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Abstract

The most important information about microorganisms might be their accurate genome

sequence. Using current Next Generation Sequencing methods, sequencing data can be

generated at an unprecedented pace. However, we still lack tools for the automated and

accurate reference-based genotyping of viral sequencing reads. This paper presents our

pipeline designed to reconstruct the dominant consensus genome of viral samples and ana-

lyze their within-host variability. We benchmarked our approach on numerous datasets and

showed that the consensus genome of samples could be obtained reliably without further

manual data curation. Our pipeline can be a valuable tool for fast identifying viral samples.

The pipeline is publicly available on the project’s GitHub page (https://github.com/laczkol/

QVG).

Introduction

The first-hand experience of the severe acute respiratory syndrome coronavirus 2 (SARS--

CoV2) pandemic is that effective outbreak management requires fast and strain-level identifi-

cation of the causative pathogens. The most fundamental information about microorganisms

might be their accurately reconstructed genome sequence, which can provide insight into the

evolution of pathogens and the clinical outcomes of outbreaks [1]. The application of Next

Generation Sequencing (NGS) revolutionized the identification and study of microorganisms

by providing an ever-increasing amount of genome sequence data available for data processing

and research. Although laboratory instruments are available for numerous research and medi-

cal facilities [2], the lack of bioinformatic tools became a bottleneck that hinders high-through-

put analysis. Therefore, new, widely, and openly available bioinformatic tools are needed to

keep pace with the increasing speed of data generation, and the growing amount of data capa-

ble of performing the rapid and accurate analysis of multiple samples sequencing reads.

Although open-source virus genome reconstruction and identification tools exist, some of

them are limited or optimized to one species; e.g. HCV [3] is optimized for hepatitis C, Min-

Var [4] for the HIV-1, and ViralFlow [5] for the SARS-CoV2 virus. These tools may be ideal

for genotyping a given viral genome, but their broad applicability may be limited by their
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species-specific design. Different pipelines focus on different output formats with examples of

limited (e.g. although being very user-friendly, the main output of MALVIRUS [6] is a vcf file

of variants) and very rich outputs (e.g. the consensus and statistics of TRACESPipe [7] and

nfcore-viralrecon [8, 9]. There is also great variability in the utilization of bioinformatic tools

in openly available pipelines. TRACESPipe [7] uses bwa [10] or bowtie2 [11], of which the lat-

ter can be slower under certain conditions and can show improper pairing of sequence mates

[12]. The performance of these aligners and the trade-off between sensitivity and computa-

tional time are influenced by sequencing data quality and the setting of software options. TRA-

CESPipe [7] then uses de novo assembly to obtain the possible most complete and accurate

consensus sequences. The target-based version of the TRACESPipe [7] pipeline, TRACESPipe-

Lite [13], utilizes bwa [10] by default to align the reads to the reference genome. V-pipe [14]

utilizes LoFreq [15] or ShoRAH [16], and viralrecon [8, 9] uses iVar [17] (capable of analyzing

multiple samples simultaneously) as default for amplicon-based datasets to call polymor-

phisms, all of which variant callers might show a lower accuracy [18, 19]. The variant caller in

viralrecon [8, 9] be changed to bcftools [20] (default for metagenomic datasets), a variant caller

with higher accuracy [19]. Freebayes [21] has comparable accuracy to bcftools [22] and, owing

to its customizability, may be ideal to adapt to a wide range of datasets. However, to our

knowledge, freebayes [21] is rarely applied in pipelines aiming at reconstructing viral diversity,

although the constant development of this tool may contribute to its widespread adoption.

One exception is ViReflow [23], which relies on the utilization of specific, potentially costly

services, such as the Amazon Web Services (AWS) cloud computing resources to achieve a

high analysis speed.

This paper presents our approach to the accurate reference-based mass analysis of targeted

viral genomes. The pipeline was developed in bash and can be parameterized from the com-

mand line. We aimed to combine a rich set of analysis tools for the comprehensive analysis of

viral variability of samples. In our work, we automatized the reconstruction of the dominant

consensus genome sequence, its’ annotation, and the within-host variability. Our pipeline also

outputs statistics of sequencing quality and analyses breadth of coverage and read depth. Input

samples can be specified using a list of sample file basenames. Our goal was to make the pre-

sented pipeline user-friendly while supporting its adaptation to a wide range of datasets with

maintaining accuracy and promoting the quick analysis of samples. We paid attention to

avoiding the usage of proprietary software to enhance the availability and transparency of the

method. Our pipeline is freely available on the project’s GitHub page (https://github.com/

laczkol/QVG).

Description of the pipeline

The pipeline relies on existing tools to characterize samples using NGS data and is designed to

readily use the output of any Illumina platform in.fastq format. The method (Fig 1) can be

applied to both single-end and paired-end sequencing. First, reads are checked for quality and

adapter content using fastp 0.20.1 [24], and statistics are exported to.html format. This step is

able to trim and quality filter the reads to remove sequencing biases. The sequencing reads are

kept separate while maintaining the order of read pairs. Since the alignment specificity tends

to decrease with shorter read lengths [12], we do not suggest using reads shorter than 72 base

pairs (bp). The filtered reads are aligned to the reference genome sequence using bwa 0.7.17

[10]. Next, duplicates (i.e. PCR duplication artifacts and optical duplicate reads originating

from the same DNA fragment incorrectly identified as two separate clusters) are marked with

sambamba 0.8.2 [25] and descriptive alignment statistics, including reference genome breadth

(i.e. the fraction of the reference genome covered by any number of reads), read depth,
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samtools’ simple statistics (flagstat) and index statistics, are produced with samtools 1.15.1

[26]. Sample files are subset to include only samples covering at least a given proportion of the

reference genome (default is 90%). Statistics are plotted using R 3.5 [27] and summarized in.

