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ABSTRACT16

T cell therapies, such as chimeric antigen receptor (CAR) T cells and T cell receptor (TCR) T cells, are a growing class of
anti-cancer treatments. However, expansion to novel indications and beyond last-line treatment requires engineering cells’
dynamic population behaviors. Here we develop the tools for cellular behavior analysis of T cells from live-cell imaging,
a common and inexpensive experimental setup used to evaluate engineered T cells. We first develop a state-of-the-art
segmentation and tracking pipeline, Caliban, based on human-in-the-loop deep learning. We then build the Occident pipeline
to collect a catalog of phenotypes that characterize cell populations, morphology, movement, and interactions in co-cultures of
modified T cells and antigen-presenting tumor cells. We use Caliban and Occident to interrogate how interactions between
T cells and cancer cells differ when beneficial knock-outs of RASA2 and CUL5 are introduced into TCR T cells. We apply
spatiotemporal models to quantify T cell recruitment and proliferation after interactions with cancer cells. We discover that,
compared to a safe harbor knockout control, RASA2 knockout T cells have longer interaction times with cancer cells leading to
greater T cell activation and killing efficacy, while CUL5 knockout T cells have increased proliferation rates leading to greater
numbers of T cells for hunting. Together, segmentation and tracking from Caliban and phenotype quantification from Occident
enable cellular behavior analysis to better engineer T cell therapies for improved cancer treatment.

17

Introduction18

Chimeric antigen receptor (CAR) T cells are a groundbreaking therapy for haemotological cancers, and T cell receptor19

(TCR)-transgenic T cells are beginning to be used to treat solid tumors1, 2. These therapies currently use ex vivo transduction20

and expansion of a patient’s T cells to express surface proteins that recognize cancerous cells and activate T cells, boosting21

the immune system’s anti-cancer response3. CAR T cells are now standard treatment for a subset of B cell leukemias and22

lymphomas, particularly those that return after traditional chemotherapy, where few treatment options previously existed; TCR23

T cell treatments are now available for metastatic synovial sarcoma2. Clinicians are optimistic about moving these engineered T24

cell therapies up from a last-line option to an alternative for chemotherapy or radiation. The antigen-specificity of CAR T and25

related treatments should have fewer off-target effects than traditional cancer therapies and allow tuning to surface markers26

that target a wide variety of cancer cells with high precision. However, challenges remain in engineering both novel T cell27

therapies for new indications and making current T cell therapies safer for general use. For example, CAR T therapy today28

can have severe side effects such as cytokine release syndrome (CRS)4, 5, a dysregulated immune response that can cause29

marked toxicity. Expanded use to solid tumors will also require overcoming the complex spatial tumor microenvironment that30

suppresses immune activity physically and chemically1, 6.31

Genetic editing is a promising approach to engineering novel immune cancer therapies that may overcome these chal-32

lenges7–11. The recent development of a suite of CRISPR-Cas based editing tools allows tunable knockouts, knockins,33

inhibitions, targeted mutations, and epigenetic alterations of the genes in a T cell, providing unprecedented opportunities34

to control T cell functions in a tunable manner. High-throughput screening protocols have uncovered genetic modifications35
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Figure 1. Live-cell imaging serves as a platform for cellular behavior analysis. (a) Traditional analysis of immunotherapy
and tumor co-cultures monitors the fluorescence of a cancer nuclear marker over time to quantify killing rates, missing dynamic
behaviors of T cells and tumor cells visible in brightfield images. (b) With novel machine learning methods for segmentation,
tracking, and spatiotemporal modeling, brightfield images can be used to phenotype cellular behavior, particularly interaction
dynamics between T cells and cancer cells.
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that show beneficial effects on T cell anti-cancer behavior in terms of proliferation, molecular signaling, and mouse model36

efficacy7, 12–14. For example, ablation of RASA2, a gene that codes for a signaling checkpoint in human T cells, sensitizes T37

cells to antigen-stimulation, even in the presence of various immunosuppressive challenges, and makes T cells more resilient to38

repetitive antigen stimulation13. Ablation of CUL5 in T cells, another negative regulator of T cell signaling via the Cullin-539

complex, also improved immune inhibition of cancer growth in prior studies7, 8. These knockouts are two of the many candidate40

genetic perturbations identified by single-phenotype screens, including cancer cell proliferation or cytokine assays. However,41

the translation of genetic perturbations identified by single-phenotype screens to effective in vivo cancer cell killing in mice and42

humans is often poor. This may be due to the narrow readouts most assays provide, focusing on single measurements that are43

not representative of the complex spatiotemporal group dynamics and behaviors of T cells and T cell interactions with cancer44

cells.45

Engineering effective cell therapies that translate from bench to bedside will require cellular behavioral analyses to46

characterize the complex dynamics of in vivo systems. Similar to studies of the response of individual mice15–17 or populations47

of animals18–20 to various stimuli, interrogating the behavioral responses of individual and populations of cells under conditions48

such as genetic modifications unlocks a deeper understanding of the multiscale biology at play. Comprehensive cellular49

behavioral analyses will require data collection on populations of cells across space and time, and the development of associated50

computational and statistical techniques to interrogate such data. The tools and techniques to begin such work, however, are51

already available.52

Unlike the static, single time-point readouts from single-cell RNA-seq or FISH-based spatial readouts, live-cell imaging53

holds the potential to capture these complex behaviors across time and space21. Brightfield and fluorescent imaging is already54

a ubiquitous method to capture T cell efficacy through single-phenotype analyses. But these data also hold the potential for55

measuring more complex behavioral phenotypes. Live-cell imaging of fluorescence-labeled T cells profiled serial killing22–24
56

and cellular cooperation25 during treatment, among other complex phenotypes21. Novel three-dimensional imaging systems57

have served as the basis for engineering T cell response to cancerous organoids24 or modulating T cell velocity to infiltrate solid58

tumors26. Nevertheless, three-dimensional imaging is expensive and inaccessible for many studies, while fluorescently-labeled59

T cell lines are difficult to create, hard to generalize across T cell subpopulations, and can alter T cell behavior, limiting accurate60

and scalable behavioral phenotyping.61

Imaging a two-dimensional plane with only fluorescent-tagged cancer nuclei is a cheaper alternative that is commonly62

used in T cell engineering12, 13 (Figure 1a). T cells with a variety of modifications can be easily and scalably co-cultured with63

antigen-expressing cancer cells to understand how each modification affects cancer cell killing. The total fluorescence from a64

cancer nuclear marker over time is the single phenotype used to summarize the anti-cancer effect of a modified T cell. However,65

an enormous amount of biologically important and actionable information about the modified T cells and their interaction66

with cancer cells is lost in this simple analysis. Observation of brightfield videos shows a multitude of T cell and cancer cells67

behaviors such as interactions, aggregation, swarming, proliferation, cell death, and recruitment that goes beyond the total68

fluorescence coverage of cancer cells. Dynamics occur between and among cell populations, including but not limited to T cell69

activation as they bind to tumor cells, T cell recruitment of unbound T cells, and cancer cell aggregation as they die or try to70

evade the pack hunting behavior of the T cells. Cellular behavior analysis can capture dynamics such as population growth,71

cell movement, morphological changes upon interaction, and activation-induced recruitment and proliferation (Figure 1b).72

Engineering optimal and targeted T cell therapies will require an understanding and a direct quantification of these dynamics to73

overcome the multi-cellular nature of challenges such as mitigating cytokine release syndrome and successfully breaching74

tumor immune microenvironments.75

Modern machine learning methods offer a compelling path to general solutions for cellular behavior analyses from imaging76

data. High-quality cellular tracking, identifying the same cell across different time points, is particularly critical to establishing77

the temporal aspects of cell behavior. Progress in deep learning solutions to cell tracking has been limited due to a lack of78

similar data resources and methodology for dynamic data. Existing datasets are limited in their scope and scale27–34, whereas79

simulated datasets have not yet proven capable of creating high-performing models27, 35, 36. Further, existing datasets are80

limited in the resolution of their labels (e.g., point labels versus pixel-level segmentation labels), trajectory length (the number81

of frames over which a cell is tracked), and the number of mitotic events. These limitations are understandable, given the82

time-consuming nature of labeling dynamic movies. Not only must each cell be segmented in a temporally consistent way,83

but lineage information must also be captured by tracking cells over time and labeling cell division events. Existing labeling84

methodology that has proven scalable for static images has yet to be extended at scale to these dynamic datasets37.85

In this work, we develop and demonstrate the feasibility and benefits of cellular behavior analysis. We first develop the86

Caliban pipeline, which enables rapid and accurate segmentation, tracking, and lineage construction of nuclear live-cell imaging87

data with no manual parameter tuning. We combined a human-in-the-loop approach to image labeling38, adapted to dynamic88

imaging data, a novel deep learning algorithm for cell tracking, and new benchmarks for cell tracking to create a new labeled89

reference dataset, DynamicNuclearNet, for cell tracking. We then develop the Occident pipeline for cellular behavior analysis90
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given cell segmentation and tracking. We apply Occident to co-cultures of TCR T cells and antigen-presenting cancer cells. We91

extract a catalogue of phenotypes from inexpensive 2D live-cell imaging using Sartorious Incucyte with a brightfield phase92

channel and red fluorescent channel marking cancer cell nuclei. We demonstrate the pipeline on live-cell imaging data, imaged93

every four minutes, of three TCR T cell lines - a population of safe harbor control knockout (SH KO) of AAVS1, a population94

with RASA2 knockout (RASA2 KO), and a population with CUL5 knockout (CUL5 KO) - co-cultured with CD19-expressing95

