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Ab s t r ac t
Objectives: To predict and characterize the three-dimensional (3D) structure of protein arginine methyltransferase 2 (PRMT2) using homology 
modeling, besides, the identification of potent inhibitors for enhanced comprehension of the biological function of this protein arginine 
methyltransferase (PRMT) family protein in carcinogenesis.
Materials and methods: An in silico method was employed to predict and characterize the three-dimensional structure. The bulk of PRMTs in 
the PDB shares just a structurally conserved catalytic core domain. Consequently, it was determined that ligand compounds may be the source 
of co-crystallized complexes containing additional PRMTs. Possible PRMT2 inhibitor compounds are found by using S-adenosyl methionine 
(SAM), a methyl group donor, as a positive control. 
Results: Protein arginine methyltransferases are associated with a range of physiological processes, including as splicing, proliferation, regulation 
of the cell cycle, differentiation, and signaling of DNA damage. These functional capacities are also related to carcinogenesis and metastasis-several 
forms of PRMT have been cited in the literature. These include PRMT-1, PRMT-2, and PRMT-5. Among these, the role of PRMT-2 has been shown 
in breast cancer and hepatocellular carcinoma. To gain more insights into the role of PRMT2 in cancer pathogenesis, we opted to characterize 
tertiary structure utilizing an in silico approach. The majority of PRMTs in the PDB have a structurally conserved catalytic core domain. Thus, 
ligand compounds were identified as a possible source of co-crystallized complexes of other PRMTs. The SAM, a methyl group donor, is used as a 
positive control in order to identify potential inhibitor compounds of PRMT2 by the virtual screening method. We hypothesized that an inhibitor 
for other PRMTs could alter PRMT2 activities. Out of 45 inhibitor compounds, we ultimately identified three potential inhibitor compounds 
based on the results of the pharmacokinetics and binding affinity studies. These compounds are identified as 3BQ (PubChem CID: 77620540), 
6DX (PubChem CID: 124222721), and TDU (PubChem CID: 53346504). Their binding affinities are −8.5 kcal/mol, −8.1 kcal/mol, and −8.8 kcal/
mol, respectively. These compounds will be further investigated to determine the binding stability and compactness using molecular dynamics 
simulations on a 100 ns time scale. In vitro and in vivo studies may be conducted with these three compounds, and we think that focusing on 
them might lead to the creation of a PRMT2 inhibitor.
Conclusion: Three strong inhibitory compounds that were non-carcinogenic also have drug-like properties. By using desirable parameters in root 
mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), molecular 
surface area (MolSA), and intermolecular hydrogen bonding, complexes verified structural stability and compactness over the 100 ns time frame. 
Keywords: Computer-aided drug design, Homology modeling, Inhibitor’s prediction, Molecular docking, Molecular dynamics simulation,  
Protein arginine methyltransferase 2.
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In t r o d u c t i o n
Protein arginine methyltransferases (PRMTs), or protein arginine 
N-methyltransferases, are a specific group of enzymes found 
in eukaryotes. They are responsible for transferring methyl 
groups from the co-substrate S-adenosyl-L-methionine (SAM or 
Ado-Met) to the guanidine nitrogen atoms in arginine residues 
of target proteins. This process leads to the creation of methyl 
arginine and S-adenosyl homocysteine (SAH or Ado-Hcy) as 
the final product and a side product, respectively.1 The PRMT-
mediated arginine methylation has received most attention for 
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its crucial cellular regulations including cell growth, transcription 
regulations, RNA splicing and transport, signal transduction, 
DNA repair, differentiation and embryogenesis, and nuclear/
cytoplasmic shuttling.2–10 It’s becoming clear that in epigenetics 
and oncology, PRMT family proteins are involved in maintaining 
normal physiologic processed as well as disease pathogenesis. 
Three major types of methyl arginine are known to generate: 
dimethylarginine (SDMS), each of which has potentially different 
functional consequences.8,10,11 Up to date, nine members of PRMT 
family have been identified in higher eukaryotes namely PRMT1 
to PRMT9. These nine PRMTs members further classified into 
three types: (PRMT-1, 2, 3, 4, 6 and 8) belongs to type I PRMTs and 
convert arginine to ADMA, (PRMT5 and PRMT9) belongs to type 
II PRMTs which generate MMA.1,12–14 Despite the identification of 
several hundred crystal structures of several PRMTs, a shortage 
of structural data and limited methyl transferase activity have 
prevented the characterization of the crystal structure of PRMT2 
at the structural level. 