pdf files. Prior to genotype calling, using bedtools 2.29.2 [28] and sambamba slice 0.8.2 [25],

high-depth alignment positions are clipped with a default threshold of 10 times the mean

sequencing depth. Additionally, if sequencing depth bias is expected [29] the evenness of the

read depth can be improved by resampling the depth using consecutive genomic windows to a

Fig 1. Schematic representation of the QVG pipeline. White boxes represent input data needed to run the pipeline, and differently shaded gray boxes

show the main consecutive steps of the workflow proposed in this study. The main outputs are shown in dark gray boxes.

https://doi.org/10.1371/journal.pone.0274414.g001
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fixed number of alignments. If this feature is turned on, the pipeline looks for 500 alignments

in 100 bp long genomic windows as default values. This smoothing of reads aims to both

decrease the running time of variant calls and the frequency of false polymorphisms. The

threshold of clipping and optional resampling can be set using the command line to boost

adaptability. Clipping of high-depth alignments is carried out before resampling. To capture

the polymorphisms of samples, two variant calls are performed, both of which use freebayes

1.0.0 [21] and parallel [30] to call variant positions of multiple samples simultaneously. We set

freebayes to use the five most probable alleles and annotate variants only with a minimum

read depth of five. Base quality scores and mapping quality must have a value larger than 30 to

include in variant calling. Alternative alleles with a frequency lower than 20% are excluded

from this step. We run freebayes with clumping of haplotypes disabled, Hardy-Weingberg

Equlibrium (HWE) priors turned off, and use the mapping quality, read placement, strand bal-

ance, and read position probability instead. Ploidy is set to one in the first variant call to anno-

tate the dominant genome’s polymorphism. The computationally most intensive step of the

pipeline is variant call. The number of samples analyzed simultaneously in this step equals the

number of CPU threads specified, utilizing all the memory needed to genotype those samples

simultaneously. Using vcflib 1.0 [31] variants are filtered for a minimum quality of 10 and a

ratio of quality / alternate allele observation count of 10 (i.e. each observation is required to

have a quality score of at least 10) to remove poor quality variants discovered on alignments

with low mapping quality due to, for example, aligning the reads to repetitive regions. This fil-

tering aims to decrease the frequency of false positive polymorphisms, potentially distorting

the results of downstream analyses relying on genomic variability. Then, single-nucleotide

polymorphism (SNP) density in 1kbp consecutive windows is extracted from the resulting.vcf

files is extracted using vcftools 0.1.16 [32] and visualized using R 3.5 [27]. Vcf statistics as

exported by vcfstats 1.0 [31] in plain text files within the output directory. The sequence of the

dominant genome is retrieved using vcf2fasta [31]. The filtered reads are aligned to this result-

ing.fasta file, and regions with a read depth lower than the minimum read depth set for variant

calling are masked out with ’N’-s using bedtools 2.92.2 [28].

As de novo mutations and/or multiple acquisition sources might introduce genetic hetero-

geneity of samples [2, 33], a second variant calling step is performed with ploidy unset and

assuming pooled sequencing. Low-frequency variants resulting from sequencing error, like in

the first variant call, are filtered out [34]. This step aims to give insight into the population

diversity described by allele balance (AB) after filtering the abovementioned variants. The

genotypes with their corresponding AB are saved to plain text files using bcftools 1.9 [20] and

visualized using R 3.5 [27].

This way, running the pipeline exports the dominant viral genome of samples and provides

insight into the intra-host diversity. With GNU parallel [30], tasks are run in parallel to

decrease computation time. Using Liftoff 1.6.3 [35], annotations of the reference genome (in

gff3 format) can be transferred to the consensus sequences output by QVG.

Benchmarking

The pipeline presented in this study was tested on different operating systems, namely, Ubuntu

Server 20.04, Linux Mint 20.2, Debian 10.1, and 11.0. However, it can run using any UNIX-

like operation system with dependencies installed correctly. Requirements of the pipeline were

installed using the conda package manager as specified in the yaml configuration file uploaded

to the github repository of the pipeline (https://github.com/laczkol/QVG).

The accuracy of the pipeline was tested using synthetic datasets. We simulated sequencing

reads based on the sequence of six viral genomes that were also used as references for the
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validation on real data. First, we introduced mutations in the sequences using Mutation-Simu-

lator 3.0.1 [36] with a SNP-rate of 0.05. Then, using wgsim 1.10 [37], we simulated 150 bp long

paired-end sequencing with coverage values (i.e. the number of times the sequenced nucleo-

tides cover the reference genome) of 100×, 1000×, 5000×, and 10000× as implemented in read-

Simulator 0.01 [38]. We set the error rate to 0.1%, which can be commonly observed in the

middle of the reads [39]. We run QVG by specifying the original (i.e. non-mutated) genome as

the reference sequence. Next, we compared the.vcf file output by QVG with the known muta-

tions introduced by Mutation-Simulator and calculated sensitivity (true positive rate—TPR),

specificity (true negative rate—TNR), balanced accuracy (BA), and precision (positive predic-

tive value—PPV) using the following formulas:

TPR ¼
number of true positives TPð Þ

number of true positives TPð Þ þ number of false negatives FNð Þ

TNR ¼
number of true negatives TNð Þ

number of true negatives TNð Þ þ number of false positives FPð Þ

BA ¼
TPRþ TNR

2

PPV ¼
number of true positives TPð Þ

number of true positives TPð Þ þ number of false positives FPð Þ

We defined the number of true positives (TP) as the number of known mutations found by

the pipeline, whereas the number of false negatives (FN) was measured as the number of

known mutations that were not identified by QVG. The number of false positives (FP) showed

the number of mutations identified as polymorphic positions after genotyping, which were not

mutated before read simulation. The number of true negatives (TN) constituted sites that were

not mutated by Mutation-Simulator and were neither identified as polymorphic by QVG. We

visualized the results using the ggplot2 [40] R package [27].