A375 RFP+ cancer cells. We identify time-dependent morphological and speed changes across perturbations that quantify T cell96

activity and function. We use cell tracking to identify interactions between cancer cells and T cells and report how morphology97

and motility changes after intercellular interactions. Finally, we use interpretable spatiotemporal models to disaggregate T98

cell recruitment and proliferation in response to antigen activation. This work serves as a major step towards cellular behavior99

analysis to deeply phenotype T cells and cancer cells, which can be scaled to larger genetic screens to engineer immunotherapies100

for improved therapeutic efficacy and broad deployment.101

Results102

We first describe the development of Caliban as a state-of-the-art segmentation and tracking tool for cellular images. Trained on103

a new DynamicNuclearNet dataset, Caliban outperforms benchmark models across segmentation and tracking methods. We104

then describe the application of Occident to perform cellular behavior analysis. We apply Occident to live-cell imaging of105

co-cultures of cancer cells and TCR T cells with RASA2 knockout (RASA2 KO), CUL5 knockout (CUL5 KO), and a control106

safe harbor AAVS1 knockout (SH KO). RASA2 encodes the T cell signaling checkpoint RAS GTPase-activating protein, while107

CUL5 is a cell growth and proliferation regulator in the Cullin-RING ligase 5 multi-protein complex involved in cytokine108

signaling8. Built on Caliban’s segmentation and tracking, Occident quantifies a catalog of phenotypes for both cancer and T109

cells that allow comparisons of the effects of different T cell genetic modifications. We use Occident to uncover cellular-level110

responses to T cell-cancer cell interactions. Moreover, Occident uses an interpretable spatial Markov model to quantify T cell111

proliferation and recruitment from activation upon interaction.112

Caliban effectively segments, tracks, and phenotypes live-cell imaging data113

The first major challenge in establishing cellular behaviors from live-cell imaging is identifying single cells in each time114

frame – segmentation – and then establishing the same cell’s position over time – tracking. We therefore developed Caliban,115

an integrated solution to segmentation and tracking. Caliban uses a tracking-by-detection approach in which cells are first116

identified in each frame by a deep learning model; these detections are then used to reconstruct a lineage tree that connects117

cells across frames and through cell division events. For the reconstruction of lineage trees, we use a deep learning model that118

encodes temporal dependencies for multiple features of each object and predicts the probability of a parent–child relationship119

that exists due to a cell division event between any pair of cells across frames42.120

Accurate cell detection and segmentation are essential to producing faithful lineage reconstructions. In addition to prior data121

and models38, 43, we built DynamicNuclearNet, a segmented and tracked dataset of fluorescently-labeled cell nuclei spanning122

five different cell lines. This dataset contains 647,322 unique nuclear segmentations assembled into over 16,501 trajectories123

with over 2,621 division events. Each trajectory begins at the cell’s appearance in the field of view (FOV) or birth as a daughter124

cell, and ends when the cell disappears by permanently leaving the FOV, dying, or dividing. While generating pixel-level125

masks for each cell is expensive compared to other types of labels (e.g., centroids or bounding boxes), these masks facilitate126

downstream analysis steps, such as quantifying signaling reporters or nuclear morphology. The 2,621 division events in our127

dataset surpass all previous annotation efforts that use nuclear segmentation masks (Table 1), which allows us to incorporate128

cell division detection into our deep-learning-based cell-tracking method. We combined prior work on cell segmentation38, 43
129

with DynamicNuclearNet and a comprehensive benchmarking framework to train an accurate deep learning model for nuclear130

segmentation as part of Caliban (see Methods for details).131

In Caliban, raw images are passed through the nuclear segmentation model to produce cell masks. These masks are used to132

extract features for each cell, while the centroids are used to construct an adjacency matrix to identify cells in close proximity133

(< 64 pixels, 41.6 µm). These features and the adjacency matrix are fed into a neighborhood encoder model, which uses a graph134

attention network39, 40 to generate feature vectors that summarize information about a cell’s—and its neighbors’—appearance,135

location, and morphology (Figure 2b). These feature vectors are then fed into a tracking model that causally integrates temporal136

information and performs a pairwise comparison of each cell’s feature vector across frames to produce an effective probability137

score indicating whether two cells are the same cell, are different cells, or have a parent–child relationship (Figure 2c).138

Separating our tracking model into two pieces facilitates rapid and scalable inference. During inference, the computationally139

expensive neighborhood encoder model can be run on all frames in parallel, leveraging GPU acceleration, followed by the140

lightweight tracking inference model, which is run on a frame-by-frame basis. The tracking inference model assigns lineages to141

cells by comparing the feature vectors of the last frame of existing lineages with the feature vectors of candidate cells in the142

current frame; model predictions are used with the Hungarian algorithm44, 45 to complete the assignment. To accommodate the143
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Figure 2. A deep learning approach to cell segmentation and tracking using Caliban. (a) Caliban takes a movie of
fluorescently-labeled nuclei as input and then generates a nuclear segmentation mask for each frame. Features for each cell in a
frame are extracted and passed through a neighborhood encoder model to generate a vector embedding for each cell. These
embeddings and cell positions are passed into the tracking inference model, which predicts the probability that each pair of
cells between frames is the same, is different, or has a parent–child relationship. These probabilities are used as weights for
linear assignment to construct cell lineages on a frame-by-frame basis. (b) The neighborhood encoding model takes as input an
image of each cell, its centroid position, and three metrics of morphology (area, perimeter, and eccentricity). A vector
embedding of each input is used as node weights in a graph attention network39, 40, where edges are assigned to cells within 64
pixels (41.6 µm) of each other. The final neighborhood embedding for each cell captures the appearance of that cell and its
spatial relationship with its neighbors in that frame. (c) The tracking inference model performs pairwise predictions on cells in
frame tn to cells in frame tn+1. The model is given neighborhood embeddings and centroid positions of cells in the previous
seven frames [tn−7, tn] to compare with cells in frame tn+1. The temporal context of the previous seven frames is modeled using
long short-term memory (LSTM) layers41. Ultimately, the model outputs a set of effective probabilities (psame, pdiff, and
pparent-child) for each pair of cells between frame tn and frame tn+1. (d) The performance of Caliban and that of four other
tracking methods were evaluated on the test split of DynamicNuclearNet. Tracking performance on ground-truth segmentations
is excluded for EmbedTrack because it is an end-to-end method that generates segmentations as a part of tracking. TRA:
tracking accuracy in the Cell Tracking Challenge. (e) A sample montage from DynamicNuclearNet with predictions from
Caliban. Circles highlight the correct identification of three division events. (Scale bars = 26 µm)
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entry and exit of cells in the linear assignment framework, we create a “shadow object" for each cell in a frame, which allows144

assignments for the “birth" or “death" of cells45. (See Methods for details.)145

We compared Caliban to four alternative methods that performed well in the Cell Tracking Challenge and could be run146

without manual parameter tuning — Baxter, CellTrackerGNN, EmbedTrack, and Tracx — on a variety of metrics33, 46–48. For147

each of these methods, we used pre-existing models or parameters that were trained or optimized on the Fluo-N2DL-HeLa148

dataset if available. For Caliban, we used a single version of the model that was trained on all five cell types represented in149

DynamicNuclearNet, including the two Fluo-N2DL-HeLa training movies. We tested each algorithm on ground truth and150

predicted segmentations. Predicted segmentations for each method were generated with that method’s segmentation model or151

Caliban’s segmentation model if the former was unavailable.152

On measures of division performance evaluated on the DynamicNuclearNet testing split, Caliban outperformed all previously153

published methods. This performance boost is primarily attributable to Caliban’s cell-tracking capability rather than cell154

segmentation (Figure 2e), as the boost is present when tracking is performed on ground truth segmentations. On metrics155

focused on segmentation and linkages evaluated on the DynamicNuclearNet testing split, Caliban performed comparably to156

existing methods. For all metrics evaluated on the Cell Tracking Challenge Fluo-N2DL-HeLa test split, Caliban outperformed157

previously published methods (complete benchmarking results are shown in Supplementary Tables 2 and 3). We note that these158

benchmarks are unable to separate the relative contributions of training data size and model architecture to performance.159

Occident generates a catalog of phenotypes from segmented and tracked live-cell images160

We applied the Caliban pipeline to segment and track individual cells from live-cell imaging of 1g4 anti-Ny-ESO-1 T cell161

receptor (TCR)-transgenic T cells (TCR T cells) co-cultured with cancer cells expressing NY-ESO-1 antigen (Figure 3a). Four162

replicates of three lines of TCR T cells, RASA2 KO, CUL5 KO, and SH KO T cells, at 1:1 ratio to A375 mKate+ tumor cells163

were collected. RASA2 KO and CUL5 KO T cells are known to demonstrate improved anti-cancer efficacy in vitro and are164

expected to show differences in behavior from the SH KO cells. Brightfield images, capturing T cells and cancer cells, and165

red fluorescent protein channel images, capturing cancer nuclei, were collected every four minutes over twenty-four hours.166

We applied Caliban segmentation with to identify putative T cells, cancer cells aggregates, and cancer nuclei, and then used167

Caliban’s tracking to link cell identifies across frames.168

Segmentation allows us to interrogate the population of T cells and cancer cells. RASA2 or CUL5 knockouts in T cells169

are known to increase proliferation under suppressive conditions7, 13. We observed that the number of CUL5 KO or RASA2170

