they concluded that high-density sowing of DSR
along with low N application could lead to an improvement in root morphology. This
enhancement in root morphological traits such as root number, length, surface area, and
volume contributes to higher grain yield.

The root length, root number, root density, root thickness, and lateral branching or
lateral roots are important at the later stages of plant growth. A QTL controlling linear
lateral root number, L-LRN (qLLRN-12), on chromosome 12 guided the development of
long-type LR production [140]. NRRI, Cuttack, has used QTLs for higher root length
density (qNR5.1, qRHD1.1) and nodal root (qNR5.1) as donors for transfer of these specific
traits to improve genotypes of dry-DSR [109]. Root volume also has a role for auxin in
it, and a candidate gene (NAL1) regulates both leaf and root growth [164]. This gene is
associated with the QTL qFSR4, which has a role in root volume per tiller, with a 38-kb
segment fine mapped on chromosome 4 [165]. LR regulation and root thickness have
already been reviewed in previous sections. Another important root organ that not many
have focused on is the root tip. According to Robinson et al. [166], continued growth and
production of root tips for mobile resource uptake might be more important than total root
length. Because of suberisation with time and also exposure to dry soil [167], roots tend to
be more apoplastic in nature. As a result, roots have a decrease in water uptake. However,
if the root tips are regenerated or remain unsuberised, then this loss in water uptake can
be compensated to some extent [168]. Both auxins (OsIAA23, OsARF16, OsWOX11, and
OsWOX12) and cytokinin play a role in root cap regeneration [133]. Considering water
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and nutrient translocation, xylem and stele structures are also more important than root
thickness [169]. STELE TRANSVERSAL AREA 1 (STA1), a QTL on chromosome 9 (mapped
in the vicinity of DRO1), controls the stele transversal area [169,170].

During the later stages of plant growth, demand for nutrient uptake increases vis-à-
vis the seedling and early vegetative stage. A total of 59–84% of the nutrient uptake by
the rice plant takes place from the tillering stage to the anthesis stage [171]. Therefore,
pressure on individual roots is high for the uptake of nutrients. Thus, there is a need for
the development of new roots to decrease nutrient demand per unit volume of roots. This
specifically is required at the flowering and grain-filling stage to facilitate higher grain
filling. Lodging tolerance should be another major objective when breeding DSR. It is
determined by various contributing traits such as medium plant height with large stem
diameter and thick stem walls with high lignin content [172,173]. Root lodging-tolerant
genotypes exhibited higher root volume and increased anchorage at the full heading stage
than susceptible ones [174]. Additionally, strengthening the culm and lower positioning
of panicles can aid in decreasing the risks of root lodging. The QTL STRONG CULM3
(SCM3) develops culm strength in rice [175]. QTLs for higher nutrient uptake with lodging
tolerance (qLDG3.1, qLDG4.1) are already reported [69], and a multi-QTL stacking program is
being undertaken at NRRI, Cuttack, to incorporate them in breeding DSR varieties [109]. In
addition, the accumulation of starch enhances the culm’s flexibility [176] and higher silicon
deposition provides strength against lodging [177]. Kashiwagi and Ishimaru reported a
locus (pr15) that enhanced the weight of the lower stem, thus displaying tolerance against
lodging [178]. However, lodging can be effectively controlled only when the plant has
a wider root plate. Root plate refers to the section where maximum stiff portions of the
root terminate [179]. Failure in anchorage or loss in anchorage strength results in plant
lodging [180]. This is in turn dependent on the plant’s root plate spread and structural
rooting depth. The genetic improvement of these traits would assist in breeding cultivars
tolerant of root lodging [181]. Long et al. [182] have reported several QTLs for traits that
aid in tolerance of lodging. They have identified a major QTL, qLR1 (~80 kb), that increases
stem length diameter and breaking strength, qLR8 (~120 kb) that improves breaking
strength, and many others using sequencing through SNP markers. Sandhu et al. [183]
have identified QTLs for traits contributing toward lodging tolerance: stem diameter
(187 Mb) and bending strength (0.038 kb) on chromosome 3 and culm diameter (1.3 Mb)
on chromosome 2. A strong association was observed between anchorage strength and
lodging, that is, cultivars that had greater root depth and root plate spread were less prone
to lodging and gave comparatively higher yield [184]. It is noteworthy to mention that
deep sowing in direct-seeded rice has also become a phenomenon wherein it helps the
plant to have better anchorage and imparts lodging tolerance. This would require the
higher expression of mesocotyl and coleoptile elongation genes [78]. At the same time, the
deep setting of seeds also helps in deeper roots and access to soil moisture from zones that
otherwise would be inaccessible by the plant.