The performance of the pipeline was validated on multiple real datasets described below. In

the first run, samples of the given dataset (Table 1) were analyzed simultaneously using six

CPU cores; then, to assess the correlation of running time, read depth, and the number of

reads supplied for the run, samples were genotyped one by one using one CPU core.

We tested the performance of our pipeline by comparing the results obtained by Quick

Viral Genome Genotyper (QVG) against the output of Geneious Prime 2021.2.2. Owing to its

ease of use, Geneious is one of the most widely used cross-platform commercial software to

carry out reference-based genotyping of samples. For this comparison, we used 20 SARS-CoV-

2 positive nasopharyngeal samples (Table 1) (New Coronavirus Nucleic Acid Detection Kit

(Perkin Elmer, Waltham, MA, USA); samples with<30 threshold cycle were chosen) to

sequence the virus genome. RNA was extracted using the Viral DNA/RNA extraction kit and

Automated Nucleic Acid Extraction System-32 (BioTeke Corporation, Beijing, China) then

libraries were prepared with NEXTFLEX1 Variant-Seq™ SARS-CoV-2 Kit (For Illumina1

Platforms) (Perkin Elmer, Waltham, MA, USA). The libraries were processed in an Illumina

MiSeq platform using a MiSeq Reagent Kit v3 (Illumina, San Diego, CA, USA) following the

manufacturers’ instructions. As a reference sequence for this experiment, we used the genome

of the SARS-CoV2 isolate Wuhan-Hu-1 (MN908947.3). In Geneious, after removing duplicate

reads, reads were mapped to the reference genome using the Geneious mapper with the default

sensitivity (Medium Sensitivity/Fast). Before mapping, sequences were trimmed the same way
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as in the QVG pipeline. As a final step of genotyping using Geneious, we visually inspected the

alignments of reads and manually corrected ambiguous sites and obvious genotyping errors by

substituting such sites with the highest frequency nucleotide. This procedure took ~10–15

minutes per sample. Geneious was run on a computer with an Intel Core i7-11700K 3.60GHz

CPU running Windows 10 64-bit. Using the parameters described above, the genome

sequences obtained by both approaches were submitted to the Pangolin web server (https://

cov-lineages.org/resources/pangolin.html) to assign each sample to its corresponding lineage.

In addition, we collected and re-analyzed publicly available SARS-CoV-2 sequencing reads

with known identity (Table 1). These raw sequencing data were either produced by amplicon-

based sequencing (lineages Alpha, Beta, Gamma, Epsilon, Eta) or a transcriptomic sequencing

approach (lineage Omicron). Publicly available samples were genotyped, relying on the same

reference genome and parameter values we used for our newly generated sequencing data. Re-

analyzed consensus genome sequences were submitted to the Pangolin webserver (https://cov-

lineages.org/resources/pangolin.html), then we compared the assigned lineage to the originally

reported one (see Table 1 for accession numbers).

Another amplicon sequencing-based dataset used for the benchmarking was the dataset

presented by Hebeler-Barbosa et al. (2020) [41]. Raw reads of 5 Hepatitis B (HBV) virus sam-

ples were supplied to our pipeline. Samples were genotyped using the read alignment to the

reference genome of the Hepatitis B virus (strain ayw) (NC_003977). The consensus genome

sequences were submitted to the Genome Detective’s HBV phylogenetic typing tool (https://

www.genomedetective.com/app/typingtool/hbv/ [42]). This tool not only reports the most

probable lineage assigned to samples but conducts a recombination analysis using bootscan

Table 1. Summary of datasets used in this study.

Dataset Sequencing

method

NCBI SRA accessions Reference

genome size

(bp)

Genome

sequencing

approach

Reference

SARS-CoV2 (this

study)

MiSeq PE 150

bp

SRR19666963, SRR19666962, SRR19666951, SRR19666950,

SRR19666949, SRR19666948, SRR19666947, SRR19666946,

SRR19666945, SRR19666944, SRR19666961, SRR19666960,

SRR19666959, SRR19666958, SRR19666957, SRR19666956,

SRR19666955, SRR19666954, SRR19666953, SRR19666952

29,903 Amplicon-based This study

SARS-CoV2

(public)

NovaSeq PE

150 bp

SRR14824570, SRR17309642, SRR16741159, SRR14155371,

SRR16912480, SRR14824567, SRR14824569, SRR14824574,

SRR14824563, SRR14155385, SRR14824566, SRR14824573,

SRR14824560, SRR14824572, SRR14824562, SRR14824561,

SRR14824565, SRR16912539, SRR14824564, SRR14824568

29,903 Amplicon-based

and genomic

INSDC SARS-CoV-2

Viral Sequencing Data

Hepatitis B (HBV) MiSeq PE 150

bp

SRR12535936, SRR12535937, SRR12535938, SRR12535946,

SRR12535947

3,182 Amplicon-based Hebeler-Barbosa et al.,

2020 [41]

Rabies (RABV) HiSeq PE

125bp

SRR12012243, SRR12012256, SRR12012246, SRR12012251,

SRR12012238, SRR12012242, SRR12012241, SRR12012234,

SRR12012239, SRR12012247, SRR12012255, SRR12012245,

SRR12012236, SRR12012253, SRR12012240, SRR12012237,

SRR12012244, SRR12012250, SRR12012252, SRR12012254,

SRR12012248, SRR12012249, SRR12012235

11,923 Genomic Sabeta et al., 2020 [44]

Avian adenovirus NextSeq SE

150 bp

N.A.� 45,473 Genomic Homonnay et al., 2021

[46]

Feline coronavirus

(FCoV)

MiniSeq PE

150 bp

SRR8352624 29,174 Genomic de Barros et al., 2021

[45]

Herpes Simplex

Virus 1 (HSV-1)

MiSeq PE 250

bp

ERR3316622, ERR3316623, ERR3316627, ERR3316619 152,222 Genomic Lassalle et al., 2020

[49]

�Raw Illumina reads were kindly made available for us by Homonnay et al. (2021) [46] upon request.

https://doi.org/10.1371/journal.pone.0274414.t001
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[43]. We compared the genotypes assigned by Genome Detective with the originally reported

lineage by Hebeler-Barbosa et al. (2020) [41].