 Protein arginine methyltransferase 2  is implicated in numerous 
biological functions and plays a pivotal role in governing key cellular 
processes. The PRMT2 functions as a transcriptional co-activator in 
a manner that depends on the presence of a ligand. It interacts with 
nuclear receptors such as estrogen receptor alpha, retinoic acid 
receptor, and androgen receptor, and boosts the transcriptional 
activity of these hormone receptors.15,16 Recent studies have 
demonstrated the role of PRMT2 in the development of cancer 
and the spread of cancer cells, particularly in breast cancer.17 In 
addition to its role as an important biological marker, PRMT2 
negatively regulated the expression of CCND1 in breast cancer 
cells, regulation the defective expression level of CCND1. It is widely 
recognized that the control of Cyclin D1 (CCD1) plays a crucial role 
in both cell proliferation and tumor growth. The overexpression 
of CCD1 in breast cancer cells proliferation is caused by the down 
regulation of PRMT2, which activates the Akt/GSK-3b/CCND1 
signaling pathway.18–20 Furthermore, PRMT2 governs the activity 
of E2F by interacting with the retinoblastoma gene family (RB). 
The PRMT2 and E2F work together to control the course of the cell 
cycle.18 In addition, potential role in the regulation of leptin-STAT3 
melanocortin pathway in the treatment of obesity and obesity-
related syndromes and interaction with 1B associated protein 
(E1B-AP5) also describes.21,22

The PRMT2 was initially discovered through its sequence 
similarity to the human PRMT1 gene and the genome of yeast 
methyltransferase HMT1 gene.23 It contains an Ado-met/SAM-
binding domain and N-terminal Src homology 3 (SH3) domain 
that recognizes proline-rich protein motifs.23,24 The two domains 
are linked by cis-proline protein motifs that are conserved with 
strictness.23 Both of the domains are linked by a cis-proline 254 that 
is preserved with high precision. The PRMT2 methylates histone H4 
and like PRMT1, it can methylate a fusion protein of glutathione 
transferase (GST) and the glycine–arginine region/patches (GAR 
motifs) of human fibrillarin.23 However, further study needs to be 
carried out about the structural and enzymatic activity of PRMT2.

Recently, the crystal structure of the PRMT2 catalytic module 
from zebrafish (Danio rerio) and from mouse (Mus musculus) has 
been described.25 In mammals, however, no significant study 
has yet been reported about the three-dimensional structure of 
PRMT2. The objective of this work is to use homology modeling to 
predict and describe the three-dimensional structure of PRMT2. 
Additionally, the study aims to identify strong inhibitors in order to 
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gain a deeper knowledge of the biological function of this protein 
from the PRMT family.

Mat e r ia  l s a n d Me t h o d s 
Protein Sequence Retrieval and Prediction of 
Secondary Structure 
The amino acid sequence of human PRMT2 was acquired in FASTA 
format from the UniProt Knowledgebase (UniProtKB) database 
(https://www.uniprot.org), which serves as a repository for 
meticulously curated protein data with comprehensive, precise, 
and consistent annotation.26 The protein is identified by its primary 
accession number, P55345, and consists of 433 amino acids. The 
ProtParam server was used to determine the physiochemical 
characteristics (https://web.expasy.org/protparam/). The PSIPRED 
and SOPMA tools were used to estimate the secondary structure.27,28 
The protein’s secondary structure consists of various elements, 
including α helix, 310 helix, pi helix, beta bridge, prolonged strand, 
beta turns, bend area, random coil, ambiguous states, and others. 
The SOPMA employs homologous protein identification, sequence 
alignment, and a conformational score determination method to 
forecast these characteristics. The correlation co-efficient value 
confirmed the precision of the forecast. The amino acid sequences 
were inputted in a plain text format, and the default parameters 
were specified.