KO T cells in cancer co-culture wells increases over time, while the number of SH KO T cells remained approximately171

constant over time (Figure 3b). An exponential model of growth to quantify proliferation rates confirmed that CUL5 KO T172

cells (7.4×10−4 min−1, p ≤ 2.2×10−16) and RASA2 KO T cells (6.9×10−4 min−1, p ≤ 2.2×10−16) had substantially faster173

proliferation rates than SH KO T cells (−4.6×10−5 min−1).174

RASA2 KO and CUL5 KO T cells are known to improve T cell’s in vitro cancer cell killing ability7, 13. We observed a175

decrease in the number of cancer cells over time in those conditions relative to the SH KO condition (Figure 3c). The slope of a176

linear model of cancer cells over time revealed a substantial change in the rate of cancer killing activity for RASA2 KO T cells177

(−2.8×10−2 min−1, p ≤ 2.2×10−16) and CUL5 KO T cells (−4.0×10−2 min−1, p ≤ 2.2×10−16) relative to SH KO T cells178

(−4.2×10−3 min−1). The number of cancer cells started to decrease before the fluorescent signal marking cancer cell nuclei179

levels off and decreases, suggesting that fluorescence of the nuclear reporter is a lagging signal of the cancer population (Figure180

3c). The ordering of fluorescent intensity and number of cancer cells from segmentation was maintained; by both measures,181

cancer cells expanded the most when co-cultured with SH KO, followed by co-culture with RASA2 KO T cells. CUL5 KO best182

controlled the expansion of co-cultured cancer cells.183

Occident characterized cell morphology across the genetic perturbations from cell segmentation. We prompted Segment184

Anything49 with nuclear masks to identify a subset of individual cancer cells composing the aggregates (Figure S5; see Methods185

for details). From the putative individual cancer cells identified, we observed that the mean area of these cells was consistent186

across time and the type of T cell co-cultured (Figure 3d). However, from the full cancer cells masks, we observed that187

aggregates increase in size over time (Figure 3e) across conditions. On average, we observed that aggregated cancer cells in188

co-culture with RASA2 KO T cells have lower mean area than with SH KO T cells (p ≤ 2.2×10−16), possibly indicating189

greater anti-cancer activity of this condition (Figure 3d). Interestingly, we observed that T cell size decreases over time across190

all three conditions (Figure 3). RASA2 KO T cells were on average smaller than CUL5 KO T cells (p ≤ 2.2×10−16) and SH191

KO T cells (p ≤ 2.2×10−16).192

Roundness, the normalized ratio of area to perimeter that quantifies how similar a shape is to a perfect circle, is also a193

useful indicator of T cell. Free floating T cells demonstrate circular shapes (i.e., roundness close to 1), while attached T cells194

interacting with cancer cells are expected to change conformation, moving away from perfect roundness (Figure 3a). We195

observed that, as quantified by the slope of a linear regression fit, T cells with RASA2 KO (−1.4×10−4, p ≤ 2.2×10−16)196

and CUL5 KO (−1.8× 10−4, p ≤ 2.2× 10−16) become substantially less round over time compared to the SH KO control197
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Figure 3. Extracting a catalog of cellular phenotypes with Occident. (a) Morphology is an indicator of cell state. T cells
that are interacting with cancer cells change from their round shape to attack cancer cells while cancer cells aggregate together
under distress. Segmentation masks are able to capture putative cells and cell agregates for both cell types. (b) Increased T cell
expansion with beneficial knockouts. (c) Cancer cell population from segmentation over time reveals greater killing in wells
with beneficial T cell perturbations. Fluorescence of the cancer nuclear marker is a lagging indicator of cancer cell population.
(d) Cancer cells in RASA2 KO wells have lower average area, indicating greater stress from T cell attack. (e) SH KO and
CUL5 KO T cells are smaller when attached to cancer cells, while RASA2 KO T cells increase in area when attached, likely
due to greater activation. (f) The ratio of mean cancer cell clump area to mean individual cancer cell area increases over time as
stressed cancer cells aggregate. (g) T cells with beneficial genetic knockouts become less round over time, indicating greater
anti-cancer activity. (h) Cancer cell division events decreased in wells with T cells with beneficial genetic knockouts. (i)
Increased local T cell density decreases the probability of cancer cell division and growth. T cells with beneficial genetic
knockouts have a greater inhibitory effect on cancer cell division. (j) RASA2 KO T cells substantially decreased the average
speed of cancer cells, suggesting greater anti-cancer effect during interactions. (k) T cells with beneficial genetic knockouts had
higher average speed than control T cells, suggesting greater activity.
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Figure 4. Occident characterizes the behavior of T cells and cancer cell aggregates during cell-cell interactions. (a) An
example interaction between a SH KO T cell and a cancer cell, and the same cells 4 minutes later. (b) Wells with RASA2 KO T
cells have a higher average number of cancer cell – T cell interactions across time than CUL5 KO and SH KO wells. (c)
Average T cell size increased after interaction across conditions. (d), T cell roundness decreased as they interact with cancer
cells. (e) Cancer aggregate speed decreased during interactions with T cells. (k) Cancer cells decreased in area after interaction
with T cells.

(−2.6×10−5 min−1; Figure 3g). Since decreased roundness is a hallmark of T cells interacting with cancer cells, the decrease198

in mean roundness over time suggests an increased number of T cells interacting with cancer cells in the genetic knockout199

conditions relative to control.200

Occident takes advantage of tracking to reveal the temporal dynamics of cellular behavior. Cancer cell divisions are201

identified from cancer nuclei tracks. The difference in cancer divisions across perturbations was not statistically significant202

(Figure 3h). However, a logistic regression model to predict the probability of cancer division as a function of average local T203

count shows that an increase in the local T cell density is associated with decreased probability of a cancer division event as204

expected, due to the modified T cell’s anti-cancer cell function (Figure 3i). The decrease in log odds of a cancer cell division205

event per additional T cell is greater for the RASA2 KO T cells (−0.37 events/cell−1, p ≤ 4×10−3) and CUL5 KO T cells206

(−0.42 events/cell−1, p ≤ 7× 10−4) relative to the SH KO T cells (−0.16 events/cell−1; Figure 3i), again quantifying the207

stronger anti-cancer cell activity of these edited TCR T cells.208

Occident also uses cell tracks to measure T cell and cancer cell speed, or the change in cell centroid position over time,209

to study cellular motility across genetic knockouts. We find that cancer cells co-cultured with RASA2 KO T cells had210

slower average speed (8.28 µm/min; p ≤ 2.2×10−16) than cancer cells with SH KO T cells (8.62 µm/min). Cancer cells in211

wells with CUL5 KO T cells (8.60 µm/min; p ≤ 0.5) had similar speed to SH KO conditions (Figure 3j). The RASA2 KO212

(5.06 µm/min, p ≤ 2.2×10−16) and CUL5 KO (5.26 µm/min, p ≤ 2.2×10−16) T cells both had higher average speed than213

the SH KO T cells (4.82 µm/min), suggesting greater T cell movement and activity (Figure 3k). Slower cancer cells suggest214

more debilitating effects from T cell attack from RASA2 KO cells, while faster T cells suggests improved hunting activity of215

the T cells with beneficial genetic perturbations26. Overall, RASA2 KO and CUL5 KO T cells had similar effects on cancer216

division, T cell velocity, and T cell roundness, but RASA2 KO T cells lead to greater changes in cancer cell size and speed.217

These differences in cell behavior phenotypes begin to paint the picture of the different mechanism-of-actions between genetic218

perturbations that would be missed without dynamic imaging quantification and behavioral phenotyping.219
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Occident characterizes cellular changes after T cell-cancer cell interaction220

Occident characterizes the cellular behavior phenotypes during T cell-cancer cell interactions to understand cellular behavior,221

revealing changes across the three conditions. An interaction between a T cell and a cancer cell is defined as at least two222

consecutive frames with overlapping masks between the two cells (Figure 4a). We observed that wells with RASA2 KO T cells223

(p ≤ 2.2×10−16, Wilcoxon signed-rank test) and CUL5 KO T cells (p ≤ .001) show more interactions over time than wells224

with SH KO T cells (Figure 4b).225

Following the phenotypes of interacting cells reveals complex dynamics of T cell–cancer cell interactions. T cells have226

been observed to increase in size after activation from interacting with an antigen, such as a cancer cell50, 51. We indeed found227

that T cell area increased after interaction with cancer cells across all three conditions (Figure 4c). For example, SH KO T cells228

increased from 225.8 µm2 average area for the forty minutes pre interaction with cancer cells to 241.7 µm2(p ≤ 2.2×10−16)229

eight minutes post interaction and 268.6 µm2(p ≤ 2.2×10−16) forty minutes post interaction. The increase in average area230

of RASA2 KO and CUL5 KO T cells was similar. T cells become less round after interaction with cancer cells (Figure231

4d); CUL5 KO T cells show a marked drop from an average roundness of 0.65 for the forty minutes pre interaction to 0.61232

(p ≤ 2.2×10−16) eight minutes post interaction, increasing slightly to 0.62 (p ≤ 2.2×10−16) forty minutes post interaction.233

Taken together, these results allow us to quantify and optimize T cells for activation after interacting with antigens.234

Interactions with T cells also affect cancer aggregates. Cancer cell speed decreases post interaction in all three conditions235