To demonstrate that our approach can process not only AmpliSeq datasets, we run the

Rabies virus (RABV) dataset presented by Sabeta et al. (2020) [44] through our pipeline.

Sequencing reads of this dataset were obtained after the depletion of host DNA and RNA [44].

To genotype the samples of this dataset, we used the genome of Rabies virus (isolate 20034)

(KT336433). We checked the identity of samples by submitting the consensus genome

sequences to the RABV-GLUE identification tool (http://rabv-glue.cvr.gla.ac.uk/), then com-

pared the most probable lineage uncovered by this tool with the identity of the originally

reported lineage. Furthermore, we re-analyzed the feline coronavirus (FCoV) sequence data of

de Barros et al. (2019) [45], and the avian adenovirus sequencing reads of Homonnay et al.

(2021) [46], the latter of which was the only single-end read sequencing dataset included in the

benchmarking. For the FCoV dataset, we reduced the minimum read depth required for vari-

ant calling to three, as this sample showed the lowest mean read depth after aligning the reads

to the reference genome of feline coronavirus (isolate UG-FH8) (KX722529) also used by de

Barros et al. (2019) [45]. The genotyping of the adenovirus sample used the reference genome

of the fowl aviadenovirus B strain (40440-M/2015) (MG953201). Since no subtyping tool exists

for the latter two viral species, we used blastn to match the consensus genome sequence against

the NCBI nucleotide collection database; then, the retrieved highest-scoring pairs were subject

to phylogenetic reconstruction with fasttree 2.1.11 [47] and pairwise distance matrix calcula-

tion using the proportion of different sites between samples (‘raw’ distance) as implemented in

the R package pegas [48].

To demonstrate the pipeline’s capability of genotyping large viral genomes, we re-analyzed

four samples of Lassalle et al. (2020) [49] originally reconstructed using snippy [50]. Since our

pipeline needed a high read depth for HSV-1 to perform better, we included four samples of

Lassalle et al. (2020) [49] with a coverage larger than 3000×. For the genotyping we used the

reference genome of Herpes simplex virus type 1 (NC_001806.2). The resulting consensus

genomes were submitted to Genome Detectives Virus Tool 2.40 [42] (https://www.

genomedetective.com/app/typingtool/virus/). Then, the consensus sequences output by QVG

were compared with the consensus genomes obtained by Lassalle et al. (2020) [49] Whole-

genome alignments were conducted using MAFFT 7.490 [51], and the pairwise distance

matrix was calculated as shown for the Aviadenovirus and FCoV datasets.

Results and discussion

The analysis of the simulated datasets generally showed a high accuracy across datasets with a

different coverage values (Fig 2). For the SARS-CoV2, HBV, RABV, and FCoV datasets

regardless of coverage, QVG showed a sensitivity larger than 0.998 and a specificity, balanced

accuracy and precision of 1.0. The adenovirus dataset showed an inflated number of false neg-

atives, thus, decreasing sensitivity and balanced accuracy, both of which remained larger than

0.99 regardless of sequencing depth. All the false negative polymorphisms could be found in

the ORF8 region of the reference genome. Inspecting the short-read alignments revealed

ambiguous alignments with low mapping qualities (i.e. reads could be mapped to more than

one different genomic region with an equal probability), which we linked to the false negative

observations of mutations. The lowest sensitivity and balanced accuracy could be observed for

the HSV-1 dataset (Fig 2). Although the lower sensitivity (0.82) could be somewhat mitigated

by higher read depth, the sensitivity never exceeded 0.837. The specificity appeared to be 1.0 in

every case, and we observed a precision higher than 0.98. This finding corroborates that repeti-

tive genome content poses a challenge for the reference-based genotyping methods and might
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inflate the frequency of polymorphisms undiscovered due to the uncertainty of short-read

alignments, a shortcoming of practically all widely used short-read aligner tools [12].

We could obtain a good quality reference in all runs presented here. The most important

factor to influence the total running time (including the quality filtering, read alignment, and

variant calling) appeared to be the number of reads supplied to the pipeline, regardless of the

sequencing approach (Fig 3A and 3B). The mean read depth of the samples affected the run-

ning time to a much lesser extent than the total number of reads (including those that did not

align to the reference genome). The running time varied considerably; the SARS-CoV2 sample

S5 generated for this study could be genotyped under 18 seconds, whereas the analysis of the

SARS-CoV2 sample SRR14824569 needed the most time to finish, more than 43 minutes.

Both extremities of running time used an amplicon-based approach to obtain sequencing

reads. The genotyping of the samples relying on a genomic approach could be run in a similar

Fig 2. Statistical assessment of the presented pipeline’s accuracy. The plots show the values of sensitivity (true positive rate—TPR), specificity (true

negative rate—TNR), balanced accuracy (BA), and precision (positive predictive value—PPV).

https://doi.org/10.1371/journal.pone.0274414.g002
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time span. The only SARS-CoV2 sample relying on the transcriptomic approach

(SRR17309642) was analyzed under two minutes, whereas the RABV sample SRR12012239

could be processed in 39 minutes (Fig 3A and 3B). The total running time could be decreased

proportionally by using more CPU cores.

A similar relationship could be observed for the peak memory usage (Fig 3C and 3D). The

main factor influencing memory usage appeared to be the number of reads supplied, and the

mean read depth had a much smaller effect on memory usage. The minimum (0.63 Gb) and

maximum (8.43 Gb) memory usage could be linked to the same samples as for the extremities

of running time required to genotype the samples (S5 and SRR14824569). Since the variant

calling step uses one thread for each sample, incrementing the number of CPU threads

increased the memory usage only at this step, and the memory required for genotyping

appeared to be additive (i.e. if more samples were genotyped simultaneously, all the memory

needed to genotype those samples were allocated at the same time).