The grain-filling stage would require more carbon sources diverted to the grains
from different parts of the plant. Especially in drought conditions, root carbon can act
as a source for grain assimilates [185]. Thus, a higher carbon source accumulation in
the roots could be a desirable trait during the grain-filling stage. Additionally, this stage
requires continuous uptake of nutrients, so longer roots to acquire more N and enhance the
active photosynthesis period of the leaves are more desirable [186]. A significant positive
correlation was seen between the nodal roots, root depth, root hair length, grain yield,
and the amount of nutrients taken up by the plant [31]. Thus, at this growth stage, a
higher nutrient uptake with ample new roots would facilitate proper grain filling without
compromising grain yield. The development of a few new roots can help in meeting the
high nutrient demand in the resource-poor conditions of a DSR system.

In addition to this discussion on root morphologies, a few other root traits need a brief
discussion. Young root tips play a major role in moisture acquisition and are regulated by
different root attributes like root length and root surface area [187]. Thus, new root tips for
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continuous growth may be vital for the uptake of water and nutrients. Another fine organ
in high proximity to the resources available in the rhizosphere is the root hair. Root hairs in-
crease the contact area of roots with soil particles and thereby aid in the uptake of water and
nutrients, and they sense biotic and abiotic stresses [188,189]. However, a few reports also
suggest that root hairs may not have much to contribute toward water uptake, especially
in the case of rice [190]. A decrease in root diameter and increase in specific root length
lead to an increase in root surface area, thereby increasing the hydraulic conductance and
decreasing the apoplastic barrier of the roots [191]. Hydraulic conductivity is influenced
by the diameter of xylem vessels, and it ultimately determines plant productivity under
drought stress. A lower xylem diameter will lead to a reduced hydraulic conductivity
having a minimum risk of cavitation because of more conservative water use in comparison
to that of the plants with higher xylem vessel diameter [192], with some exceptions [193].
Decreasing root xylem diameter through effective breeding strategies will cause a decrease
in hydraulic conductance under sufficient moisture availability. These reports show that
there has been a realization of root traits and their potential to increase moisture and
nutrient uptake. In Australia, wheat varieties were developed with conservative hydraulic
architecture in seminal roots to save soil moisture during critical crop growth stages under
drought. Other root morphological traits influencing resource acquisition are increasing
the number of fine roots and the rate of overall root growth.

6. Biotic Stress in the Form of Weeds

Among the other factors in the dry-DSR system of cultivation, weeds are the most
difficult to control and, even when controlled, are a recurring menace throughout plant life.
This discourages most farmers from adopting the DSR method. Even though herbicide and
weedicide are easily available, the breeder community must focus on looking for an inherent
genetic factor in the crop. Reports exist of efficient allelopathic rice cultivars that secrete a
sufficient amount of allelochemicals to suppress weed growth in the manner of a sui generis
weed management system by the rice plant. AfricaRice researchers designed a rice plant
with favorable competitive traits: a cross-species hybridization between O. glaberrima and
O. sativa was made to achieve the competitive ability of the former and yield quality of the
latter [194]. This not only increased competitiveness but also improved yield in the derived
lines. Mapping populations consisting of RILs have highlighted that the allelopathic nature
in rice is a quantitatively inherited trait [195]. Two rice genotypes; Huagan-3 (commercially
accepted allelopathic variety) and Liaojing-9 (non-allelopathic), were studied for their effect
on paddy weeds Cyperus difformis, Echinochloa crus-galli (barnyardgrass), Eclipta prostrata,
Leptochloa chinesis, and Oryza sativa (weedy rice) [196]. It was seen that inhibition occurred
more at the root level than at the shoot level. There was a significant decrease in total
root length, total root area, maximum root breadth, and maximum root depth of paddy
weeds. Another remarkable achievement was the report from Chung et al. about the
identification of the QTL governing the allelopathic trait [197]. The RILs generated from an
allelopathic line (Sathi), and a non-allelopathic parent (Nong-an) highlighted a 194-kbp
region on chromosome 8 with 31 genes located in the segment. Despite the immense
work on allelopathy and its suppressing effect on weeds, the action taking place below
the ground involving the roots is little understood. Apart from these facts, one important
aspect of allelopathy is toxicity. Toxicity is a dosage response. Allelopathic chemicals can
be as harmful as weedicides to the soil or crop residues if not checked at a threshold level.
Thus, such traits must undergo rigorous scrutiny before introgression and release in plants.
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7. Root Growth and the Role of Phytohormones