Tertiary Structure Prediction and Refinement 
The 3D structure of human PRMT2 was modeled based on the 
available crystal structure template deposited in the Protein 
Data Bank (PDB). The template was selected from the template 
identification wizard of Swiss Model. Few parameters were 
considered while selecting template and they are global structure 
quality estimation (GMQE), quaternary structure quality estimation 
(QSQE), and sequence identity, methods of the template structure 
determination and the resolution of the structure.29 To obtain a 
stable conformation of the predicted protein, YASARA online energy 
minimization server was utilized.30 For the visualization purpose, 
BIOVIA discovery studio was used.31

Model Evaluation and Validation 
The stereo chemical quality of the protein 3D structure and its 
overall structural geometry were confirmed using PROCHECK, 
ERRAT and VERIFY3D.32,33 The Ramachandran plot statistics were 
examined in order to assesses the stability of the model and 
the validation of the residues.34 Additionally, root mean square 
deviation (RMSD) was used by the superposition of the query and 
the template structure via PyMOL to measure the quality of the 
model.35

Mo l e c u l a r Do c k i n g An a lys i s 
Ligand Retrieval and Preparation 
Phytochemical information based on their inhibitory activity 
total 45 ligands were retrieved though literature search.36,37 The 
3D structure of phytochemicals were saved in SDF format from 
the PubChem database and permuted into PDB files by using 
PyMOL.38,39 Phytochemical’s energy minimization was done by 
using Avogadro tools.40,41 

Active Site Prediction 
The active site of the modeled protein was predicted by the web 
server CASTp (http://surl.li/cgnks). The default probe radius of 1.4 Å 
was used, and the area, volume, and sequence ID were calculated.42

Structure-based Virtual Screening and Molecular 
Docking 
To get started, PyRx, PyMOL, and BIOVINA discovery studio were 
utilized for structure-based virtual screening bioinformatics tools. 
The RCSB PDB and PubChem database are excellent sources for 
protein data retrieval, assessment, and analysis. 

The mechanism of interactions and binding of phytochemicals 
with the homology model of PRMT2 was determined by molecular 
docking approach. The small molecules that were obtained 
and the expected PRMT2 were submitted into the PyRx virtual 
screening tool. The target protein completed conversion into 
macromolecules, while phytochemicals were transformed into 
ligands. Additionally, atomic coordination was modified into PDBQT 
format. The parameters and grid box are set to a standard value, 
with the center box positioned at X = −14.5754, Y = −1.6991, 
Z = 18.9045. The dimensions of the box are X = 46.9649990368, 
Y = 73.9918595886, Z = 67.7502706909 Å. Subsequently, the 
docking data performed screening to determine their binding 
affinity, and all feasible docked conformations were then saved 
in CSV format. Only the conformations that exclusively interacted 
with the active-site residues of the targeted PRMT2 protein were 
examined. Detailed interactions were then investigated using 
Discovery Studio and PyMOL. The docking results were given as a 
negative score in kcal/mol, with the lowest value representing the 
maximum binding affinity. 

Ligand-based ADME and Toxicity Prediction 
The pharmacokinetic characteristics of extremely small molecules 
were assessed using the online program Swiss ADME. Lipinski’s rule 
of five indicates that a molecule is likely to have desirable drug-like 
qualities if it meets at least four out of five criteria. These criteria 
include having a molecular weight of 500 Daltons, hydrogen bond 
acceptor ≤5, hydrogen bond donor ≤10, lipophilicity <5, and a 
molar refractivity value between 40 and 130. Compounds that 
satisfy Lipinski’s criteria are considered to be optimal prospects 
for medication development. The admetSAR tool was utilized to 
forecast the toxicological characteristics of specific chemicals. The 
prediction included AMES toxicity, carcinogenicity, hepatoxicity, 
oral acute rat toxicity (LD50), and suppression of hERG I and II.

