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SUMMARY

Prognostically relevant RNA expression states exist in pancreatic ductal adenocarcinoma (PDAC), 

but our understanding of their drivers, stability, and relationship to therapeutic response is 

limited. To examine these attributes systematically, we profiled metastatic biopsies and matched 

organoid models at single-cell resolution. In vivo, we identify a new intermediate PDAC 

transcriptional cell state and uncover distinct site- and state-specific tumor microenvironments 

(TMEs). Benchmarking models against this reference map, we reveal strong culture-specific 

biases in cancer cell transcriptional state representation driven by altered TME signals. We restore 

expression state heterogeneity by adding back in vivo-relevant factors and show plasticity in 

culture models. Further, we prove that non-genetic modulation of cell state can strongly influence 

drug responses, uncovering state-specific vulnerabilities. This work provides a broadly applicable 

framework for aligning cell states across in vivo and ex vivo settings, identifying drivers of 

transcriptional plasticity and manipulating cell state to target associated vulnerabilities.

Graphical Abstract

In brief

Systematic profiling of metastatic pancreatic cancer biopsies and matched organoid models 

provides a view of cellular states, their regulation by the tumor microenvironment, and the ability 

to modulate these states to impact drug responses.
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INTRODUCTION

Recent advances in high-throughput genomic sequencing have led to a detailed 

understanding of the genetic alterations that underlie human tumors (Garraway and Lander, 

2013). These reference maps have driven a “mutation-centric” view of cancer that informs 

our current approach to precision medicine. In this framework, DNA alterations are used as 

biomarkers to guide therapy selection (Hyman et al., 2017), and ex vivo models are used 

to validate mutational associations and power therapeutic discovery efforts. To maintain 

translational relevance, the fidelity of ex vivo models to in vivo attributes is paramount.

Driven by the mutation-centric view of cancer, model fidelity is typically assessed via 

genomic similarity (Ben-David et al., 2019; Byrne et al., 2017; Drost and Clevers, 2018; 

Gillet et al., 2013). Assessment of mutational fidelity is feasible and useful for two reasons: 

first, bulk measurements of DNA alterations have favorable signal-to-noise profiles (i.e., 

somatic mutations are present or absent); and, second, some cancers respond to therapies in 

a genotype-directed manner (Garraway and Lander, 2013; Hyman et al., 2017). However, 

a growing body of evidence indicates that using mutations alone to assign therapies has 

limitations (Nam et al., 2021; van de Haar et al., 2021). The advent of single-cell genomic 

technologies has confirmed extensive mutational heterogeneity in human tumors but also 

revealed that the complexity of cancer extends to variation in cell transcriptional state. 

The relationship between cell state and therapeutic sensitivity represents a new but poorly 

understood opportunity for cancer therapeutic development (Hahn et al., 2021).

Cell state, as measured by RNA expression, is a complex representation of tumor phenotype 

because it integrates inputs from cell-intrinsic (e.g., mutational background, epigenetic state) 

and cell-extrinsic (e.g., cell-to-cell interactions, tissue architecture) sources. Although the 

field has generated high-resolution single-cell RNA sequencing (scRNA-seq) maps of cancer 

cell transcriptional states across diverse contexts (Filbin et al., 2018; Hovestadt et al., 2019; 

Kim et al., 2018; Neftel et al., 2019; Patel et al., 2014; Puram et al., 2017; Sade-Feldman 

et al., 2019; Suvà and Tirosh, 2019; Tirosh et al., 2016a; Tirosh et al., 2016b; van Galen 

et al., 2019; Venteicher et al., 2017), we have not mapped their stability or the relative 

influences of cell-intrinsic and cell-extrinsic factors in specifying them. Moreover, we have a 

limited understanding of the degree to which models accurately recapitulate the distribution 

of cancer cell states seen in patients.