Phytohormones activate and regulate most biochemical activities throughout the plant
system. They also have a huge effect on the growth and proliferation of the root system. A
few of the essential functions concerning root traits are covered in the following sections.
Auxin is involved in almost all root trait expressions either directly or indirectly. The
inactive or quiescent center (QC) region of the root apical meristematic zone is maintained
by auxin. As reported by Friml et al. [198], auxin is also responsible for root cap growth.
It was observed that mutant plants with an impaired AUXIN (Aux)/INDOLE-3-ACETIC
ACID (IAA) gene family, OsIAA23, developed damaged root caps, thereby inhibiting root
growth [199]. Auxin also has a key role in radicle development: radicleless (ral1) mutants
were defective in their response to auxin, indicating its role in radicle development [200].
Its role in crown root and lateral root formation has been highlighted in previous sections.
Auxin-cytokinin ratio regulates root morphology: a high ratio favors root growth, whereas
a low value or higher cytokinin level favors shoot growth [201]. Moreover, crown root
development has been found to be controlled by this relation of auxin and cytokinin,
which works antagonistically with each other as observed in the case of cytokinin signaling
gene WUSCHEL-RELATED HOMEBOX GENE 11 (WOX11). The mutant WOX11 shows
a decrease in the number of crown roots [22,87]. YUCCA 1 (OsYUC1) is the key enzyme
in auxin biosynthesis [202], whose overexpression enhances crown root formation [203].
Several PIN-FORMED (PIN) genes, OsPIN10a and OsPIN3a [204,205], OsPIN2 [206], and
OsPID [207], control the auxin efflux regulating polar transport and also help in crown
root development. Mutants linked with auxin-related defects also affect the lateral roots to
some extent, for example, lateral rootless 1 (lrt1), lrt2, auxin-resistant mutant 1 (arm1), and
arm2 [91,92]. Under low rates of nitrogen, the cytokinin signal decreases; as a result, higher
root biomass is achieved [208]. The auxin–cytokinin ratio determines the development
of lateral roots. However, Gao et al. [209] reported cytokinin’s (OsKX4) positive action
in rice root development using transgenics with less than the enzyme’s regular level.
Ethylene primarily inhibits root growth. This hormone either enhances or represses root
growth, depending on its concentration. Mainly during drought stress, its concentration
is regulated and induces different stress responses. Transcription factor OsEIL1 promotes
root elongation, which is also a component in the ethylene signaling pathway [210]. The
mutant of O. sativa ethylene responsive factor 2 (Oserf2) developed shorter roots than the wild
type [211]. Abscisic acid has a significant role under moisture stress as it regulates the
expression of several genes to restrict water loss and at the same time increase water uptake
that enhances root growth. This root growth refers to the formation of lateral roots and root
hairs, root tip swelling, and increasing water permeability [212]. This facilitates the uptake
of water from deeper layers and maintains cell moisture level. A hypothetical illustration
appears in Figure 3 to explain the interactive relationship between the nutrient transporters,
hormonal relation with root types and the various genes controlling the development of
different root types.
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Figure 3. A schematic representation of the root growth zone and types of roots illustrated with necessary genes/QTLs
for the DSR root system and their interaction with soil nutrients. The right side (A) indicates the essential nutrients and
their transporters, and left side (B) indicates the specific root attributed traits along with their regulating genes/QTLs
under the DSR system of rice cultivation, and the main center (C) indicates the hormonal regulation in development of
different types of roots (CRD: Crown root development; SRD: Surface root development; RHE: Root hair elongation; ADR:
Adventitious roots; and T&DR: Thick and deeper roots. Immobile nutrients (surface layer of the soil) Zn, Mn, Fe, and P are
acquired by the crown roots, surface roots, and lateral roots. PSTOL1, qSOR1, and DRO1 help in surface root development,
whereas WOX, CRL1, and NAL genes and OsARM1,2 stimulate crown root and lateral root growth. These roots proliferate
when auxin levels are low in the plant, unlike deep roots that require a higher auxin level. Thick roots are developed with
the help of gene STA1 and when the abscisic acid level is high. Besides Zn and Fe transporters, phytosiderophores (root
exudates) and YSLs play a role in Zn and Fe uptake. AMF colonizes in the roots, enhancing P uptake by the plant along with
the respective transporters. [PS: phytosiderophores; AMF: arbuscular mycorrhizal fungi; OsPT1 and OsPT8: phosphorus
transporters; OsZIP1, OsZIP3, OsZIP4, and OsZIP5: zinc transporters; OsIRT1 and OsIRT2: iron transporters; OsAMT:
nitrogen (ammonium) transporter; OsNRT: nitrogen (nitrate) transporter; YSL: yellow stripe-like protein; TOND1: tolerance
of nitrogen deficiency 1; PSTOL1: phosphorus starvation tolerance 1; qSOR1: soil surface rooting 1; DRO1: deeper rooting
1; WOX: Wuschel-related homeobox gene; CRL1: crown rootless 1; NAL: narrow-leaf; OsARM1,2: armadillo proteins;
STA1: stele transversal area 1; AUX: auxin; CTY: cytokinin; ABA: abscisic acid]. Arrows indicate the increasing/decreasing
concentration of growth hormones and their involvement in root development.
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8. QTL Identification and Introgression of Root Architecture QTLs for DSR Using a
Marker-Assisted Backcross Breeding Approach