(Figure 4e). When co-cultured with CUL5 KO T cells, for example, cancer cells slow from 5.88 µm/min (p ≤ 2.2×10−16) on236

average for forty minutes pre interaction to 5.51 µm/min (p ≤ 2.2×10−16) eight minutes post interaction, dipping all the way237

down to 4.47 µm/min (p ≤ 2.2×10−16) twenty minutes post interaction, then rebounding to 5.18 µm/min (p ≤ 2.2×10−16)238

forty minutes post interaction. Restricting analysis to masks with putatively single-cell level areas, we also observe a decrease239

in area post-interaction across all three conditions (Figure 4f). All three conditions reduce the mean cancer area to about 250240

sq. µm. Cancer cells in RASA2 KO and CUL5 KO wells were already smaller on average to start with, likely from previous241

interactions with T cells. We visually observe an increase in T cell area, a decrease in T cell roundness, and a decrease in cancer242

cell area four minutes post interaction (Figure 4b).243

Spatiotemporal modeling reveals changes in T cell inter-cellular signaling and proliferation under genetic244

perturbation245

Anti-cancer activity of T cells results from group behavior. To quantify multi-cellular spatiotemporal dynamics, we estimated246

the Markov transition matrix of local cell density states. Briefly, we split each video spatially into non-overlapping windows or247

bins, and we define each bin’s state at each time point as the number of T cells and number of cancer cells within the bin. The248

Markov transition matrix is estimated by observing how often a bin in state τ T cells, C cancer cells at time t moves to state249

(τ ′,C ′) at time t +1 (Figure 5a).250

The Markov transition matrix captures the temporal dynamics of cell densities between frames. To understand how251

individual T cell–cancer cell interactions lead to multi-cellular behavior, we focus on the initial state of τ = 1 T cell and C = 1252

cancer cell. We find that the 1 T cell, 1 cancer cell state is most likely to remain the same in the next observation (Figure 5b) in253

all three conditions. We use the probability of detachment, defined as the likelihood of transition from 1 T cell, 1 cancer cell to254

zero T cells and any number of cancer cells, to estimate the duration of interaction (or dwell time) with a negative binomial255

model (see Methods for details). Control SH KO T cells had a shorter dwell time (16.83±0.21 min) compared to RASA2256

KO T cells (18.20±0.25 min, p ≤ 5.1×10−16) and CUL5 KO T cells (18.09±0.25 min, p ≤ 1.2×10−13). This matches257

the results of the empirical mean interaction times; compared to SH KO (14.35±1.08 min), RASA2 KO (19.28±1.68 min,258

p ≤ 1.9×10−6) and CUL5 KO (16.88±1.62 min, p ≤ 9.7×10−3) have empirically longer interaction times with cancer cells259

(Figure 5d). These results present another indicator of the beneficial anti-tumor effects of the genetic perturbations. The average260

interaction times around 20 minutes are also visible in the cancer phenotypes post interaction (Figure 4k,l), where cancer cell261

properties start to return to the pre-interaction baseline 20 minutes post-interaction. These consistent results validate the Markov262

model as an effective estimator of cell dynamics.263

Beyond the individual cell dynamics, T cells activated by interacting with antigens such as cancer cells may use molecular264

signals to recruit more T cells and proliferate52. RASA2 KO and CUL5 KO T cells have previously been observed to proliferate265

faster than SH KO T cells7, 13 and increase the production of cytokines such as IL-2, IFNγ , and TNF7, 13, a molecule involved266

in T cell recruitment. Comparing the transition probabilities of edited T cells to the SH KO T cells revealed that the RASA2267

KO (23.63%, p ≤ 2.2×10−16) and CUL5 KO (26.42%, p ≤ 2.2×10−16) T cells were more likely to increase in number at the268

next time point from this state than SH KO T cells (18.64%).269

To deconvolve the contributions of T cell recruitment versus proliferation to this transition, we quantify the transitions270

from 1 T cell, 1 cancer cell to 2 T cells, 1 cancer cell from tracked cells, indicating a recruitment event, versus untracked cells,271

indicating a T cell proliferation event (Figure 5e). We observed that RASA2 KO (2.30%; p ≤ 2.2× 10−16) and CUL5 KO272

(2.18%; p ≤ 2.2×10−16) T cells have greater recruitment probability than SH KO T cells (1.44%), and RASA2 KO and CUL5273
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Figure 5. An interpretable spatiotemporal model of cell organization characterizes interaction with cancer cell
duration, recruitment, and proliferation in T cells a, Schematic of Markov transition model and identification of
proliferation and recruitment events. b, Estimated Markov transition probabilities of states at t +1 from 1 T cell, 1 cancer cell
at time t by genetic perturbation c, difference in Markov transition probabilities at t +1 from 1 T cell, 1 cancer cell at time t
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KO are similar in their recruitment probability (p ≤ 0.31; Figure 5f). CUL5 KO (11.85%, p ≤ 2.2×10−16) and RASA2 KO274

(10.90%, p ≤ 7.8×10−11) T cells have a higher probability of proliferation upon interaction than SH KO (9.32%), with CUL5275

KO T cells more proliferative than RASA2 KO T cells (p ≤ 2×10−4). These results suggest that the CUL5 KO enhanced T276

cell proliferation, whereas RASA2 KO more notably increased T cell interaction time with cancer cells.277

Discussion278

Live-cell imaging captures rich data on T cell and cancer cell morphology, motility, and behavioral dynamics. The combination279

of modern computational techniques and capacity with increased imaging resolution and throughput allows for cellular behavior280

analysis to push our understanding of complex multi-cellular behaviors forward. Improved quantification of population281

behavioral dynamics of cells will lead to better understanding of basic biology and direct the engineering and optimization of282

new precision treatments. In this paper, we first developed a state-of-the-art cell segmentation and tracking platform, Caliban,283

based on human-in-the-loop deep learning, to serve as the basis of cellular behavior analysis. We then developed the Occident284

pipeline to quantify morphological and behavioral phenotypes in co-cultures of TCR T cells and cancer cells. Caliban’s285

improved tracking combined with Occident’s interpretable modeling revealed biologically-important differences between the286

beneficial RASA2 and CUL5 knockouts. In particular, RASA2 KO T cells spent more time attached to cancer cells, decreasing287

cancer speed and size, while CUL5 KO T cells proliferated more upon activation by cancer cell interactions, creating more T288

cells to fight tumor cells.289

This cellular behavioral analysis of RASA2 KO and CUL5 KO T cells is a first step to demonstrate the utility of these290

techniques. Challenges remain in terms of segmentation and tracking quality. Many cells remain unidentified or are characterized291

by imprecise masks. Many of the segmented T cells that do not move may be larger detritus in the well rather than a T cell.292

The mismatch between cancer cell count and cancer cell fluorescence indicates there may be interesting behavior inside the293

cancer cell aggregates that segmentation struggles to capture well. Tracking is limited in its ability to detect fast moving cells,294

challenging our ability to quantify rapidly dynamic behaviors. One-step Markov transitions are a simple class of models that295

may miss longer interval behavior or more localized spatial behaviors. Wells are imaged from above in 2D, masking z-axis296

behaviors, while cancer cells regularly adhere to the well walls, elongating their shape; these experimental conditions and297

their effects on the data must be explored. Better image processing will enable richer models that can more clearly identify298

detachment, proliferation, and recruitment, and extend to phenotypes such as T cell swarming and tracking.299

Despite challenges, Caliban and Occident quantify complex and therapeutically-relevant cellular morphology and behavior300

phenotypes with currently available common laboratory research hardware and software, capturing important signals from301

these ubiquitous live-cell imaging data. Further improvements in imaging techniques, e.g., capturing additional reporters, three302

dimensions, or greater temporal and spatial resolution, will further enable a deeper investigation of spatial behavior. As more303

data are collected from ever-improving screening techniques, consisting of more diverse cell types, donors, and perturbations,304

among other variables, more impactful insights in the changes to morphology, proliferation, signaling, and activation behaviors305

induced by the cell types, perturbations, and interactions will be uncovered. Looking forward, we expect these insights can be306

combined with emerging genomics foundation models to predict genetic modifications that program desired cellular behaviors.307

Our work opens the door to directly quantifying and analyzing dynamic multicellular behavior phenotypes captured with308

live-cell imaging to predict, design, and optimize cell therapies.309

Methods310

Caliban data collection311

Cell culture We used five mammalian cell lines (NIH-3T3, HeLa-S3, HEK293, RAW 264.7, and PC-3) to collect training312

data. All lines were acquired from the American Type Culture Collection. We cultured the cells in Dulbecco’s modified313

Eagle’s medium (DMEM; Invitrogen; RAW 264.7, HEK293, and NIH-3T3) or F-12K medium (Caisson; Hela-S3 and PC-3)314

supplemented with 2 mM L-glutamine (Gibco), 100 U/mL penicillin, 100 µg/ml streptomycin (Gibco), and either 10% calf315

serum (Colorado Serum Company) for NIH-3T3 cells or 10% fetal bovine serum (FBS; Gibco) for all other cells.316

Live-cell imaging Before imaging, cells were seeded in fibronectin-coated (10 µg/mL; Gibco) glass 96-well plates (Nunc317

or Cellvis) and allowed to attach overnight. We performed nuclear labeling via prior transduction with H2B-iRFP670 (Hela,318

RAW 264.7), H2B-mClover (HEK293, NIH/3T3), and H2B-mCherry (PC-3). The media was removed and replaced with319

imaging media (FluoroBrite DMEM (Invitrogen) supplemented with 10 mM HEPES (Sigma-Aldrich), 10% FBS (Gibco), 2mM320

L-glutamine (Gibco)) at least 1 h before imaging. We imaged cells with a Nikon Ti-E or Nikon Ti2 fluorescence microscope321

with environmental control (37◦C, 5% CO2) and controlled by Micro-Manager or Nikon Elements. We acquired images at 5- to322