Despite extensive genomic characterization of pancreatic ductal adenocarcinoma (PDAC), 

most cancers do not harbor therapeutically tractable alterations (Aguirre et al., 2018; Bailey 

et al., 2016; Cancer Genome Atlas Research Network, 2017). However, RNA subtypes 

(states) derived from bulk measurements have emerged as an important clinical biomarker 

(Aguirre et al., 2018; Aung et al., 2018; Bailey et al., 2016; Cancer Genome Atlas 

Research Network, 2017; Chan-Seng-Yue et al., 2020; Collisson et al., 2019; Collisson 

et al., 2011; Connor et al., 2019; Hayashi et al., 2020; Moffitt et al., 2015; O’Kane et al., 

2020; Porter et al., 2019; Tiriac et al., 2018). While PDAC subtyping studies have largely 

recovered common expression features, it remains unclear whether these bulk RNA-seq 

state measurements mask heterogeneity at the single-cell level, which features derive from 

malignant versus non-malignant cells, and how well they are recapitulated in laboratory 
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models. Moreover, the PDAC tumor microenvironment (TME) includes numerous non-

malignant immune and stromal cell types (Balachandran et al., 2019; Bernard et al., 2019; 

Elyada et al., 2019; Grünwald et al., 2021; Ligorio et al., 2019), but their variation across 

different sites of disease and their effects on malignant cell state and therapeutic response 

is not well characterized. Given the lack of mutational biomarkers for PDAC, understanding 

how cell state is shaped by the local TME and whether cell state can be used as a tractable 

biomarker for therapy selection remains of critical importance.

To parse the instructive roles of cell-intrinsic and cell-extrinsic inputs to cancer cell state, 

we developed and employed an optimized translational workflow to perform both high-

resolution profiling of metastatic PDAC patient tissue using scRNA-seq (Gierahn et al., 

2017; Hughes et al., 2020) and derivation of matched organoid models (Boj et al., 2015; 

Tiriac et al., 2018) from the same core needle biopsy. Using this approach, we generated 

a single-cell map of metastatic PDAC and used it as a reference to benchmark cell states 

in matched organoid models. We identify a new intermediate co-expressor (IC) PDAC cell 

state, uncover distinct site- and subtype-specific TMEs, and demonstrate that TME signals 

are critical regulators of cancer cell state, plasticity, and response to therapy.

RESULTS

Model systems retain genetic fidelity but lose expression state heterogeneity

Current precision medicine pipelines focus on preserving mutational fidelity in cancer 

models; however, it is unclear how well these same models represent prognostic RNA 

states (Figure 1A). We compared bulk DNA and RNA-sequencing profiles of primary 

and metastatic patient tumors with established cell lines and a cohort of newly generated 

patient-derived organoids to understand how each model system represents the distribution 

of mutational and RNA phenotypes seen in patients. We observed no significant difference 

in driver oncogene alteration frequencies among the groups, suggesting that model systems 

are relatively faithful genetic representations of patient cohorts (Fisher’s exact test; Figure 

1B, far right). Next, we assessed PDAC subtypes derived from several recent bulk RNA-

sequencing studies (Figure 1C) (Bailey et al., 2016; Chan-Seng-Yue et al., 2020; Collisson et 

al., 2011; Moffitt et al., 2015). Subsets of signatures from each study were highly concordant 

and separated primarily into classical-like (clade 1) and basal-like (clade 2) groups. Clade 

3 signatures were generally lower in expression but tended to associate with clade 1, while 

clade 4 signatures represented exocrine pancreas expression patterns and tended to be 

expressed only in primary disease, suggesting that they may be due to contributions from 

the primary PDAC TME. Relatedly, the documented low malignant cellularity in PDAC may 

obstruct malignant cell-specific signature identification in bulk RNA-sequencing datasets 

(Collisson et al., 2019).

In contrast to the mutational data, we observed significant differences for all RNA signatures 

when comparing tumors to model types (Figure 1C). Whereas primary and metastatic 

samples include tumors with both classical-like (clade 1) and basal-like (clade 2) signatures, 

cell lines exhibited predominantly basal-like (clade 2) subtypes while organoids were nearly 

entirely classical-like (clade 1) with partially overlapping expression of some clade 3 

signatures (Figures 1C and S1A). These observations demonstrate that despite preservation 
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of genomic alterations, neither PDAC cell lines nor organoids represent the full repertoire of 

expression subtypes seen in patient cohorts.