Breeding for root architecture has been progressing slowly vis-à-vis breeding for
aboveground plant traits in DSR due to the time-consuming and laborious phenotypic
selection for root traits. Designing RSA suitable to adverse dry conditions can be a solution
to the constraints in DSR. As the environment highly influences root phenotypes, selection
programs must also be accompanied by stability analysis or genotype × environment
(G×E) interaction studies [213]. The importance of genomic regions of QTLs and genes
that are associated with RSA traits were depicted in Figure 4. One of the most common
approaches has been to employ markers for the selection of the desirable genes and QTLs
while screening as well as using introgression. Employing marker-assisted selection (MAS)
procedures for the introgression of QTLs and genes can be an easier way, save time, and
facilitate indirect selection, which can then be followed by phenotypic selection. MAS
is already a widely used molecular technique to support rice breeding programs for the
formation of divergent base populations, construction of genetic maps [214], identification
of QTLs, identification of functional markers [215], as well as genomic selection [37].
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The initial step is always to explore or screen useful genotypes and their concerned
genic regions in a germplasm accession, landrace, or even a wild species for further transfer
in a useful genetic background. After the identification of these potential genes/QTLs
in germplasm or wild resources, if we are able to locate useful rare alleles from an elite
or improved variety using markers (gene-specific/flanking), then the breeding program
becomes much easier. For instance, after the reports published about the Pup1 allele for
P deficiency, a screening program revealed that out of the 96 genotypes (that included
upland cultivars and landraces), 76 genotypes showed the presence of PSTOL1. N22,
Dinoroda, Bowde, Bamawpyan, Tepiboro, Karni, Lalsankari, Surjamukhi, Hazaridhan,
and KalingaIII marked positive for two of the closest flanking markers and two gene-
specific markers for Pup1 [216]. Additionally, the report of the Indian mega-variety Swarna
possessing OsPSTOL (Pup1) eased the process of marker-assisted backcross breeding.
ICAR- Indian Institute of Rice Research, Hyderabad used Swarna as a donor parent to
introgress Improved Samba Mahsuri (loaded with bacterial blight resistance genes) with
the Pup1 candidate gene OsPSTOL [217]. To enhance nitrogen- as well as phosphorus-use
efficiency, a backcross program is currently being carried out in NRRI, Cuttack. Researchers
have used nitrogen-use-efficient CR Dhan 310 as the recurrent parent and low-P-tolerant
CR Dhan 801 as the donor. This program has so far identified a genotype of the BC1F6
generation to be positive for PSTOL1, DTY 1.1, DTY 3.1, and Sub1 in the background of
nitrogen-use-efficient CR Dhan 310 [218]. A multi-stacking program was used to load