6-min intervals with a 20x objective (40x for RAW 264.7 cells) and either an Andor Neo 5.5 CMOS camera with 3×3 binning323

or a Photometrics Prime 95B CMOS camera with 2×2 binning. All data were scaled so that pixels had the same physical324

dimensions (0.65 µm per pixel) before training.325
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Caliban dataset development: DeepCell Label. We previously described DeepCell Label38, our browser-based software for326

data annotation. We extended DeepCell Label to support labeling cell lineages and divisions in dynamic datasets. Additionally,327

we implemented a state machine that allows annotators to apply undo/redo functions during their work. These new features are328

described below.329

DeepCell Label manages the state of its labeled data with a Python-based backend and a React-based frontend. The backend330

serves and submits project data and provides image processing for editing label arrays, while the frontend controls the user331

interface and edits non-image-based labels. The front end retrieves images and labels for the project from the backend and332

loads the data into its state management.333

We use the Javascript library XState to manage the state on the front end. Through XState, we define actors that manage the334

state of both user interface (UI) elements and data labels. An actor consists of a context, containing arbitrary data, along with335

a set of states and transitions between states. Actors receive events from other actors or the user, and each state defines how336

to transition between states and update its context upon receiving events. Some actors maintain UI state, while others define337

and control the operations that can edit labeled data. The application creates a root actor that instantiates a tree of child actors338

corresponding to each UI element or type of labeled data. The root actor sets up communication between child actors, enabling339

features like undo/redo that must orchestrate state across the application.340

Actors expose their state to user interface elements by React’s hooks, allowing multiple components to access and update341

the same shared state. For instance, to adjust the contrast of an image, a Slider can expose the contrast settings for a user to342

update, while a Canvas component can access the updated contrast settings to render the image. For example, we define an343

actor for the image canvas that handles mouse movement events with context-dependent behavior. When panning around the344

canvas, a mouse-move event changes the position of the canvas, while when not panning, we update the coordinates for the345

cursor. Clicking and releasing the mouse sends mouse-up and mouse-down events, transitioning to and from the panning state.346

We implement our undo feature via an undo actor that records and restores the states of both UI and label actors over time.347

The undo actor maintains two stacks of project states: an undo stack with past snapshots to restore and a redo stack with undone348

snapshots. Editing the labels after undoing clears the redo stack, so only one branch of the project state is maintained. To349

integrate with the undo feature, actors register themselves with the undo actor and agree to submit snapshots of their state350

that can be restored upon undoing or redoing an action. Two types of actors can register with the undo actor: UI actors that351

manage the state of UI elements, and label actors that manage and edit labels. When a label actor edits its labels, it submits a352

SNAPSHOT event to the undo actor containing a copy of the labels before and after editing. The undo machine then broadcasts353

a SAVE event to all UI actors, which respond with a RESTORE event containing their current state. When the user undoes an354

action, the SNAPSHOT and RESTORE events are resent to the actors that originally submitted the events. With this approach,355

each UI and label actor is responsible for defining how its state should be recorded and restored with the events it submits, and356

the undo actor is responsible only for orchestrating and broadcasting the events to all registered actors. As new types of labeled357

data and UI elements are developed, the actors that drive new features can flexibly integrate with the undo infrastructure by358

defining these events for themselves and registering with the undo actor.359

Data annotation. In this study, we used DeepCell Label in two stages to generate a nuclear tracking dataset. First, annotators360

were asked to correct nuclear segmentation labels for all frames in the dataset. Movies were broken into five frame sets for361

segmentation which allows annotators to leverage the temporal context present in the movie to improve the annotation of362

dividing cells. Second, after segmentation annotations were complete, annotators were asked to label the nuclear segmentation363

masks such that a single cell maintains the same label across frames. Additionally, all division events were annotated with the364

connection of the parent cell to each daughter cell. An expert annotator reviewed all annotated movies before incorporation into365

the training dataset. The supplementary information provides a user manual for DeepCell Label (Supplementary File 1), along366

with sample instructions for segmentation (Supplementary File 2) and tracking (Supplementary File 3) corrections. Annotations367

were conducted by a team of four annotators and two expert reviewers. Each movie was annotated by a single annotator and368

approved by a single expert eliminating the need for resolving differences between two independent annotators.369

Data versioning with DVC. Each labeled movie was versioned and tracked with DVC53. We recorded additional metadata in370

each .dvc file, including the data dimensions, annotation progress, and data source. These metadata enabled automatic data371

processing for generating segmentation and tracking predictions as well as launching annotation tasks.372

Dataset sources. DynamicNuclearNet contains data from six sources. Five datasets were collected internally as described in373

sections Cell Culture and Live Imaging. Additionally, the CTC dataset Fluo-N2DL-HeLa was incorporated after generating374

complete segmentation masks for all frames using the protocol described above.375

Caliban Nuclear segmentation376

Deep learning model architecture. The deep learning model for nuclear segmentation was based on the design of feature377

pyramid networks54, 55. The network was constructed from an EfficientNetV2L backbone56 connected to a feature pyramid.378
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Input images were concatenated with a coordinate map before entering the backbone. We used backbone layers C1–C5 and379

pyramid layers P1–P7. The final pyramid layers were connected to three semantic segmentation heads that predict transforms380

of the labeled image.381

Label image transforms. For each image, we used a deep learning model to predict three different transforms, as inspired by382

previous work38, 57, 58. The first transform predicted whether a pixel belongs to the foreground or background, known as the383

“foreground–background transform." The second transform predicted the distance of each pixel in a cell to the center of the cell384

and is called the “inner distance." If the distance between a pixel and the center of the cell is r, then we compute the transform385

as 1
1+αβ r , where α = 1√

cell area
and β is a hyperparameter set to 138. The final transform was the “outer distance," which is the386

Euclidean distance transform of the labeled image. The loss function was computed as the sum of the mean squared error on387

the inner and outer distance transforms and the weighted categorical cross-entropy59 on the foreground–background transform.388

The cross-entropy term was scaled by 0.01 before the sum.389

Preprocessing. Each image was required to have a minimum of one labeled object. Additionally, each image was normalized390

using contrast-limited adaptive histogram equalization with a kernel size equal to 1/8 of the image size to ensure that all images391

have the same dynamic range60.392

Postprocessing. We fed two of the three model outputs, the inner and outer distance, into a marker-based watershed method61
393

to convert the continuous model outputs into a discrete labeled image in which each cell is assigned a unique integer. We394

applied a peak-finding algorithm62 with a radius of 10 pixels and a threshold of 0.1 to the inner distance prediction to determine395

the centroid location of each cell. Next, we generated the cell mask image by applying the watershed algorithm to the inverse396

outer distance prediction with the centroids as markers and a threshold of 0.01.397

Model training and optimization. Training data were augmented with random rotations, crops, flips, and scaling to improve398

the diversity of the data. We used 70% of the data for training, 20% for validation, and 10% for testing. The model was trained399

using the Adam optimizer63 with a learning rate of 10−4, a clipnorm of 10−3, and a batch size of sixteen images; training400

was performed for sixteen epochs. After each epoch, the learning rate was adjusted using the function lr = lr× 0.99epoch.401

Additionally, if the loss of the validation data did not improve by more than 10−3 after five epochs, the learning rate was402

reduced by a factor of 0.01.403

To optimize the model’s performance on nuclear segmentation, we tested ten backbones: ResNet5064, ResNet10164,404

EfficientNetB265, EfficientNetB365, EfficientNetB465, EfficientNetV2M56, EfficientNetV2L56, EfficientNetV2B156, Efficient-405

NetV2B256, and EfficientNetV2B356. Additionally, we explored the optimal set of pyramid layers: P1–P7 and P2–P7.406

Evaluation. To fully evaluate the performance of our segmentation model, we developed a set of object-based error classes407

that assess the model on a per-object basis as opposed to a per-pixel basis. This framework provided a perspective on model408

performance that reflects downstream applications. First, we built a cost matrix between cells in the ground truth and cells409

in the prediction, where the cost is one minus the intersection over union (IoU) for each pair of cells. We performed a linear410

sum assignment on this cost matrix, with a cost of 0.4 for unassigned cells, to determine which cells were correctly matched411

between the ground truth and prediction. For all remaining cells, we constructed a graph in which an edge was established412

between a ground truth and a predicted cell if the IoU was greater than zero. For each subgraph, we classified the error type413

based on the connectivity of the graph. Nodes without edges corresponded to a false positive or negative if the graph contained414

only a predicted or ground truth cell, respectively (Supplementary Fig. 2a–c). A single predicted node connected to multiple415

ground truth nodes indicated a merge error (Supplementary Fig. 2d). Conversely, a single ground truth node connected to416

multiple predicted nodes was a split error (Supplementary Fig. 2e). Finally, any subgraphs that contain multiple ground truth417

and predicted nodes were categorized as “catastrophe" (Supplementary Fig. 2f). The resulting error classes can be used to418

calculate a set of summary statistics, including recall, precision, and F1 score by using the true positive, false positive, and false419

negative classes. The remaining error classes can be used to calculate (1) the number of missed detections resulting from a420

merge, (2) the number of gained detections resulting from a split, (3) the number of true detections involved in a catastrophe,421

and (4) the number of predicted detections involved in a catastrophe.422

Caliban cell tracking423

Linear assignment for tracking Tracking was treated as a linear assignment problem45. To solve the tracking problem, we424

first constructed a cost function for possible pairings across frames. The tracking problem was then reduced to the selection425

of one assignment out of the set of all possible assignments that minimized the cost function. This task can be accomplished426

with the Hungarian algorithm66. One complicating factor of biological object tracking is that objects can appear and disappear,427

which leads to an unbalanced assignment problem. Cells can disappear by either moving out of the FOV or dying. Similarly,428

cells can appear by moving into the FOV or dividing into two daughter cells from one parent cell. In the context of the linear429

assignment problem, one can preserve the runtime and performance by introducing a “shadow object” for each object in the430
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two frames that represents an opportunity for objects to “disappear” (if an object in frame tn is matched with its shadow object431

in frame tn+1) or “appear" (if an object in frame tn+1 is matched with its shadow object in frame tn)45. Assuming that mitotic432

events can be accommodated by a “shadow object” as well, division detection and assignment fit neatly into this framework.433