Sequencing reads of the SARS-CoV2 dataset generated for this study covered 94.7–99.9% of

the reference genome (S1 Table). The SNP density of all 20 samples appeared to be roughly

equal across the genome, except at ORF8, in line with the findings of Flower et al. (2021) [52],

and in the gene encoding the spike protein (S) that is known to harbor several mutations in

the lineage AY.4 (Fig 4). Polymorphism within samples indicating more than one probable

allele (Fig 5) could be found in all samples, but the same polymorphic site rarely showed an

AB > 0 in more than one sample. Generally, 1–5 sites showed within-host variability. The only

exceptions were two transitions at positions 21,987 and 24,410 found in 17 and 12 isolates,

respectively. These are known but not characteristic mutations of the lineage identified by

Fig 3. (A,B) Time (C,D) and memory required to run the whole pipeline. Time is reported in minutes (min), and peak memory usage is reported in

Gigabytes (Gb). Running time corresponds to the wall clock time, and peak memory usage refers to the maximum resident size as reported by the ’time’

utility. This analysis was run on a commercial laptop with an Intel i7-4910MQ processor. Using more threads decreased the running time

proportionally. On the left plots (A,C) the size of symbols is proportional to the reference genome size. Different symbols indicate the approach used for

genome sequencing. The "genomic" approach includes whole genome, metagenomic and transcriptome sequencing. The symbol’s color represents

mean read depth- The x-axis shows the number of reads supplied to the pipeline, including those that could not be aligned to the reference genome. On

the right panels (B,D) the symbol’s color shows the type of the sequencing run, and different symbols indicate the sample’s corresponding dataset

(Table 1). Runs shown on these plots used the annotation transfer feature of our pipeline alignment with resampling of alignments turned off.

https://doi.org/10.1371/journal.pone.0274414.g003
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Pangolin. Submitting the alternative alleles to Pangolin did not change the result of the lineage

assignment. The Pangolin lineage assignment using the consensus genome obtained by QVG

and Geneious showed identical results and very similar support values, except for the sample

S15. This sample using QVG could be assigned to the lineage AY.42, whereas using Geneious,

it could be identified as AY.43. This discordance could be linked to this sample’s relatively

lower sequencing breadth (S1 Table). Statistical support values were not unequivocally better

for either pipeline (Table 2).

We observed a much greater unevenness of read depth in the SARS-CoV-2 sequencing

reads than in any other dataset. The resampling of alignments in 100 bp windows efficiently

evened out the read depth along the reference genome. Using S11 of our SARS-CoV-2 as an

example, with this feature turned on, we could decrease the range of read depth from 1–2061

(mean = 346.742) to 1–846 (mean = 440.111), not counting sites with a depth of zero, which

eliminated the "spikes" of high read depth regions (Fig 6). The resampling of alignments

tended to increase total running time by up to 70% (mean = 28.6%), which change of running

time was not related to the mean read depth. This option had a much more pronounced effect

on the memory usage of the pipeline. The resampling to an even read depth reduced the mem-

ory usage of genotyping of samples with a mean read depth> 4000× by up to 371.84%

(mean = 226.98%). Although the smoothing of read depth did not affect the number and

Fig 4. Example of the SNP density of sample S11 across the reference genome. The x-axis shows the genomic position, whereas the y-axis

represents the number of SNPs within sliding windows.

https://doi.org/10.1371/journal.pone.0274414.g004

Fig 5. Example of AB distribution (sample S11) visualized as a histogram. An AB value different from 0 suggests multiple probable

alleles at a given site.

https://doi.org/10.1371/journal.pone.0274414.g005
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identity of discovered polymorphisms for none of the SARS-CoV-2 samples, together with the

clipping of high-depth alignment positions, this feature can potentially aid in eliminating false

positive polymorphisms found due to read-depth biases and decrease the memory usage at the

same time.

The publicly available SARS-CoV2 sequencing data showed similar results. The breadth

varied between 97.1–100% (S2 Table). Similar to the dataset generated for this study, SNPs

showed the highest density at the spike protein and ORF8. Only two samples did not show

signs of within-host diversity (SRR16912539, SRR16912480). Other samples showed 1–15

Table 2. Comparison of pipelines used in this study by the lineage assignment and support values as output by Pangolin. The only sample assigned differently after

genotyping by the two compared pipelines is given in bold.

Sequence

name

QVG Geneious

Lineage Conflict Ambiguity

score

Scorpio call Scorpio

support

Scorpio

conflict

Lineage Conflict Ambiguity

score

Scorpio call Scorpio

support

Scorpio

conflict

S2 AY.4 0 1 Delta

(AY.4-like)

0.91 0.06 AY.4 0 1.00 Delta

(AY.4-like)

0.91 0.03

S3 AY.46.6 0 0.96 Delta

(B.1.617.2-like)

0.85 0.15 AY.46.6 0 0.97 Delta

(B.1.617.2-like)

0.92 0.08

S4 AY.46 0 0.99 Delta

(B.1.617.2-like)

0.92 0.08 AY.39 0 0.99 Delta

(B.1.617.2-like)

0.85 0.08

S5 AY.43 0 0.99 Delta

(B.1.617.2-like)

0.92 0.08 AY.43 0 0.99 Delta

(B.1.617.2-like)

0.92 0.08

S8 AY.4 0 1 Delta

(AY.4-like)

0.91 0.06 AY.4 0 1 Delta

(AY.4-like)

0.94 0.03

S9 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08

S10 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08

S11 AY.9.2 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.9.2 0 1 Delta

(B.1.617.2-like)

1 0

S12 AY.9.1 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.9.1 0 1 Delta

(B.1.617.2-like)

1 0

S13 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08

S14 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.43 0 1 Delta

(B.1.617.2-like)

0.85 0.15

S15 AY.42 0 0.94 Delta

(B.1.617.2-like)