Molecular Dynamics Simulation 
The “Desmond v3.6 Program” in Schrödinger (https://www.
schrodinger.com/) was used to conduct a molecular dynamic 
simulation of the suitable three complexes; PRMT2-CID:124222721, 
PRMT2-CID:53346504, and PRMT2–CID:77620540. The OPLS3e 
force field is one of the variants of the optimized potential for 
ligand simulations (OPLS) force field that was used to compute 
the potential energy of the complexes inside the solvency system; 
it is suggested that it has higher accuracy in the protein–ligand 
binding.43 The default TIP3P water model was utilized to build the 
solvent within the orthorhombic periodic boundary condition at 10 
Å distances. A value of 0.15 M salt has randomly distributed inside the 
solvent system. Using NPT ensembles, the equilibrium procedure 
was conducted out for 50 ps at 1.2 kcal/mol, with the Nose–Hoover 
and isotropic methods held at 300 K and one atmosphere pressure. 

https://www.schrodinger.com/
https://www.schrodinger.com/
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The protein–ligand complex’s sustainability was assessed using 
the RMSD, root-mean-square fluctuation (RMSF), radius of gyration 
(Rg), solvent accessible surface area (SASA), molecular surface area 
(MolSA), and intermolecular interactions fraction.

Re s u lts a n d Di s c u s s i o n 
Secondary Structure Prediction and Physiochemical 
Properties 
The ProtParam and SOMPA analyzed the physiochemical properties 
and secondary structure. The ProtParam server calculated 
analogous properties of PRMT2’s building blocks, and the number 
of amino acids reported is 30530, molecular weight is 32532510.61 
kDa, and theoretical isoelectric point (PI) is 4.34. The PI values 
suggest protein is acidic. There are no adversely (Asp + Glu) and 
definitely (Arg + Cys) charged buildups, thus the desired protein is 
charge neutral and constitutes 25.9% Ala (A), 24.5% (G), and 28.6% 
Thr (T) amino acid residues. 

Using secondary structure analysis to predict protein function 
and structure is becoming more common. Secondary structure 
parameters of PRMT2 in human contain alpha helix, extended 
strand, and random coil with a percentage of 26.33, 24.02, and 
49.65, respectively (Table 1). 

Tertiary Structure and Quality of Modeled Protein 
The three-dimensional structure of the focused PRMT2 was 
displayed in Swiss-model via selection of the one top suitable 
template (5ful.1), and the target arrangement was based on the result 
of qualitative model energy analysis (QMEAN) score of 0.67, global 
model quality estimate (GMQE) score of 0.74, sequence identity 
88.18%, and the method by which the structure was determined. 
The less the resolution of the crystal structure is available, the better 
the quality. Therefore, the X-ray crystallographic structure with 1.9 
is the best structure available and was selected as a template. A total 
of 40 templates were found and the top 5 of them are arranged in 
the Table 2. 

The template (5ful.1) was used to create the model of a target 
protein obtain from the RCSB-PDB database. It is the crystal 
structure of PRMT2 of Mus musculus. The template structure is a 
homodimer protein, containing two polypeptide chains, e.g., A 
and B chains. 

The tertiary structure was predicted and further modified by 
using the YASARA online energy minimization server for getting 
the more structurally suitable one. Before energy minimization, the 
calculated energy was −310625.4 KJ/mol, though after minimization 
it was −3931136.1 KJ/mol. The superposition of template and 
model was done by PyMOL and appeared a RMSD after energy 
minimization esteem of 0.278 and proved efficiently a high level of 
similarity. The showing superposition of the template and model 
structure, which were red and blue colored, respectively (Fig. 1). 