the popular cultivar Lalat MAS (xa5, xa13, and Xa21) with eight different QTLs that
included DTY1.1, DTY 2.1, DTY 3.1, Sub1, and PSTOL1. After genotyping the lines with
SNP and following MAS, line number 48 of the BC3F2 generation had all the desired
QTLs except qDTY 3.1 [218]. In a program for screening the deep rooting QTLs Dro1 and
Dro2 in 348 germplasm lines selected based on their root angle expression, 11 genotypes
(Dular, Tepiboro, Surjamukhi, Bamawpyan, N22, Dinorado, Karni, Kusuma, Bowdel,
Lalsankari, and Laxmikajal) have been reported to be positive for both QTLs [219]. Arai-
Sanoh et al. [220] also observed higher grain yield with enhanced nitrogen uptake in Dro1-
NIL lines than in IR64 owing to the deeper rooting. Successful examples of rice cultivars
developed through MABC include “Birsa Vikas Dhan 111” with QTLs from the donor
Azucena that expressed longer roots, significant improvement in grain yield suitable for
upland aerobic conditions [122], and salinity tolerance, and Pusa Basmati 1121 pyramided
with the Saltol QTL [221]. Selvi et al. [222] have pyramided lines with maximum root length
QTLs (qRT11-7 × qRT18-1 + 7-32) suitable for resource-limited environments. MAS has also
been used for selecting novel or candidate alleles responsible for aerobic adaptation under
reproductive-stage drought stress [223–226]. Three major consistent-effect QTLs (qDTY1.1,
qDTY1.3, and qDTY8.1) for grain yield and reproductive-stage drought stress were reported
by Catolos et al. [227] from the drought-tolerant donor Dular. Considering the drought
stress conditions, QTLs associated with grain yield (qDTY2.2, qDTY3.1, and qDTY12.1) were
introgressed into the line MR219, a popular Malaysian cultivar [228]. With an upland rice
cultivar as a donor, Li et al. [227] used a doubled haploid population to identify QTLs for
root number, length, thickness, and whole biomass after testing at three different locations.
Kitomi et al. [115] identified putative QTLs for root length on chromosomes 2, 6, and 8. Of
these, the significant ones were QRO1 (a 1.7-Mb region on chromosome 2) and QRO2 (an
844-kb region on chromosome 6). Both of these QTLs may be promising genetic resources
in rice for improving root system architecture. A novel QTL was reported on chromosome
6, qRL6.1, which governed root length [229]. Two genomic loci (loci id1024972 and loci
id4002562) from the mapping populations Aus276 and KaliAus have been identified as
hotspots for root architectural plasticity, and locus id7001156 showed a correlation of root
architectural plasticity, and grain yield with the same SNP marker [230]. These reports
offer encouraging results, and they should be exploited in designing a multi-genic QTL
research program to bring all the desirable alleles of the concerned traits for DSR under
one genetic background.
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9. Hybrid Development for the Direct-Seeded Rice System by Altering RSA