0.69 0.15 AY.43 0 0.96 Delta

(B.1.617.2-like)

0.85 0

S16 AY.3 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.3 0 1 Delta

(B.1.617.2-like)

0.92 0.08

S17 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08

S18 AY.122 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.122 0 1 Delta

(B.1.617.2-like)

0.92 0.08

S19 AY.46.6 0 1 Delta

(B.1.617.2-like)

1 0 AY.46.6 0 1 Delta

(B.1.617.2-like)

1 0

S20 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08 AY.43 0 1 Delta

(B.1.617.2-like)

0.92 0.08

S22 AY.43 0 1 Delta

(B.1.617.2-like)

1 0 AY.43 0 1 Delta

(B.1.617.2-like)

1 0

S23 AY.122 0 0.99 Delta

(B.1.617.2-like)

0.92 0.08 AY.122 0 0.99 Delta

(B.1.617.2-like)

0.92 0.08

S24 AY.122 0 1 Delta

(B.1.617.2-like)

1 0 AY.122 0 1 Delta

(B.1.617.2-like)

1 0

https://doi.org/10.1371/journal.pone.0274414.t002
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polymorphisms with an AB > 0, of which SNPs at positions 28,270 could be found in 11 sam-

ples, whereas such polymorphisms at positions 28,095 and 29,870 were found in 4–4 samples.

The identities of the consensus genomes always matched with the already published identifica-

tion (Table 3). Only sample SRR14824567 was classified as a different lineage (B.1.637) than

Fig 6. (A) Example of read depth counting all alignments and (B) evened out read depth by the resampling feature of using our pipeline. The x-axis

shows the genomic position, whereas the y-axis represents the read depth of each position, shown as a gray line. The middle red dashed line shows the

mean of read depth across the genome, and the thinner dashed lines show the first and third quartile of read depth distribution. Green bars on the x-

axis show the positions of polymorphisms discovered using all alignments (A) and the read depth after resampling the alignments along genomic

windows (B).

https://doi.org/10.1371/journal.pone.0274414.g006
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the original lineage (B.1.526.1)., but later this B.1.526.1 was designated to B.1.637 in Pangolin.

Despite these samples having a various number of reads, mean read depth, and being

sequenced using different approaches (Table 1 and S2 Table), our pipeline outputs good qual-

ity consensus genomes.

The sequencing breadth of the HBV dataset showed a higher variability (65.7–100%). SNP

density in 1,000 bp windows peaked at 84 (sample SRR12535947) and generally showed a

decreasing trend towards the end position of the reference genome. Samples had 1–28 poly-

morphic sites with more than one probable allele. The same ’non-haploid’ (i.e. multiple proba-

ble alleles could be observed) position could be observed in a maximum of two samples.

Genome Detective could correctly assign genomes into HBV subtypes, except for one sample

(Table 4). The bootscan analysis (Fig 7) confirmed that the dominant genome, which could

not be equivocally assigned to any lineage, can be a recombinant of strains A and D. Recombi-

nation is not unprecedented for HBV [53–55] and can play an important role in the evolution

of HBV genotypes [53].

The breadth of RABV samples appeared to be at least 98.76%. Since the genomic approach

applied to obtain the sequencing reads of this dataset does not strictly rely on species-specific

PCR amplicons, the mean read depth (S4 Table) was lower than for previously described data-

sets. SNP density of the dataset varied between 11–37 and showed a roughly uniform distribu-

tion within samples. Seven out of 23 samples showed no variants with an AB > 0

(SRR12012247, SRR12012251, SRR12012242, SRR12012245, SRR12012250, SRR12012240,

SRR12012237, SRR12012254). The remaining samples had 1–14 ‘non-haploid’ sites, and the

same such site could be observed in a maximum of two samples. RABV-GLUE identified the

samples as the cosmopolitan AF1b lineage (Table 5), agreeing with the originally reported clas-

sification [44].

Table 3. Comparison of originally reported lineages and lineages identified by Pangolin after genotyping publicly available sequencing reads of SARS-CoV2 with

our pipeline.

Sequence name Lineage Conflict Ambiguity score Scorpio call Scorpio support Scorpio conflict Originally reported lineage

SRR14155371 B.1.1.7 0 0.98 Alpha (B.1.1.7-like) 0.96 0.04 B.1.1.7

SRR14155385 B.1.1.7 0 1.0 Alpha (B.1.1.7-like) 0.96 0.04 B.1.1.7

SRR14824560 B.1.1.7 0 0.98 Alpha (B.1.1.7-like) 0.96 0.04 B.1.1.7

SRR14824561 B.1.1.7 0 0.98 Alpha (B.1.1.7-like) 0.96 0.04 B.1.1.7

SRR14824562 B.1.429 0 1.0 Epsilon (B.1.429-like) 1.0 0 B.1.429

SRR14824563 P.1 0 1.0 Gamma (P.1-like) 0.87 0 P.1

SRR14824564 B.1.1.7 0 1.0 Alpha (B.1.1.7-like) 0.91 0.04 B.1.1.7

SRR14824565 B.1.1.7 0 1.0 Alpha (B.1.1.7-like) 0.96 0.04 B.1.1.7

SRR14824566 P.1 0 1.0 Gamma (P.1-like) 0.87 0 P.1

SRR14824567 B.1.637 0 1.0 B.1.526.1

SRR14824568 B.1.1.7 0 1.0 Alpha (B.1.1.7-like) 0.95 0.04 B.1.1.7

SRR14824569 B.1.1.7 0 1.0 Alpha (B.1.1.7-like) 0.95 0.04 B.1.1.7

SRR14824570 B.1.1.7 0 1.0 Alpha (B.1.1.7-like) 0.95 0.04 B.1.1.7

SRR14824572 B.1.525 0 0.98 Eta (B.1.525-like) 1.00 0 B.1.525

SRR14824573 B.1.1.7 0 1.0 Alpha (B.1.1.7-like) 0.96 0.04 B.1.1.7

SRR14824574 B.1.1.7 0 1.0 Alpha (B.1.1.7-like) 0.96 0.04 B.1.1.7

SRR16741159 B.1.351 0 0.98 Beta (B.1.351-like) 0.78 0.14 B.1.351

SRR16912480 P.1 0 1.0 Gamma (P.1-like) 0.87 0 P.1

SRR16912539 P.1 0 1.0 Gamma (P.1-like) 0.87 0 P.1

SRR17309642 BA.1 0 1.0 Omicron (BA.1-like) 0.91 0 B.1.1.529/Omicron

https://doi.org/10.1371/journal.pone.0274414.t003
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Sequencing reads of the FCoV sample covered more than 94% of the reference genome but