Single-cell profiling of metastatic PDAC and matched organoid models

These findings highlight a critical need for new approaches to identify the determinants of 

cancer cell state both in vivo and in model systems. Cell state is a complex attribute since it 

integrates cell-intrinsic as well as TME-dependent features; therefore, multiple mechanisms 

(e.g., clonal selection and/or plasticity) may contribute to the divergence between in vivo 
and ex vivo expression patterns (Figure 1D). We hypothesized that a dataset at single-cell 

resolution allowing for matched comparisons of in vivo and ex vivo attributes would enable 

a better understanding of cell state drivers, stability, and functional relevance. To this end, 

we established a pipeline to generate matched scRNA-seq profiles and organoid models 

using core needle biopsies from patients with metastatic PDAC (n = 23) (Figures 1E and 

S1B; Table S1). Most samples were obtained from metastatic lesions residing in the liver 

(19/23), and the majority (21/23) were analyzed by targeted DNA-sequencing, yielding the 

expected mutational patterns (Figure S1B).

Our pipeline generated approximately 1,000 high-quality single cells per biopsy and 

successful early-passage organoid cultures from 70% of patient samples (16/23 samples 

reaching at least passage 2) (Figures 1E, 1F, and S1B-S1D). Consistent with other studies, 

we observed patient-specific and admixed clusters of single cells suggesting the presence 

of both malignant and non-malignant cells in each biopsy (Figures S1E and S1F; STAR 

Methods) (Kim et al., 2018; Puram et al., 2017; Sade-Feldman et al., 2019; Tirosh et 

al., 2016a). Inferred copy number variation (CNV) alteration scores separated putative 

cancerous and non-cancerous cells in each biopsy and demonstrated high concordance with 

reference targeted DNA-seq (Figures S1G and S1H) (Patel et al., 2014; Tirosh et al., 2016b). 

CNV analysis and manual inspection of expression patterns for known markers across single 

cells supported the identification of malignant cells as well as 11 unique non-malignant cell 

types (Figures S1I-S1K; Table S2). Thus, despite the documented low malignant cellularity 

in PDAC (Aguirre et al., 2018; Cancer Genome Atlas Research Network, 2017; Chan-Seng-

Yue et al., 2020), we established a robust pipeline that retrieved high-quality malignant (n 

= 7,740) and non-malignant (n = 15,302) single-cell transcriptomes from metastatic PDAC 

needle biopsies, as well as those of matched organoids (n = 24,995) (Figures 1E-1G).

Single-cell resolution identifies an IC cancer cell state in metastatic PDAC

After separating the CNV-confirmed PDAC cells from non-malignant cells (excluding one 

neuroendocrine sample; Figure S2A; see STAR Methods), we first interrogated whether 

previously described RNA subtypes (Figure 1C) are represented in single metastatic 

PDAC cells. Subsets of metastatic cells scored highly for either classical-like or basal-

like signatures derived from independent bulk studies indicating the general relevance of 

these expression programs to in vivo PDAC biology (Figure 2A). The remaining literature-

derived signatures had low expression in these metastatic cells, suggesting either specificity 

for primary disease or influence from non-malignant expression in bulk RNA profiles. 

Interestingly, a large subset of cells showed low expression for all previously proposed 
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signatures, highlighting a gap in our understanding of PDAC expression states (Figure 2A; 

“Low for bulk subtypes”).