Breeding and deploying climate-smart hybrids resilient to abiotic stress can be an
answer to the prevailing global climatic alterations [231] and also supplement food security.
Hybrids usually have a higher seeding rate and nutrient and water demand, which deem
them unfit for direct-seeded conditions. However, when a vigorous hybrid possessing an
ideal RSA to enhance uptake of nutrients and moisture is adapted to dry DSR conditions,
this would greatly improve its performance across environments. In a sense, when we
supplement the aboveground vigor of a hybrid with underground root traits like long
thick roots, larger root plate, and optimum surface, as well as deep roots along with the
discussed genes and transporters, then we can extend the use of hybrids beyond their
traditional areas of cultivation.

At present, the cultivars bred for TPR conditions are being used in DSR conditions, but
they often fail to reach the potential yield of the dry direct-seeded system of cultivation [13].
This may be attributed to the adaptability of the TPR varieties to the high moisture content
in the soil and readily available forms of nutrients (such as ammonium) in contrast to the
DSR system, where moisture is the major lacuna. Thus, designing a hybrid development
program to produce cultivars better suited to the DSR system should be the focus at
this time. The first step would be developing parents with specific traits that suit DSR
cultivation that can be employed in the hybrid production system. When we dissect the
traits required for hybrid development, the most important is water requirement or uptake.
Here, the solution is to exploit the optimum from the minimum resources available. This
would require all the root traits adapted to water stress, including longer root length
(DRO1), root angle spread at 45 degrees, well-branched fine roots, and an ample amount of
root hairs. Deeper roots can help in moisture uptake and improve grain yield and NUE, and
impart lodging tolerance under the DSR system of cultivation [163]. This review has already
shed light on the genes regulating these traits, and their fixation in inbreds or parental
lines should be a prerequisite for the DSR hybrid chain. The next equally important need
of a hybrid crop is an adequate amount of nutrient supply. Anand et al. [232] evaluated
hybrids for DSR in the Thungabhadra project command area of India. They suggested
that, with a 25% higher rate of recommended fertilizer, hybrid KRH-4 performed well. As
the DSR system hinders a continuous nutrient supply and is certainly not a high-input
system of cultivation, we should look for the scope to exploit the available resources to
the maximum. Traits that need attention at this point are well-spread surface roots (for
immobile nutrients such as P, Fe, and Zn at the early growth stages), deeper roots at the
later growth stage (for nitrogen uptake), higher carbon source accumulation in the roots
(for facilitating grain filling), and new root development in the later part of growth to meet
nutrient demand by the plant. Sowing rates also represent a conflict in the practice of using
hybrid seeds in DSR. According to findings by Sun et al. [233], the grain yield performance
of hybrids was not affected when the seed rate was changed from 240/m2 to 60/m2 in
the central Chinese region. On the contrary, the same study reported a decrease in grain
yield with a decrease in seed rate in the inbreds. The hybrids with higher tillering capacity
and spikelets per panicle might have compensated for the low sowing rate. Additionally,
findings supported the superiority of hybrids over inbreds at a low seeding rate (80/m2); it
was also observed that N accumulation and dry matter accumulation were higher in the
hybrids [234]. Thus, the study suggests that N uptake is comparatively higher in hybrids
under low seeding rates, and they are efficient in allocating nutrients to the reproductive
organs. Along with this vigor, both the seedling and post-vegetative stages are important
for yielding a hybrid’s maximum potential. Different markers for these traits have already
been reported; for instance, OsPupK46-2, a gene identified closely associated with the
Pup1 locus in Kasalath, can be used as a marker [235], and similarly, DRO1 is flanked by
markers RM24393 and RM7424 (reference cultivar Nipponbare) [101]. These markers can
be employed in marker-assisted selection in the parents that are to be used in rice hybrid
seed production for DSR. However, not much effort has been made in this direction. In
an attempt to test hybrids under DSR conditions, the lowland hybrid Magat (IR64616H)
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was grown under DSR and it yielded 5.3 t/ha [236]. To increase yield, nutrient, moisture
uptake, and stability should be tested and bred for aerobic conditions before hybrids are
released for cultivation.

10. Transgenic Breeding for Root System Architecture

Transgenic breeding so far has been least explored for root traits and their improve-
ment. This may be because of the lack of understanding of the genes involved and because
of the pleiotropic effects of the concerned traits [237]. Most of the progress in transgenics
has been made in the receptor kinase PSTOL1, overexpression of transcription factors
OsMYB2 and OsNAC5/9, root architecture associated gene (OsRAA1), expansin gene Os-
EXPA8, and deep root system gene DRO1. Studies have also been carried out on alteration
of RSA, which increases N-, P-, and water-use efficiency (WUE), ultimately increasing grain
yield [38]. The introgression of the deep rooting allele DRO1, following both traditional
and transgenic approaches, confirmed the role of a steep deep root system in increasing
yield under drought. Studies on OsPT1 expression using a constitutive promoter led to an
increase in P content in tissues as compared to the wild type, but these plants were shorter
and had a higher tiller number [238].

