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Pseudomonas pseudoalcaligenes S1, a marine bacterium, exhibited strong resistance to a high concentration of Hg2� and re-
markable Hg2� bioaccumulation capacity. Here, we report the 6.9-Mb genome sequence of P. pseudoalcaligenes S1, which may
help clarify its phylogenetic status and provide further understanding of the mechanisms of mercury bioremediation in a marine
environment.
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Bacteria have been used for bioremediation because they have a
high capability for heavy metal uptake under a wide range of

external conditions, such as high salinity and the presence of a
variety of ions in the marine environment (1–3). On 6 October
2010, we isolated P. pseudoalcaligenes S1 (CGMCC 7.206) from
seawater and marine sediment samples in a mangrove conserva-
tion district of Shenzhen Bay, China (113.944°E, 22.486°N).
P. pseudoalcaligenes S1 was preliminarily investigated by us (4) for
its bioaccumulation and attractive mercury resistance which has
the highest value reported so far (5, 6). It has generally been ac-
cepted that the mercury resistance of microorganisms depends on
the intracellular expression of MerA, a mercuric reductase confer-
ring cells to reduce Hg2� to Hg0 (7). In this case, microbial cells
will not exhibit high Hg2� accumulation capacity, because Hg0 is
subject to volatilization into the air. However, the high Hg2� ac-
cumulation capacity of P. pseudoalcaligenes S1 suggested that the
mercuric reduction strategy cannot completely explain its toler-
ance of high Hg2� concentrations. Therefore, we hypothesize a
novel mechanism in this marine bacterium for both strong Hg2�

tolerance and high Hg2� bioaccumulation. In our current paper,
we performed whole-genome sequencing of P. pseudoalcaligenes
S1 in an attempt to provide the genetic basis for further under-
standing the mechanisms of mercury bioremediation and resis-
tance.

The P. pseudoalcaligenes S1 genome was sequenced by an Illu-
mina HiSeq 2000 platform with the high deep shotgun strategy
(8). Two independent libraries with insert sizes of 500 bp and
6,000 bp were constructed using the standard protocol from Illu-
mina (San Diego, CA, USA). We obtained 1.18 Gb of raw data.
SOAPdenovo2 (version 2.04.4) (9) with optimized parameters
(pregraph, K 35 – d 1; contig, M 0; scaff, F – b 1.5 –p 16) was
subsequently employed to assemble the genome sequences, and

Gapcloser1.10 was used to fill the gaps in the scaffolds, finally
resulting in a 6.9-Mb assembly (62.5% G�C content). The gen-
erated assembly is composed of 131 scaffolds and 133 contigs, with
N50 values of 1.4 Mb. All the assembled data were deposited in the
NCBI nucleotide sequence database.

Protein-coding genes were predicted using the NCBI Pro-
karyotic Genome Annotation Pipeline, which is designed to
annotate bacterial and archaeal genomes. Finally, we obtained
6,500 genes, 5,779 protein-coding genes, 78 tRNAs, 8 rRNAs,
and 1 noncoding RNA.

Genes for mercuric regulation (merR), mercuric transport
and binding (merT and merP), and metal ion efflux pump
(CzcA) were identified from the P. pseudoalcaligenes S1 com-
plete genome. They may be responsible for the adaptation of
mercury contamination through transmembrane transporta-
tion and active efflux (10–13), therefore, they may help practice
the function of high mercury resistance and accumulation in
the marine bacterium P. pseudoalcaligenes S1. In addition, the
gene for mercuric reduction (merA) was also predicted from
our transcriptome data; however, its function remains a mys-
tery.

Nucleotide sequence accession numbers. This whole-genome
shotgun project has been deposited in DDBJ/EMBL/GenBank un-
der the accession no. JTFL00000000. The version described in this
paper is the first version, JTFL01000000.
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