showed the lowest read depth of all samples analyzed in this study (S5 Table). The SNP density

peaked at 73 and showed multiple highly polymorphic islands along the reference genome. In

total, 72 out of 1,411 polymorphic sites showed within-host diversity based on AB values. The

phylogenetic reconstruction correctly placed the consensus genome output by QVG closest to

the publicly available genome (Fig 8A) of the same sample. However, a relatively higher genetic

distance could be observed between these two sequences (Fig 8A and 8B). We link this phe-

nomenon to the relatively low read depth of the sequencing reads (mean = 4.87), which can

decrease reference-based genotyping accuracy. The low read depth can be a limitation of the

approach presented here and any reference-based genotyping method.

The obtained consensus genome of the adenovirus sample covered 99.4% of the reference

genome (S6 Table). The SNP density appeared to be higher in the pVI, ORF22, and ORF17—

ORF19A genes relative to the rest of the genome. In total, we observed seven sites with an

AB > 0. The phylogenetic reconstruction clustered the consensus genome genotyped here and

the publicly available genome of the same sample (Fig 9A), agreeing with the clustering based

on pairwise genetic distances (Fig 9B). We only observed indel mutations between the two

mentioned sequences that could be linked to the automatic masking of low-depth genomic

regions (read depth < 5). This low divergence of the reference points out the accuracy of the

presented pipeline.

The HSV-1 sequencing reads covered more than 98.16% of the reference genome (S7

Table). The SNP density appeared to be even without any obvious peaks, except for the genes

gG (US4) and gI (US7), which are among the most diverse genes of alphaherpesviruses [56].

We observed two "non-haploid" sites occurring in all four samples. One such site could be

observed in three, and six of them occurred in two samples. The majority of sites with AB > 0

(n = 179) were unique to one sample. Genome detective correctly identified the consensus

genomes as HSV-1 sequences with a concordance of> 99.12%. This tool identified 77 CDS

sequences with 77 stop codons for three samples. The UL24 gene of ERR3316619 showed an

extra stop codon due to a T>G mutation also present in the published sequence

(HSV1-nCSF7) of Lassalle et al. (2020) [49]. The phylogenetic reconstruction (Fig 10A), in

agreement with the pairwise distance-based clustering (Fig 10B), correctly placed the newly

generated consensus genome sequences at a low genetic distance from the corresponding pub-

lic accession of the same sample. These results suggest a high accuracy of the consensus

genome sequences, despite the lower accuracy detected for large and repetitive genomes (such

as HSV-1) using the synthetic dataset (Fig 2).

This work reports a pipeline capable of rapid and automated analysis of viral genomes

obtained by NGS. Unlike proprietary software solutions, this pipeline relies on freely available,

open-source bioinformatic software. Using parallel execution of tasks, we could obtain consen-

sus genomes of the SARS-CoV2 dataset generated for this study without the need for laborious

manual data curation required by Geneious and with similar accuracy. Our pipeline generated

Table 4. Short result of the phylogenetic type classification of HBV samples by genome detective.

Name Length Begin End Species Type Type support Original subtype

SRR12535936 3182 1 3182 Hepatitis B virus subtype D 100.0 subtype D

SRR12535937 3179 4 3182 Hepatitis B virus subtype D 100.0 subtype D

SRR12535938 3182 1 3182 Hepatitis B virus subtype D 100.0 subtype D

SRR12535946 3182 1 3182 Hepatitis B virus subtype D 100.0 subtype D

SRR12535947 3179 1 3182 Hepatitis B virus Could not assign subtype A

https://doi.org/10.1371/journal.pone.0274414.t004
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Fig 7. (A) Example of an unequivocally identified HBV sample (SRR12535946) and (B) a recombinant sample (SRR12535947) as output

by Genome Detective using Bootscan. Values on the y-axis show positions of x belonging to a given cluster.

https://doi.org/10.1371/journal.pone.0274414.g007
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Table 5. Result of classification of the RABV datasets samples returned by RABV-GLUE.

Coding region coverage

Sequence Identified as

RABV?

Major clade Minor clade Closest full genome reference

sequence

N

(%)

P (%) M

(%)

G

(%)

L (%) Originally reported

lineage

SRR12012234 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012235 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012236 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012237 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012238 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012239 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012240 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012241 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012242 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012243 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012244 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012245 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012246 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012247 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012248 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012249 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012250 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012251 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012252 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012253 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012254 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

SRR12012255 Yes Cosmopolitan Cosmopolitan

AF1b

KX148204 100 100 100 100 100 Africa 1-b lineage

SRR12012256 Yes Cosmopolitan Cosmopolitan

AF1b

KX148103 100 100 100 100 100 Africa 1-b lineage

https://doi.org/10.1371/journal.pone.0274414.t005
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good quality consensus genomes using its default settings in most cases, with the FCoV sample

as the only exception. Moreover, we could also investigate the intra-host diversity of samples

using the allele balance values. The occurrence of the same variable sites sharing more proba-

ble identical alternative alleles within datasets showed that these ‘non-haploid’ polymorphisms

are probably existing mutations originating from multiple acquisitions of different strains.