Apart from the earlier discussed root-related QTLs, phytohormones also play a role
in regulating root genetic architecture. Auxin regulates the crown roots and seminal
root growth, and this information was further supplemented by studies using rice mi-
croRNA (miR393) that hampers normal seminal and crown root growth [237]. This was
due to the negative regulation of the Arabidopsis auxin receptor homolog gene TRANSPORT
INHIBITOR RESPONSE 1 (TIR1) and AUXIN SIGNALING F-BOX 2 (AFB2), OsTIR1, and Os-
AFB2 [237]. Auxin activity is regulated with the help of Aux/IAA and AUXIN RESPONSE
FACTOR (ARF) [239]. Mutant transgenics with a loss of function in the gene OsIAA3
resulted in decreased crown root number. This gene was involved in the degradation-
related domain, in which a conserved amino acid residue was targeted [240]. Similar
to these reports, mutant studies on crl1/adventitious rootless1 (arl1) also revealed their
role in crown root growth: the wild-type CRL1/ARL1 gene encodes a LATERAL ORGAN
BOUNDARIES DOMAIN (LBD)/ASYMMETRIC LEAVES2-LIKE (ASL) transcription factor
acting downstream of the aforementioned Aux/IAA- and ARF-mediated pathway [88,241].
The same mechanism (involving Aux/IAA and ARF) is also seen in the case of CRL6 en-
coding a chromodomain helicase DNA-binding (CHD) protein influencing crown root
development, wherein most of the Aux/IAA genes are downregulated [42]. Even if the
candidate gene for the mutant effect of crl2 has not been identified, its relation to auxin
signaling cannot be ruled out [203]. Besides auxin studies, cytokinin studies have been
carried out, which shed light on the role of cytokinin in crown root development. A
dominant mutant, root enhancer1 (ren1-D), produces a higher number of crown roots due
to the expression of a CYTOKININ OXIDASE/DEHYDROGENASE (CKX) family gene,
OsCKX4 [209]. Interestingly, cytokinin also inhibits root length; in such cases, CKX’s en-
zymes can be helpful in the irreversible degradation process of cytokinin [242]. Similarly,
the gene METALLOTHIONEIN 2b (OsMT2b) also regulated crown root and lateral root
development by controlling rice plants’ cytokinin levels [243]. It is noteworthy to mention
that cytokinin signaling affects crown root formation in plants. Further analysis has demon-
strated that, along with auxin and cytokinin, ethylene-responsive factor (ERF) also regulates
root structure [244]. Expression studies on O. sativa ROOT ARCHITECTURE ASSOCIATED
1 (OsRAA1) showed enhanced crown root and lateral root numbers [245]. This gene is
involved in cell cycle regulation; it is an anaphase-promoting cyclosome complex at the
transition checkpoint between metaphase and anaphase [246]. CULLIN-ASSOCIATED
AND NEDDYLATIONDISSOCIATED 1 (OsCAND1), a cell division-related gene regulating
the emergence of crown roots, has been found to be a SCFTIR1 E3 ubiquitin ligase, carrying
out the ubiquitination of auxin-associated proteins, thereby hampering root growth in
Arabidopsis thaliana [247,248]. T-DNA insertion mutation experiments with the gene AUXIN
RESISTANT 1 (OsAUX1) exhibited a decrease in lateral root number and this was found to
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be related to the AUX1/LIKE AUX 1 (LAX) gene family [244]. The altered expression of
OsPIN1 and OsPIN2, relating to endogenous levels of IAA, produced many fewer lateral
roots, as seen in the double mutants nal2 and nal3 [90]. The underlying genes were found to
be OsWOX3A/OsNARROW SHEATH (OsNS) [90]. Transgenic approaches combined with
biotechnological tools have led to an increased understanding of the underlying QTLs and
mechanisms. There is a further need to use such technology to develop superior cultivars
with ideal RSA genes.