The PROCHECK evaluated validation of the anticipated structure 
through Ramachandran plot analysis appeared in Figure 2, where 
the distribution of angles in the model within the limits and the 
favored, allowed, and generously allowed zones are symbolized 
by the red, brown, and yellow color region, respectively. 

Parameters like the favored, allowed, and generously allowed 
regions, as well as the G-factor are key factors for determination 
of a good model.44 The 3D structure appraisal was determined by 
Ramachandran plot appeared that 91.6% of the full buildups were 
found within the core (A, B, L); in the additional allowed regions 
(a, b, l. p) 7.8% of residue was found; the generously allowed regions 
(a, b, l, p) contained 0.3% of residue, as well as 0.3% of residues, 
were also obtained in the disallowed regions. Among the total 
residues, non-glycine, and non-proline residues were 604, which 
was the indication of 100%; the end-residues (excluding Gly and Pro)  

Table 1: Percentages of secondary structure components of PRMT2 in 
human by SOMPA

Secondary structure Number of residues Percentage (%)

Helix (Hh) 114 26.33

Helix (Gg)     0   0.00

pI helix (li)     0   0.00

Beta bridge     0   0.00

Extended strand 104 24.02

Beta turn     0   0.00

Bend region     0   0.00

Random coil 215 49.65

Ambiguous state     0   0.00

Other states     0   0.00

Table 2: Template results 5 out of 40 from Swiss-Model template identification wizard

Templates Coverage GMQE QSQE Identity Method Oligo state 

1 5ful.1.A
Crystal structure of Mus musculus PRMT2 with SAH

0.82 0.72 88.19 X-ray
1.9 

Homo-dimer

2 5ful.1.A 
Crystal structure of Mus musculus PRMT2 with SAH

0.82 0.72 87.73 X-ray
1.9 

Homo-dimer

3 5fub.1.A 
Crystal structure of zebrafish PRMT2 catalytic domain 
with SAH

0.72 0.77 59.40 X-ray
2.0 

Homo-dimer

4 5fub.1.A 
Crystal structure of zebrafish PRMT2 catalytic domain 
with SAH 

0.72 0.77 59.82 X-ray 
2.0 

Homo-dimer

5 5g02.1.A 
Crystal structure of zebrafish PRMT2 with SFG

0.72 0.47 59.52 X-ray
2.5 

Homo-dimer 
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Fig. 1: Superposition presentation of the template and model structure in which the red color demonstrates the template structure and blue 
color represents the model structure

Fig. 2: Ramachandran plot statistics for modeled PRMT2 protein structure
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were 4; the glycine residues and proline residues were 34 and 34, 
accordingly. 

However, structure validation and Ramachandran plot analysis, 
Verify3D, and ERRAT server confirmed the established three-
dimensional structure model for the desired target sequence. 
However, the Verfi3D graph showed that 87.13 of the buildups have 
an average 3D–1D score of 0.2, which outlines that the natural profile 
of the model is good. The, by and large, quality factor anticipated 
using the ERRAT server was 97.572, demonstrating a much better 
model. The three-dimensional structure of modeled PRMT2 is 
shown in Figure 3.

Active Site Prediction 
An active site is usually a small region compared with the enzyme 
(10–20% volume of an enzyme) responsible for binding a substrate 
molecule and undergoing a chemical reaction. The area and volume 
were determined to be 2853.876 m2 and 720.473 m3, respectively. 
Active site area on a single monomer A of modeled PRMT2 shown 
in Figure 4. The sequence ID, chain, and amino acid code for the 
active site are shown in Supplementary Table 1. 