This framework can also accommodate cells that disappear from the field of view and reappear, by allowing unmatched cells434

from prior frames that were not assigned to cell division events to participate in the assignment. With the annotated trajectories435

and divisions from our dataset, it then becomes a matter of developing a deep learning architecture to extract an object’s features436

and learn an optimal cost function.437

To construct our learned cost function, we cast it as a classification task. Let us suppose that we have two cells: our target438

cell i in frame tn and cell j in frame tn+1. Our goal was to train a classifier that takes in information about each cell and produces439

an effective probability indicating whether these two instances are the same, are different or have a parent–child relationship.440

If we have already tracked several frames, we incorporate temporal information by using multiple frames of information for441

cell i as an input to the classifier. This approach allowed us access to temporal information beyond just the two frames we are442

comparing. Our classifier was a hybrid deep learning model that blends recurrent, convolutional, and graph submodels; its443

architecture is summarized in Fig. 2b,c. The three scores that the model outputs, (psame, pdiff, and pparent-child), which are all444

positive and sum to unity, can be thought of as probabilities. These scores were used to construct the cost matrix. If a cell445

in frame tn+1 is assigned to a shadow cell, i.e., if it “appears,” then we assessed whether there is a parent–child relationship.446

This was done by finding the highest pparent-child among all eligible cells (i.e., the cells in frame tn that were assigned to447

“disappear”)—if this probability was above a threshold, then we made the lineage assignment.448

Neighborhood encoder architecture. To capture the contextual information of each cell and its neighbors, we constructed449

a graph attention network39, 40. There were three input heads to the model. The first head received images of each cell and450

converted these images to a vector embedding with a convolutional neural network. Each image consisted of a 16×16 crop451

of the raw data centered on the centroid position of the cell. Additionally, the pixels within the nuclear segmentation mask452

were normalized by subtracting the mean value and dividing by the standard deviation. The second head received the centroid453

location of each cell. The third head received three morphology metrics for each cell: area, perimeter, and eccentricity. The454

latter two heads made use of fully connected neural networks to convert the inputs into vectors. We built an adjacency matrix455

for the graph attention network based on the Euclidean distance between pairs of cells; cells were linked if they were closer456

than 64 pixels (41.6 µm). The normalized adjacency matrix and concatenated embeddings were fed into a graph attention457

layer39 to update the embeddings for each cell. The appearance and morphology embeddings were concatenated to the output458

of the graph attention layer to generate the final neighborhood embedding.459

Tracking model architecture. Given cell 1 in frame tn and cell 2 in frame tn+1, the neighborhood encoder was used to460

generate embeddings for cell 1 in frame tn and the previous seven frames [tn−7, tn]. Long short-term memory41 layers were461

applied to the resulting embedding for cell 1 to merge the temporal information and to create a final summary vector for cell 1.462

The neighborhood encoder then generated an embedding for cell 2. Next, the vectors for cell 1 and cell 2 were concatenated463

and fed into fully connected layers. The final layer applied the softmax transform to produce the final classification scores:464

psame, pdiff, and pparent-child.465

Training and optimization. Both the neighborhood encoder and the inference model were jointly trained end-to-end such466

that the neighborhood embedding was tuned for the inference task. The model was trained on data that compare a set of frames467

[tn−7, tn] with frame tn+1. Each comparison of tn with tn+1 contributed to the loss. For inference, the model was given single468

pairs of frames, e.g., tn vs. tn+1. Training data were augmented with random rotations and translations. We used 70% of the469

data for training, 20% for validation, and 10% for testing. Data splitting was performed with regard to the cell type such that470

each cell type is equally represented across the three splits. The model was trained using the rectified Adam optimizer67 with a471

learning rate of 10−3, a clipnorm of 10−3, and a batch size of eight images. After each epoch, the learning rate was adjusted472

using the function lr = lr×0.99epoch. Additionally, if the loss of the validation data did not improve by more than 10−4 after473

five epochs, the learning rate was reduced by a factor of 0.1. The model was trained over 50 epochs.474

To optimize the performance of the tracking model, we tested the following parameters: graph layers (graph convolution475

layer, graph convolution layer with trainable skip connections, and graph attention convolution layer), distance threshold476

(64, 128, 256 pixels; 41.6, 83.2, 166.4 µm), crop mode (fixed and resized), birth probability, division probability, and death477

probability.478

Evaluating tracking performance. To evaluate the tracking performance, we used two sets of metrics. The first set assessed479

the linkages between cells, whereas the second set focused on the linkages of dividing cells. For the first set of metrics, we480

calculated the target efficiency (TE) and association accuracy (AA)47, 48. Briefly, TE assesses the fraction of cells assigned to481

the correct lineage, and AA measures the number of correct linkages generated between cells.482

Traditional metrics for evaluating tracking, including TE and AA, do not accurately reflect the ability of the method to483
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identify divisions because divisions are relatively rare events. To overcome this weakness, we developed an evaluation pipeline484

that classifies each division event as a correct, missed, or incorrect division. Our pipeline can handle tracking assignments on485

ground truth and predicted segmentations. First, we calculated the IoU between cells in the ground truth and the predictions486

to establish a mapping that can be used to compare tracking predictions. On predicted segmentations, an IoU threshold of487

0.6 was used as a threshold for overlap. For each division in the ground truth, we checked the corresponding node in the488

prediction to determine whether it was labeled as a division. If the daughter nodes in the prediction match those in the ground489

truth, the division was counted as a correct division (Supplementary Fig. 3a). We have found that, depending on the predicted490

segmentations, a division can sometimes be assigned to the frame before or after the frame that is annotated as a division in the491

ground truth data. We treated these shifted divisions as correct or a true positive. If the predicted node was not labeled as a492

division, it was considered as a missed division or false negative (Supplementary Fig. 3b). Finally, if a predicted parent node493

was identified as a division, but the daughters did not match the ground truth daughters, the division was counted as incorrect494

and included as a false negative division (Supplementary Fig. 3c). Finally, any remaining predicted divisions that cannot be495

matched to a ground truth division are counted as false positives.496

We used the classified divisions to calculate a set of summary statistics, including recall, precision, and F1 score. Addition-
ally, we used the mitotic branching correctness (MBC) metric33, calculated as follows:

MBC =
correct divisions

correct divisions+missed divisions+ incorrect divisions
.

Deployment497

We previously described the DeepCell Kiosk68, our scalable cloud-based deployment for deep learning models. The Kiosk498

provides a drag-and-drop interface for model predictions currently deployed at www.deepcell.org/predict. To provide499

a seamless pipeline for nuclear segmentation and tracking, we deployed a new consumer for tracking jobs. First, each movie500

is split into single frames, which are distributed for nuclear segmentation. This step takes advantage of the Kiosk’s ability501

to parallelize and scale resources to match demand. Once nuclear segmentation is complete on all frames, the masks are502

concatenated, and tracking is performed. The user receives a final output that contains the raw data, labeled masks, and lineages.503

Benchmarking504

We compared the performance of our model against four other algorithms: Baxter69, CellTrackerGNN70, EmbedTrack71, and505

Tracx72. Using the test split of our dataset, we evaluated the tracking performance of each algorithm on ground truth segmentation506

and predicted segmentations generated by either the algorithm or Caliban. We evaluated the resulting tracking predictions using507

our division evaluation pipeline and evaluation software from the Cell Tracking Challenge46. To evaluate the performance508

of Caliban on CTC movies, we manually annotated the two test movies from the Fluo-N2DL-HeLa dataset. To preserve the509

integrity of the challenge, we have not released our annotations but used them for evaluation in this paper. The notebooks used to510

generate benchmarks are available at https://github.com/vanvalenlab/Caliban-2024_Schwartz_et_al.511

We evaluated Caliban’s inference speed using a single GPU (NVIDIA RTX A6000) and eight CPUs (AMD EPYC 7763512

64-Core Processor). The inference time was split into four sections: segmentation inference, neighborhood encoder inference,513

tracking inference, and linear assignment. Inference was repeated three times for each movie in the test data split.514

Occident data collection515

Collection and culture of primary T cells. Leukopaks from anonymized donors were acquired from StemCell Technologies516

with approved IRBs. Human primary T cells were then isolated with the EasySep Human T Cell Isolation Kit (StemCell517

Technologies). The T cells were cultured at a density of 1 million cells per ml maintained in X-Vivo-15 medium supplemented518

with 5% fetal bovine serum, 50 µM beta-mercaptoethanol, and 10 mM N-acetyl-L-cysteine plus 100 IU/mL of IL-2. They were519

then activated with Dynabeads Human T-Activator CD3/CD28 (Gibco) at a 1:1 bead-to-cell ratio.520

Lentiviral generation followed by T cell transduction for TCR expression. Lenti-X 293T cells (Takara Bio) were plated521

at a density of 23 million cells per T-225 flask which was pre-coated with poly-l-lysine (Sigma-Aldrich). The cells were522

cultured in OptiMEM (Gibco) with 5% fetal bovine serum, 1% penicillin-streptomycin, 1% sodium pyruvate (Gibco), 1%523