Given this large subset of cells that score weakly for previously identified signatures, 

we sought to understand the spectrum of in vivo expression states through an unbiased 

analysis of our single-cell dataset. Principal component analysis (PCA) on all malignant 

cells revealed that genes enriched for signatures of epithelial/mesenchymal transition (EMT) 

(PC1) (Gröger et al., 2012), basal-like and classical PDAC states (PC1 and PC2), and 

cell cycle (PC3 and PC8) (Tirosh et al., 2016a) drove the major axes of variation in the 

dataset (Figures S2B and S2C). The PC1-PC2 score difference was correlated with the 

basal-classical signature axis previously identified in bulk studies (r = 0.8). We identified 

1,909 genes significantly correlated with either end of the basal or classical-enriched 

continuum within our single-cell cohort (Figure S2D; Table S3; STAR Methods). Inspection 

of these genes revealed that more basal-like cells are associated with transforming growth 

factor beta (TGF-β) signaling, WNT signaling, EMT, and cell cycle progression. Epithelial 

and pancreatic lineage programs are enriched in the cells with more classical-like attributes 

(Figures S2E and S2F). We term the signatures derived from our single-cell cohort as 

single-cell basal (scBasal) and single-cell classical (scClassical) (Figure 2B).

Single-cell analysis enabled a dissection of expression states that are confounded by 

contaminating non-malignant cells in bulk measurements. For example, in bulk RNA-seq 

studies (Aguirre et al., 2018; Cancer Genome Atlas Research Network, 2017), EMT 

programs are strongly correlated with markers of fibroblasts (r = 0.9), inversely related 

to purity metrics (r = −0.5), and poorly correlated with basal-like expression (r = −0.08). 

At single-cell resolution, we observed a subset of cells that express both scBasal and 

EMT programs, while other scBasal cells had low expression of EMT programs (Figure 

2C, left). Similarly, the origin of cytokine response signatures can be difficult to interpret 

from bulk studies, as interferon (IFN) response gene signatures are positively correlated 

with markers of several cell types including macrophages (r = 0.6) and T cells (r = 0.4), 

negatively associated with purity metrics (r = −0.4), and not associated with either basal-like 

or classical scores (r = 0.01 and −0.04, respectively). In single cells, we observe clear 

patterns of association between IFN response and a subset of cells with intermediate scBasal 

expression (Figure 2C, right). These findings suggest not all basal-like cells have the same 

underlying attributes and highlight the importance of utilizing scRNA-seq to understand how 

malignant cells sense and respond to their local TME.

Although some studies suggest that basal and classical programs exist only in discrete cell 

populations (Chan-Seng-Yue et al., 2020), we observed that the scBasal and scClassical 

programs were not mutually exclusive. Rather, we identified cells that are intermediate for 

scBasal and scClassical gene expression signatures, co-expressed features of both programs 

to varying degrees, and were poorly described by previously identified bulk RNA subtypes 

(Figures 2B [“Co-expressing cells”], S3A, and S3B). We identified 115 genes whose 

expression was correlated with scBasal-scClassical co-expression and termed this gene set 

the IC state (Figures 2D, S3C, and S3D; Table S3; STAR Methods).
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The IC state is enriched for developmental, RAS signaling, and inflammation/stress 

response gene sets (Figure 2E). Signatures of RAS signaling are enriched in the IC state 

even compared with scBasal and scClassical programs, and, by contrast, scClassical states 

are enriched for AKT-associated gene sets (Figures 2B, 2D, 2E, and S2F). We also assessed 

whether the IC state overlapped with any phenotypes recently reported in a study of normal 

pancreas progenitors (Qadir et al., 2020). We found that both scBasal and scClassical 

gene expression signatures are expressed by pro-ductal progenitor cells, while the IC 

gene expression program is enriched in an undifferentiated, stress-responsive progenitor 

population (Figure S3E) (Qadir et al., 2020). Although the IC state may not represent a 

distinct step along a developmental trajectory, it may represent a similar stress-induced 

transition state in a cancer context.

We next assessed how this new IC state relates to previously proposed bulk signatures 

to clarify potential inter-relationships. Pairwise correlation of our PDAC single-cell and 

established bulk RNA-seq signatures in malignant cells revealed that the IC state is unique 

and not well described by prior signatures (Figure S3F). Our findings suggest that malignant 

PDAC cells organize in a tripartite cell state framework that spans committed basal and 

classical phenotypes, with considerable signature co-expression in single cells (Figure 2F). 