Computational Molecular Docking Studies 
In computer-aided drug design (CADD), molecular docking is one 
of the foremost broadly used procedures for discovering novel 
drugs.45,46 We selected our hypothesized protein for molecular 
docking and further MD simulation studies in this experiment. 
Forty-five small compounds were chosen as ligands with their 
inhibitory activity against PRMTs through a literature search.37 

Firstly, molecular docking analysis was carried out, and the 
retrieved compounds were shown in Supplementary Table 2. 
The docking score of this study indicates the strength of the 
chemical-protein binding activity. An initial validation is made 
using the binding energy of the molecular docking simulation. 
The compounds with greater binding affinity than SAM (−7.2 
kcal/mol) were considered for further analysis. Researchers used 
SAM as a positive control inhibitor against the PRMT family.47,48 
Furthermore, a re-docking approach was conducted to compare 
the binding affinity of chosen compounds with their corresponding 
PDB structure. Surprisingly, all the selected compounds showed 
greater binding affinity than their corresponding PDB structure. 

Therefore, a total of eight ligands were docked with PRMT2 
protein, and the binding energy of each ligand is listed in Table 3, 
where interaction residues of PRMT2 with selected compounds are 
described. Additionally, among the eight ligands, the representation 
of binding interaction of protein residues with selected ligands 
3BQ, TDU, and 6DX is shown in Figures 5 to 7, respectively. The 
results of virtual screening binding affinity studies indicate that all 
compounds bind to active site residues. 

Drug-likeness and Toxicological Studies of the 
Selected Compounds 
Monitoring and checking the drug-likeness characteristics as a 
preliminary screening of drug discovery processes has been used in 
the recent past. The drug-like properties of the compounds chosen 
based on their highest binding affinity were later predicted using 
the online-based Swiss ADME server (Supplementary Table 3). 
Except for 6DX, 6D3, and 78G, five of the eight compounds adhere 
to the drug-like properties, acceptable molecular weight range, 
hydrogen bond acceptor and donor range, and high GI absorption. 
Toxicological properties calculations suggest that carcinogenic 
effect are absent for all the compounds and only 3ZG showed AMES 
toxic, indicating that the threat of mutagenicity is absent for most 
of the compounds. All of the chosen compounds were invented 
to be frail hERG I inhibitors. Additionally, weak rat acute toxicity 
are shown with a median lethal dose (LD50) ranging from 1.743 to 
2.713 mol/kg for the selected compounds (Supplementary Table 4). 

Mo l e c u l a r Dyn ami   c s Sim  u l at i o n 
Root Mean Square Deviation Analysis 
For the determination of the structural stability of the complex’s 
protein–ligand interaction molecular dynamics simulation study 
were used. The average change in spatial differences between a 
docked complex and a post-simulation complex structure is 
measured using an RMSD analysis. During the 100 ns simulation, 
the first protein structure (C, backbone, side chain, and heavier 
atom) was followed by protein-fit ligand aligned and assessed, 
where the RMSD value was calculated by the equation below:

RMSDx i i= ∑ ( )− ( )( )=
1

11

2

N
r ti

N ’
x r tref 

Fig. 3: Three-dimensional representation and domain annotation of 
modeled PRMT2

Fig. 4: Representation of predicted active site area (shows as spheres 
and surface) on a single monomer A of modeled PRMT2
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Where, N indicates the number of atoms; tref denotes the 
reference time; and r is the system x bit chosen after superimposing 
the reference system’s point.

The average change in the area of RMSD of the protein–ligand 
complex is impeccably satisfactory, with a extend of 1–3 Å,  
and a more prominent esteem indicates the protein structure 
has experienced a noteworthy conformational alter. The three 
complexes, PRMT2-CID: 124222721, PRMT2-CID: 53346504, and 
PRMT2-CID: 77620540, show an overall low RMSD value (Fig. 8).

The regular and consistent RMSD average (1.7 Å) during 100 ns 
simulation, which strongly coincides with docking results, indicates 
the ligand’s robust binding to the protein.

Root Mean Square Fluctuation Analysis 
Root mean square fluctuation is a calculation of individual residue 
flexibility which measures the average displacement of residues 
over time from a fixed position and is typically plotted vs 

Table 3: Results of molecular docking analysis of modeled PRMT2 and binding affinity of selected compounds with corresponding PDB

Ligand no.