MEM Non-Essential Amino Acids Solution (Gibco) and 1% HEPES (Gibco). Transfection was carried out using transfer524

plasmids along with second-generation lentiviral packaging plasmids, pMD2.G (Addgene) and psPAX2 (Addgene) using the525

Lipofectamine 3000 transfection reagent (Invitrogen). Six hours post transfection, the medium was replaced with OptiMEM526

(Gibco) containing 5% fetal bovine serum, 1% sodium pyruvate, 1% MEM Non-Essential Amino Acids Solution and 1%527

HEPES plus a viral boost reagent (Alstem) which was added according to manufacturer’s instructions. Viral supernatants528

were harvested 24 and 48 hours post transfection and centrifuged at 300g for 10 minutes at 4◦C to remove any cell debris.529

Lentiviral particles were then concentrated using Lenti-X concentrator (Takara Bio) and stored overnight at 4◦C. Next day, the530
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virus was centrifuged at 1500g for 45 min at 4◦C, resuspended in PBS at a concentration of 100X the original volume, and531

stored at −80◦C. For T cell transduction, concentrated lentivirus was added directly to the T cells 24 hours after activation with532

Dynabeads Human T-Activator CD3/CD28 using 40 µL virus per 1×106 T cells in X-Vivo-15.533

Generation of CRISPR knockout in primary human T cells by electroporation of Cas9–RNP. 48 hours post of activation,534

electroporation was conducted using the Amaxa P3 Primary Cell 96-well 4D-Nucleofector Kit (Lonza). Lyophilized crRNA535

and tracrRNA from Dharmacon were reconstituted in nuclease-free duplex buffer (IDT) at a concentration of 160 µM. Control536

T cells were targeted using the AAVS1 sequence GGGCCACTAGGGACAGGAT, RASA2-edited T cells with the sequence537

AGATATCACACATTACAGTG, and CUL5-edited T cells with the sequence ATTGGAGTAAGAGAATCCTA. crRNAs and538

tracrRNAs were then mixed 1:1 by volume and incubated for 30 minutes at 37C to form sgRNAs. Cas9 (stock concentration of539

40 µM, QB3 Macrolab) was then mixed with the sgRNAs 1:1 by volume for 15 minutes at 37◦C to produce ribonucleoproteins540

(RNPs). T cells were resuspended in P3 buffer (Lonza) at a density of 1×106 per 20 µ l, and subsequently combined with 3 µ l541

RNPs before being transferred to a 96-well electroporation plate (Lonza). Electroporation was performed using the pulse code542

EH115 on a 4D-Nucleofector 96-well Unit (Lonza) and cells were rescued by adding 80 µl of X-VIVO-15 plus supplements543

for 15 minutes at 37C. The cells were then transferred to culture vessels containing X-Vivo-15 medium supplemented with IL-2544

containing 100 IU per ml.545

Determination of TCR+ T cells via flow cytometry. T cells were centrifuged for 5min at 300g and washed with 200 µl546

of cell staining buffer consisting of PBS (Gibco) and 2% fetal bovine serum. The cells were then stained with Dextramer-547

HLAA*0201/SLLMWITQV-APC (Immudex) using 5 µ l of antibody in 50 µ l staining buffer for 10 min at room temperature in548

the dark. T cells were then washed twice in staining buffer and read on the Attune NXT Cytometer (Invitrogen). The data were549

analyzed with the software FlowJo version 10.9.550

Repetitive stimulation assay. Tumor cells were maintained in complete RPMI, consisting of RPMI (Gibco), 1% penicillin-551

streptomycin (Gibco), GlutaMAX supplement (Gibco) and 10% fetal bovine serum (Corning). For the repetitive stimulation552

assay, tumor cells were split and plated in X-VIVO-15 plus supplements and 100 IU/mL of IL-2 in appropriate culturing553

vessels. T cells were then counted with a Cellaca MX High-throughput Cell Counter (Revvity), percentage of TCR+ cells was554

determined via flow cytometry and T cells were added onto fresh tumor cells every 48 hours maintaining a 1:1 effector-to-target555

ratio.556

In vitro cytotoxicity assay using TCR T cells. Antigen-specific T cells were co-cultured in X-VIVO-15 plus supplements,557

100 IU IL-2 per ml and 1X Glucose (Gibco) with mKate+ A375 cells that were pre-seeded in a 96-well flat-bottom plates. T558

cells were added in various E:T ratios. Over a 72-hour span, images were captured every 4 minutes using the Incucyte S3559

live-cell imaging platform (Essen Bioscience), and the mKate+ object counts for each well were recorded over time.560

Occident pipeline application561

Cell segmentation and tracking. Analysis was restricted to the 600 × 600 pixel center region of frames 50 to 350 (200 to562

1400 minutes post co-culture). The small region ensured models could capture the majority of cells. The first 50 frames were563

skipped due to microscope lens artifacts. After 350 frames the density of cells becomes too high for separating individual cells.564

Each frame consists of brightfield and red nuclear fluorescent channel imaged at 10X resolution, at a scale of 1.245µm/pixel.565

Each frame was first segmented using DeepCell nuclear segmentation model and cytoplasm segmentation model with micron566

per pixel set to 1.5 and 7.5 respectively73. DeepCell cytoplasm segmentation was post processed to fill any holes in segmentation567

and remove artifacts and debris segmented with less than 10 pixels. DeepCell nuclei segmentation was post-processed to568

remove nuclei segmentation fluorescent artifacts less than 80 pixels.569

DeepCell fluorescent nuclei segmentation is near-perfect, so we further leveraged the information on two channels to refine570

cancer cells segmentation. By prompting nuclei centroids into Segment Anything Model (SAM) with default SAMPredictor571

parameters, we efficiently refined the boundaries of cancer blobs, as well as reducing the false positively detected T cell clumps572

that are treated as cancer cells due to the size threshold but actually lack a nuclei fluorescent signal. With cancer cell masks573

generated, T cell masks were subsequently rendered by subtracting cancer cell masks from DeepCell cytoplasm segmentation574

on the brightfield channel followed by thresholding T cells as objects less than 200 pixels.575

As some of the T cells are missing from the DeepCell segmentation, we further leveraged Segment Anything Model (SAM),576

which is good at the general segmentation tasks, to help capture the missed T cells. SAM with ViT-B default weights was577

applied to segment cytoplasm images and T cells in between 10 to 200 pixels are added to the T cell masks.578

With T cell masks and cancer cell masks generated across the time-lapse, these cells were tracked across frames using an579

in-house actualization of the tracking algorithm74 that ensures consistent identities. To tracking and detect division events of580

cancer nuclei, Caliban is used as part of the DeepCell cell tracking function with default settings.581
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Phenotype calculation. Segmentation returned five sets of cell masks - all T cells, all cancer cells, detached T cells, cancer582

cell aggregates, and cancer cell nuclei. For a set of cell masks, each frame consisted of a 600×600 array filled with either a583

zero, indicating no cell detected, or the unique cell ID number that occupies that region of the image.584

Count and growth rates. The number of T cells and cancer cells at any time, nt , was calculated by counting the number of585

unique non-zero cell IDs in any frame. The T cell growth rate was calculated by fitting an exponential model lognt = a0+a1× t,586

where t is the time in minutes post co-culture, for each genetic perturbation across all wells. Statistical significance of difference587

between perturbations was checked by calculating the p-values of the interaction term for each pair of perturbations, ai, in a588

joint fit lognt = a0 +a1 × t +a2 × p1 +ai × t × p1, where p1 is a binary indicator if the sample comes from the control or test589

group. Cancer cell death rate was calculated by fitting a linear model nt = ao +a1 × t, and statistical significance of differences590

between perturbation was calculated from the p-values of interaction terms in the joint fit nt = a0+a1× t+a2× p1+ai× t× p1591

as before.592

Area, roundness, and velocity. Area for any cell type was calculated by counting the number of pixels in an individual cell’s593

mask at a given time. Perimeter was calculated by counting the number of zero or different cell ID entries adjacent (1 row594

above or below, 1 column left or right, no diagonals) to the mask. Roundness was determined by the ratio 4π×Area
Perimeter2 . This ratio595

is 1 for a perfect circle and goes down as far as 0 for highly non-circular shapes. Speed was calculated as the euclidean distance596

between the centroid of a cell’s mask at times t and t +1. Speed was not calculated for instances where the cell mask moves out597

of frame or disappears.598

Cell divisions. Cancer division events were identified by Caliban from nuclei segmentation. The per T cell effect was599

calculated using a logistic regression fit pdivision = 1
1+exp−(a0+a1×d) , where d is the average local T cell density across the600

cancer cell’s track. The local T cell density for a cancer cell c is calculated by the average kernel distance to all other T cells601

detected in the frame at time t, dc = ∑
T
t ∑

nt
j exp(− (xc,t−x j,t )

2+(yc,t−y j,t )
2

l2 ), where (xi,t ,yi,t) represents the centroid of cell i at time602

t in pixels. The length scale l was set to 30 pixels to match the approximate radius of a single cancer cell.603

Interaction detection. An interaction was defined as having at least one pixel of the T cell mask adjacent to or overlapped604

with the cancer cell mask. Analysis was performed on interactions where both the T cell and cancer cell involved were tracked605

for at least two frames post-interaction. Area, roundness, and velocity were calculated as before. The interaction length was606

defined as the number of frames where both T cell and cancer cell involved met the interaction criteria.607