We genotyped already known genomes of six viral species. Some of these viruses are highly

variable (HBV, HSV-1, SARS-CoV-2) and can pose dangers to humans and domestic or wild

animals (Aviadenoviurs, RABV, FcoV); thus, it can be important to identify them and track

their molecular evolution. All samples genotyped by our pipeline were correctly identified by

classification tools, except one HBV sample, which appeared to be a recombinant genome.

Our results demonstrate that QVG can handle a wide range of Illumina sequencing platforms

Fig 8. (A) Phylogenetic tree reconstructed for the best 10 BLAST hits using the consensus FCoV genome obtained using our pipeline and

(B) pairwise sequence similarity shown on a heatmap of these sequences using raw distances (B). The sample name SRR8352624_KX72252910

represents the sequencing reads genotyped with our pipeline relying on alignments to the reference genome KX722529.1 and MH817484 shows

the position of the publicly available reference genome of feline coronavirus strain FCoV-SB22[45].

https://doi.org/10.1371/journal.pone.0274414.g008

Fig 9. (A) Phylogenetic tree reconstructed for the best 10 BLAST hits using the consensus avian Adenovirus genome obtained using our

pipeline and (B) pairwise sequence similarity shown on a heatmap of these sequences using raw distances. The sample name

MT500572_MG95320110 represents the sequencing reads genotyped with our pipeline relying on alignments to the reference genome

MG953201.1, and MT500572.1 shows the position of the publicly available reference genome of the avian adenovirus isolate D2453/1/10-12/

13/UA [46].

https://doi.org/10.1371/journal.pone.0274414.g009
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(NextSeq, MiniSeq, MiSeq, HiSeq 2500, NovaSeq 6000), different genome sizes (3182–152,252

bp), a broad range of short read lengths (76–250 bp). However, care should be taken to set the

correct parameters if the sequencing breadth or the mean read depth is relatively lower. The

only inconsistency between genotyping approaches (S15 of the SARS-CoV2 dataset) and an

inflated genetic distance (FCoV) could be linked to these issues.

Currently, the pipeline presented does not include any specific step to remove contamina-

tion and assumes that the target viral DNA is present in the highest frequency and the low-fre-

quency polymorphisms originating from contaminants and/or sequencing error are removed

during variant call. Since the enrichment of viruses [57] is frequently applied prior to sequenc-

ing or targeted sequencing is carried on, we believe the possible low-frequency contaminants

would not distort the results of QVG. Our pipeline’s obvious shortcoming is that samples’

characterization relies on a closely related reference genome, which, if not yet available, should

be assembled first using, e.g. VirusTAP [58] or V-ASAP [2]. QVG expects one specific refer-

ence genome for the analysis. The genotyping of multiple enriched samples might need the

repeated run of QVG, as this tool is designed for the genotyping of one targeted virus genome.

Only the reads aligned to the reference will be used for the analysis, and the rest of the sequenc-

ing reads will not be kept in the dataset.

Nevertheless, we showed that QVG is able to analyze viral genome sequencing datasets in a

short time without any user intervention, promoting the quick analysis of samples, which

might be an important aspect of high throughput data generation and processing. With the

design presented in this study, we were able to obtain high-accuracy consensus genomes suit-

able for downstream analyses. The presented pipeline utilizes the quality filtering of reads, the

filtering of polymorphisms by their read depth ratio, and the quality of called polymorphisms

to achieve its performance. Moreover, by annotation transfer, the newly obtained consensus

genomes could be automatically annotated without manual curation. The analysis of allele bal-

ance after genotype calling with ploidy unset makes the analysis of within-host variation feasi-

ble. The fine-tuning capability via the wide range of command-line options allows the

adaptation of QVG to a wide range of datasets, including amplicon-based and (meta)genomic

sequencing data. Although the usage of reads shorter than 72 bp with the default short-read

alignment parameters can increase the ratio of ambiguous alignments, the issue might be miti-

gated by setting the alignment parameters (minimum seed length, matching score, mismatch,

Fig 10. (A) Phylogenetic tree reconstructed for the HSV-1 dataset and (B) heatmap showing the pairwise distances of genome consensus

sequences. Sample names starting with "HSV-1" represent the sequences reconstructed by Lassalle et al. (2020) [49], and accession numbers show the

placement of the newly reconstructed genome sequences of the same samples. The accession of the reference genome used for the analysis is given next

to the accession number of raw read data.

https://doi.org/10.1371/journal.pone.0274414.g010
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gap open, gap extension, and clipping penalties) from the command line. The setting of appro-

priate alignment parameters can be of particular importance for the analysis of ancient viral

DNA due to, among other things, post-mortem DNA degradation and contamination [59],

resulting in potentially shorter read lengths. Despite these difficulties, the number of discov-

ered ancient viruses is constantly increasing (e.g. [60]). With the convenient setting of align-

ment parameters, the flexibility of our pipeline can potentially allow the reconstruction of

ancient viral sequences.

Our pipeline can be installed conveniently on any computer running a UNIX-like operating

system, for which instructions and detailed documentation are given on the project GitHub

page (https://github.com/laczkol/QVG). The free availability at GitHub also ensures transpar-

ency and modifiability of QVG and is a great option to receive community feedback about the

usage and potential issues of the pipeline. Given the above, we believe that QVG can be a viable

alternative to other, existing tools, such as TRACESPipe [7] and nfcore-viralrecon [8, 9] and

V-pipe [14]. Matched with the speed of NGS techniques, QVG can be an important and valu-

able tool for the mass analysis of viral samples and for tracking outbreaks by identifying viral

strains and checking the within-host diversity of samples. Brandt et al. (2021) [61] showed that

the long-read sequencing technology (such as Oxford Nanopore) could be an efficient alterna-

tive to the Illumina platform for the reference-based genotyping of SARS-CoV2. Future direc-

tions of the pipelines development include the adaptation of long-read sequencing technology

in our framework, targeted metagenomic processing of multiple genomes coupled with con-

tamination control, and automatic lineage assignment.
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