Ligand identity Binding interaction of modeled PRMT2 Docking score (kcal/mol)

PubChem  
CID Name

Hydrogen bond  
interaction residues

Hydrophobic bond  
interaction residues

With Modeled 
PRMT2

With corresponded 
PDB structure 

3 70678415 KTD GLU220, ASN291, HIS369 TYR102, TYR290, ARG403 −8.4 −6.8

4 77620540 3BQ GLU220, ASN291, HIS369, 
SER105

HIS369, ARG403, TYR102 −8.5 −8.4

5 90642938 3ZG TYR102, TYR106, GLU220, 
AS291, TRP370, GLU211

TYR106, HIS369, MET115 −9.2 −7.7

6 53346504 TDU GLU220, ASN291, HIS369 TYR290, ARG403, TYR102 −8.1 −7.8

11 124220671 6D3 ASN291, SER105, GLU211, 
MET213, GLU220, GLU114, 
ASN291, HIS369, TYR106

GLU220, HIS369 −8.1 −7.9

12 124222721 6DX ARG121, CYS146, GLU211, 
GLU168, MET213, TRP212, 
GLY214, GLU220, GLY145

−8.8 −7.6

40 129900308 78G THR215, LYS371, GLNN98, 
SER105, GLU114, GLN98, 
THR215, GLY214, SER105

−8.1 −7.5

44 92205686 A0S GLU220 LEU111, TRP432, TYR102, 
HIS404

−8.1 −6.3

Figs 5A to C: Binding mode and chemical interaction of ligand compound 3BQ with PRMT2, (A) Solid surface structure of PRMT2, where ligand was 
colored as green, binding on active site; (B) Three-dimensional representation of 3BQ with interacted residues on active site; (C) Two-dimensional 
representation of binding interaction diagram of 3BQ with PRMT2
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residence time. The value of RMSF can be determined by the 
following equation:

Where, T signifies the trajectory time in general; tref represents 
the reference or provided time; r refers the position of the selected 
atom in framework I after transposition onto the reference frame. 
The RMSF curves in Figure 9 show that all three complexes fluctuate 
at the beginning and at the end. 

Most of the fluctuations are observed in the N-terminal and 
C-terminal of the protein. The fluctuation patterns of the PRMT2-
CID: 12422271 and PRMT2-CID: 53346504 complexes are nearly 
identical, while the fluctuation of the PRMT2-CID: 77620540 
complex is slightly higher. PRMT2-CID: 533465904 and PRMT2-CID: 

77620540 exhibit fluctuations greater than 3 Å at the beginning and 
between 300 and 400 residue indexes. 

Radius of Gyration Analysis 
During a 100 ns simulation, all three complexes have an average 
Rg of within 3–5 Å, indicating the overall structure’s compactness 
while rotating over an axis (Fig. 10). 

These RMSD and RMSF values, as well as Rg ranges for each 
complex, bolstered the joining of screened potential compounds 
into PRMT2’s active location.

Analysis of SASA and MolSA 
The region of a protein that interrelate with its solvent molecules 
is termed as its SASA. Because the area of every protein residue 
exposed to the solvent acts as the active site, calculating this area 
is critical for structural, hydrophobic/hydrophilic, and protein–
ligand interaction components. The SASA value of CID: 124222721 

RMSFi i i= ∑ ( )− ( )( )=
1

21

2

N
r ti

N ’ r tref 

Figs 6A to C: Binding mode and chemical interaction of ligand compound TDU with PRMT2, (A) Solid surface structure of PRMT2, where ligand was 
colored as green, binding on active site; (B) Three-dimensional representation of TDU with interacted residues on active site; (C) Two-dimensional 
representation of binding interaction diagram of TDU with PRMT2

Figs 7A to C: Binding mode and chemical interaction of ligand compound 6DX with PRMT2, (A) Solid surface structure of PRMT2, where ligand was 
colored as green, binding on active site; (B) Three-dimensional representation of 6DX with interacted residues on active site; (C) Two-dimensional 
representation of binding interaction diagram of 6DX with PRMT2
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Fig. 8: The RMSD value of the c-alpha atom of three protein–ligand 
complex for 100 ns