11. Modeling DSR with Root-Specific Traits

The development of varieties for DSR conditions can be accelerated by selecting
suitable traits associated with root traits, such as seedling emergence, early vegetative
vigor, nutrient uptake, nodal root number, root hair length, and density under rainfed
conditions [70]. Even though several QTLs have been identified for RSA in rice, an ideal root
model for DSR is still lacking. No complete information exists about the ideal root spreading
angle and type of roots needed for different nutrient uptake, whether deep rooting alone is
enough to combat drought stress, early root vigor, and root structure for lodging tolerance.
A suggestive model for ideal RSA has been proposed by Kitomi et al., [115], but no such
concepts have been put forward in relation to rice RSA in the dry or aerobic system of rice
cultivation. Therefore, we amalgamate all the available information from diverse research
works on root traits to develop and propose a root model for DSR. The desirable traits and
the concerned genes/transporters expressed in the roots and that have shown promising
effects (cited in previous sections) are included in our model. The foremost trait is early
root vigor, referring to a root system with all the necessary root traits required by the plant
at an early stage to provide the shoot with the optimum level of nutrients and moisture
along with a uniform stand. The gene PSTOL1, an enhancer of early root growth, can
facilitate this. QTLs such as qEUE11.1 and qEVV9.1 can also aid in the course. The next
is the seedling crown root and nodal roots: a higher number of crown roots, as well as
nodal roots, are required to uptake immobile soil nutrients such as P, Fe, and Zn from
topsoil. The QTL qSOR1 would also produce more surface rooting. On the nutrient uptake
front, high-affinity P transporters are required as early as 2 DAG, and OsPT1 and OsPT8
genes can aid in P uptake from 2 to 3 DAG. Unlike for other nutrients, N requirement
and uptake continue throughout the crop growth stages, so nitrate transporters active
during the entire life cycle are more desirable. Nitrogen transporters such as OsNPF7.2
and OsAMT1;3 can be used for nitrate and ammonium, respectively. Nitrogen uptake
in the later stages of plant growth would require deep roots, and candidate gene DRO1
would satisfy the need for both deep roots and exploiting root angles to generate surface
roots. A Fe transporter/Fe deficiency-tolerant gene needs to be identified and introgressed.
Low xylem diameter for lower hydraulic conductivity with more conservative water-use
efficiency and the maximum number of roots should be within a 45o spreading angle.
Inverted V-shaped roots are suitable for a DSR deep-dimorphic root system. This new
root development at the post-anthesis stage can also aid in proper supply to cater to the
high nutrient demand by the growing reproductive organs. During this stage, grain filling
would rely on carbon sources present in the vegetative parts of the plant, and thus a higher
amount of carbon in the roots is desirable. High root density with fine root hairs can aid
in the uptake of moisture from the finest of the pores. The genes and QTLs involved in
these post-heading vigor traits are yet to be identified. Higher root number and density
would also enhance the root plate, thus imparting lodging tolerance. The QTLs qLDG3.1
and qLDG4.1 identified in relation to this trait should also be exploited. Already, QTL
information has been confirmed for most of the abovementioned traits. Therefore, the
further need is pyramiding desirable QTLs together into a required genotype to develop
a range of superior cultivars with suitable root architecture for DSR to meet future rice
demand under the scenario of climate change.
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12. Conclusions and Future Perspectives

To meet food security and future rice demand, especially under changing climatic con-
ditions, there is an urgent need for an environmentally sustainable strategy. For this, DSR
is the best alternative instead of conventional puddled transplanted rice because the former
is advantageous in water-saving and labor-saving. Among the various agro-morphological
traits, RSA traits are the major component traits in the DSR ecosystem to boost productivity.
To achieve this target, it is crucial to understand the genetic and molecular mechanisms
that govern root system architecture in rice. Using this information for identifying RSA
traits that best complement the aboveground plant architecture can enhance productiv-
ity under DSR conditions. In addition, understanding the hormonal cross-talk (mainly
auxin/cytokinin) regulations and signaling pathway coordination between the root and
shoot system is essential for increasing efficiency in transport mechanisms. Root geome-
try and architectural changes in response to environmental challenges determine overall
productivity, performance, and fitness. The advances in molecular breeding technologies
such as marker-assisted selection, genome sequencing, CRISPR/Cas-9-mediated genome
editing, and TILLING approaches provide an opportunity to dissect and identify the novel
QTLs and genes/alleles related to RSA traits in the DSR ecosystem. The MAS strategy
is the best and most cost-effective technique over conventional breeding approaches by
enhancing the precision and efficiency of DSR improvement through the introgression of
root-associated QTLs. Innovative high-throughput root phenotyping platforms provide
a new step toward filling the gap between field and laboratory analysis of root system
architecture to correlate whole-plant growth with yield. These techniques will help achieve
a deeper understanding of specific root traits, their recipient and donor parents, and genetic
markers for improving yield through the development of root traits. The imperative root
traits such as the number of crown roots and adventitious roots, root length, and root
spreading angle are fundamental for incorporating into future breeding lines to enhance
water and nutrient acquisition and at the same time, maintain yield. Therefore, this requires
careful introgression of significant QTLs into desirable genotypes to increase yield with
efficient water and nutrient use under stressful environments. These root-related traits
with high-throughput techniques will support developing high-yielding, resource-efficient
DSR varieties with wider adaptability.
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