Markov transition matrix estimation. Each frame of segmentation was split into 50 pixels ×50 pixels adjacent, non-608

overlapping regions (12×12 or 144 boxes total). For each time t, the state s of region r was determined by counting the number609

of individual T cells, τ and cancer cell, κ , centroids in the region. The Markov transition matrix for any starting state, s0, for610

each perturbation was estimated by summing the number of times any state si occurred in the same region r at t +1 when the611

region r was at state s0 previously. This occurrence matrix is normalized by the total number of events to get a probability612

density. The probability of detachment, pd , was calculated as the total probability of any state with τ = 0 T cells and any613

number of cancer cells κ after an original state of (τ = 1,κ = 1). The time to detachment ι was estimated by mean of a negative614

binomial distribution requiring r = 1 one success (one detachment), ι = r(1−pd)
pd

, for each perturbation condition. Given all615

interactions were at least two frames in previous analysis, it was assumed that eight minutes of interaction had already that616

was added to the detachment time ι to get the final interaction time. The recruitment probability was calculated by counting617

the number of times the unique id of the additional T cell in state st+1 = (τ = 2,κ = 1) from st = (τ = 1,κ = 1) was also618

identified at t, divided by the total number of occurrence of st . The proliferation probability was calculated as the difference619

between overall transition probability from (τ = 1,κ = 1) to (τ = 2,κ = 1) and the recruitment probability, equivalently the620

percentage of times the additional cell did not have a track at the previous time point.621
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Supplement785

Supplementary File 1: DeepCell Label User Manual786

Supplementary File 2: Segmentation Correction Instructions787

Supplementary File 3: Tracking Correction Instructions788

Name Modality Annotation Type Cell Types Objects Tracks Divisions Source
DynamicNuclearNet Fluor. Nuclei Nuclear Mask 5 647,322 16,501 2,621 This work

DeepSea Phase Nuclear Mask 3 100,000 2,576 137 Zargari et. al.34

BTrack/CellX Fluor. Nuclei Nuclear Mask 1 - 1,032 - Cuny et. al.72

CTMC DIC Bounding Box 14 2,045,834 2,900 457 Anjum & Gurrari30

C2C12 Phase Centroid 1 135,859 23,400 7,159 Kerr et. al.28

CTC 2D+T DIC Part. WC Mask 1 - 70 18 CTC75

CTC 2D+T Phase Part. WC Mask 2 - 2,415 1,019 CTC75

CTC 2D+T Fluor. Nuclei Part. Nuclear Mask 3 - 1,227 395 CTC75

CTC 2D+T Fluor. WC Part. WC Mask 2 - 128 10 CTC75

CTC 2D+T Brightfield Part. WC Mask 2 - 459 242 CTC75

Supplementary Table 1. Publicly available labeled datasets for two-dimensional temporal (2D+T) cell tracking.
CTMC: Cell Tracking with Mitosis Detection Dataset Challenge, CTC: Cell Tracking Challenge, Fluor: fluorescent, DIC:
differential interference contrast, WC: whole cell, Part: partial.

Tracking Segmentation DET SEG TRA Div R Div P Div F1 MBC AA TE

Caliban Caliban 0.990 0.913 0.989 0.90 0.77 0.83 0.71 0.95 0.96
GT 1.000 1.000 0.999 0.95 0.92 0.94 0.88 0.98 0.98

Baxter Caliban 0.988 0.908 0.986 0.49 0.73 0.59 0.41 0.98 0.98
GT 0.997 0.996 0.997 0.60 0.89 0.72 0.56 1.00 0.99

Tracx Caliban 0.990 0.913 0.989 0.35 0.29 0.32 0.19 0.95 0.95
GT 1.000 1.000 0.999 0.34 0.54 0.42 0.27 0.98 0.98

CellTrackerGNN CellTrackerGNN 0.815 0.682 0.812 0.43 0.05 0.08 0.04 0.76 0.76
GT 1.000 0.999 0.996 0.65 0.10 0.18 0.10 0.93 0.93

EmbedTrack EmbedTrack 0.816 0.642 0.815 0.64 0.17 0.27 0.15 0.82 0.82

Supplementary Table 2. Benchmarking the performance of different tracking methods on the test split of
DynamicNuclearNet. Bold font indicates the best scores on predicted segmentations. Italic font denotes the best scores on
ground truth (GT) segmentations. CTC: Cell Tracking Challenge, DET: CTC detection accuracy46, SEG: CTC segmentation
accuracy76, TRA: CTC tracking accuracy76, Div R: division recall, Div P: division precision, Div F1: division F1 score, MBC:
mitotic branching correctness33, AA: association accuracy47, 48, TE: target efficiency47, 48.
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Tracking Segmentation DET SEG TRA Div R Div P Div F1 MBC AA TE

Caliban Caliban 0.994 0.897 0.993 0.77 0.88 0.82 0.70 0.99 0.99
GT 1.000 1.000 0.999 0.81 0.90 0.85 0.74 0.99 0.99

Baxter Caliban 0.992 0.894 0.991 0.73 0.82 0.77 0.63 0.99 0.99
GT 0.994 0.993 0.993 0.74 0.81 0.78 0.63 0.98 0.98

Tracx Caliban 0.994 0.896 0.991 0.09 0.44 0.15 0.08 0.98 0.98
GT 1.000 1.000 0.997 0.07 0.45 0.13 0.07 0.98 0.98

CellTrackerGNN CellTrackerGNN 0.931 0.846 0.929 0.51 0.24 0.33 0.20 0.92 0.92
GT 0.998 0.996 0.996 0.90 0.38 0.53 0.36 0.96 0.96

Supplementary Table 3. Benchmarking the performance of different tracking methods on the CTC Fluo-N2DL-HeLa
test movies. Bold font indicates the best scores on predicted segmentations. Italic font denotes the best scores on ground truth
(GT) segmentations. CTC: Cell Tracking Challenge, DET: CTC detection accuracy46, SEG: CTC segmentation accuracy76,
TRA: CTC tracking accuracy76, Div R: division recall, Div P: division precision, Div F1: division F1 score, MBC: mitotic
branching correctness33, AA: association accuracy47, 48, TE: target efficiency47, 48.

Supplementary Figure 1. Runtime for segmentation and tracking with Caliban. The total runtime for segmentation and
tracking is plotted as a function of the number of objects and frames in the sample. Each point represents a movie in the test
data split, with a unique color assigned to each movie.
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Supplementary Figure 2. Object-based evaluation of segmentation performance. Segmentation predictions were
evaluated based on object-level accuracy by first constructing a graph in which edges indicate an overlap between two objects.
Each subgraph is then isolated and analyzed to identify the type of segmentation error present. (a) Subgraphs with one ground
truth (GT) and one predicted node represent a true positive segmentation. Subgraphs containing only one node represent (b) a
false negative if the node is ground truth or (c) a false positive if the node is predicted. Subgraphs with three nodes indicate (d) a
merge if two ground truth nodes are associated with one predicted node or (e) a split if two predicted nodes are associated with
one ground truth node. (f) Finally, all subgraphs containing more than three nodes are assigned to the catastrophe error class.

Supplementary Figure 3. Division-based evaluation of tracking performance. Division events are classified as correct,
missed, or incorrect based on a comparison of the true and predicted tracking graphs. (a) A division is considered correct if the
prediction links the parent to the correct daughters within one frame of the ground truth division event. We allow divisions to
shift in time because segmentation predictions can change when the cell is identified as one or two objects. (b) Divisions are
identified as missed if the daughter cells are assigned to the incorrect parent or if no parent is identified. (c) A division is
incorrect if the parent is assigned to only one of the correct daughter cells.
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Supplementary Figure 4. State management in the DeepCell Label backend. (a) DeepCell Label uses XState, a library
for event-driven programming and state management, to drive its user interface (UI) and data labeling logic. Actors defined
with XState control interactions with UI components and with labeled data. Actors consist of a context with arbitrary data, such
as the settings for UI component or data labels; and a set of finite states and transitions between them. Actors receive events,
which trigger transitions between states. Events are sent by user interactions or sent from other actors. (b) The panning states
for the canvas actor. The actor begins in an idle state, where mousemove events update the position of the cursor. Upon a
mousedown event, the actor transitions into a panning state, where mousemove events instead change the position of the image,
enabling the user to browse the image. Once the user releases the mouse and triggers a mouseup event, the actor returns to the
idle state. (c) The undo actor broadly orchestrates state across all UI and data labeling actors to enable undoing and redoing
edits to labeled data. Actors that wish to subscribe to undo and redo events send an event to the undo actor to register itself as a
UI actor or a data labeling actor. When data labeling actors edit their labels, they send a SNAPSHOT event to the undo actor,
which then collects snapshots of all registered UI actors. When the user sends an undo event to the undo actor, the undo actor
resends the snapshot events associated with the edit, globally restoring the application to its state just before the edit. Each
registered actor maintains its own state and logic on how to implement undoable behavior, while the undo actor serves as a
shared channel to coordinate registered actors.
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Supplementary Figure 5. Segmentation pipeline for special cell type masks. A combination of Caliban and SAM was
used to get special cancer cell and T cell masks. Red nuclear channel images were used to generate cancer nuclei masks. Phase
images were used to generate T cell masks with DeepCell/Caliban and SAM, then ensembled for final masks. Red and phase
images were used to generate cancer cell aggregate masks with DeepCell/Caliban. Nuclear masks were used to prompt SAM to
generate a second set of masks ensembled with DeepCell to generate individual cancer cell masks. The difference between the
aggregate masks and individual cancer masks generated additional attached T cells for inclusion with the previous T cell masks.
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