Fig. 9: The RMSF result of three protein–ligand complexes across amino 
acid residues

Fig. 11: Protein surface region measured from SASA descriptors of three 
protein–ligand complexes for 100 ns

Fig. 10: The radius of gyration profile of three protein–ligand complexes 
for 100 ns

Fig. 12: Molecular surface area (MolSA) of three protein–ligand complex 
for 100 ns

remined high and exposed a high amount of solvent for 20 ns, then 
it maintained an average of 300 Å2 for the rest of the 100 ns time 
frame. Similarly, compound CID: 77620540 exhibits a high SASA 
value for approximately 45 ns, after which it remained consistent. 
The compound CID: 53346504 has an average 250 Å2 SASA value, 
indicating the protein–ligand complex did not increment in volume 
during the process of simulation (Fig. 11).

The molecular surface area (MolSA) is a proximal approximation 
of the van der Waals surface area where water handled as a solvent 
is typically depicted by a sphere with a radius of 1.4. Understanding 
the protein surface and interior cavities with small molecules is 
critical in structure-based drug design. All the compounds have a 
standard molecular surface area in this study (Fig. 12).

Analysis of Intramolecular Bonds 
The simulation interaction diagram (SID) was utilized to consider 
the interactions fraction, particular ligand contracts with amino 
acid residues for a 100 ns simulation time. The ways through which 
the protein interacted with the ligand molecules were hydrogen 
bonds, non-covalent bond (hydrophobic bond), ionic interactions, 
and water bridges. The hydrogen bonding between a ligand and 
a biological receptor is crucial for the bonding specificity, drug 
transport, and pharmacokinetics of the ligand.49,50

In Figure 13, the stacked bar chart A, which represents 
compound CID: 124222721, indicates that PRMT2 residues such as 
GLU302, PRO303, LYS332, and PHE364 bind in substantial amounts. For 
example, PRO303 and LYS332 have all four types of binding properties: 
hydrogen, hydrophobic, ionic, and water bridges.

 The interaction fraction of the compound CID: 53346504 in the 
stacked bar chart B shows that protein residues A: GLU270, B: GLU119, 
B: THR123, and B: PRO363 have a greater number of hydrogen bonds. 
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Figs 13A to C: The stacked bar chart depicts the interactions fraction among amino acid residues with ligands compounds of the modeled protein

In the graph, compound CID: 77620540 interacted with PRMT2 
active site residues, including A: SER260, A: LYS261, B: GLU114, B: 
ALA117, and B: LYS371.

Co n c lu s i o n s

The study demonstrated in silico molecular characterization 
of alternatively modeled PRMT2 and predicted three potent 
inhibitors from 45 inhibitor compounds. We hypothesized that 

small compounds (inhibitors) from other PRMTs may be related 
to modifications within the enzyme’s movement of PRMT2, and 
for this reason, recognizable proof of particular inhibitors of 
PRMT2 is profoundly alluring. Homology modeling methods 
assessed the three-dimensional structure of the displayed PRMT2. 
Computational molecular docking studies also demonstrated that 
our identified three inhibitors, 3BQ, 6DX, and TDU, had higher 
binding potential. Moreover, the selected three potent inhibitor 
compounds were non-carcinogenic and possessed acceptable 
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drug-likeness and toxicological properties. The MD simulations 
study for the 100 ns time frame, complexes confirmed structural 
stability and compactness by executing favorable results in RMSD, 
RMSF, Rg, SASA, MolSA, and intermolecular hydrogen bonding. 
Further validation as well as experimental inquire, both in vitro and 
in vivo testing and applications are required to affirm their adequacy 
against PRMT2. Further studies will be required to get its role in 
different cancers including liver cancer and other gastrointestinal 
cancers.

Data Availability 
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addition, the reader may request access to the data used to support 
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