Similar to the variation in EMT scores observed in scBasal-expressing cancer cells (Figure 

2C), we noted heterogeneity among co-expressing cells for the IC program (Figure 2F).

Classification of tumors by their malignant pseudo-bulk signature expression stratified 

the cohort into those that expressed predominantly scBasal, scClassical, or IC signatures 

(Figure S3G-S3I). Individual patient specimens still exhibited significant heterogeneity at 

the cellular level, containing at least two and sometimes all three malignant cell states 

(Figure S3J). Samples with greater malignant cell state diversity (i.e., higher proportions of 

both scBasal and scClassical cells) also exhibited a higher proportion of cells expressing the 

IC state, suggesting the IC state may serve as a transition between scBasal and scClassical 

poles (Figure 2G).

Multiplex immunofluorescence confirms a tripartite cell state framework in metastatic and 
primary PDAC

To validate this extensive heterogeneity and the presence of coexpressing cells in our 

metastatic cohort, we used a subtype-specific multiplex immunofluorescence (mIF) panel 

to categorize single malignant cells by their patterns of marker detection in 10 matched cases 

from our single cell study (Figure S4A; Table S3; STAR Methods). We observed overlap 

of basal and classical markers within single cells at the protein level, corroborating the 

existence of co-expressing cells (Figures 2H and S4B). Moreover, we observed a significant 

correlation between malignant phenotypes assessed by mIF protein detection for samples 

from the same RNA subtype (average r = 0.52) compared to those of different subtypes 

(average r = 0.06, p < 10−7, Student’s t test) (Figure S4C, white dots). Deep sampling 

of each matched biopsy using mIF (mean = 13,078 cells per sample) also confirmed the 

increased fraction of co-expressing cells in tumors with equal basal and classical cell state 

mixing (Figure S4D). Finally, we used mIF to identify co-expressing cells in primary tumor 

samples, suggesting that the IC state may be a general feature of PDAC (Figure S4E).
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Benchmarking model expression state using matched in vivo reference maps

With this high-resolution reference map of in vivo malignant cell states, we next asked 

whether matched ex vivo models retained the cell state distribution of the tissues from which 

they were derived. An unbiased comparison of all malignant cells (biopsy and organoid; 

32,073 cells) revealed separation of biopsy and organoid profiles, while organoid samples 

from iterative passages ex vivo clustered together (Figures S5A and S5B). After removing 

low-frequency non-malignant cells (Figures S5B-S5D; STAR Methods), we observed that 

models attempted from biopsies with high malignant-cell-averaged scBasal or IC states 

exhibited lower rates of long-term propagation than models derived from scClassical tumors 

(Figure 3A). When comparing early passage CNV-confirmed organoid cancer cells to 

their cognates from patient tissues, culture in an ex vivo microenvironment caused greater 

deviation in cell state than CNV-defined genotype (Figure 3A; STAR Methods).

We next examined how ex vivo transcriptional states in our organoid cohort differed from 

their matched patient samples (Figure 3B). We observed a striking loss of scBasal gene 

expression and to a lesser extent, the IC program. By contrast, aggregate scClassical gene 

expression remained largely unchanged in organoid conditions. This comparative analysis 

also nominated a set of upregulated organoid-specific genes that were not present in vivo, 

including markers of epithelial identity, oxidative stress response pathways (e.g., NRF2 

target genes), and amino acid metabolism (hereafter collectively referred to as “organoid-

specific” gene expression) (Figure 3C, bottom; Table S4). These findings suggest that 

changes to microenvironmental growth conditions significantly alter cellular transcriptional 

states and induce culture-specific expression programs, highlighting the importance of 

benchmarking ex vivo models using matched in vivo states as a reference.

Transcriptional state heterogeneity is shaped by the ex vivo microenvironment

Regardless of the cell state distribution in the original biopsy, individual models assumed 

more scClassical or organoid-specific cell states over time in culture (Figure 3D), mirroring 

the results in our larger bulk RNA-seq cohort (Figures 1B and 3C [top]). To better 

understand the drivers of this cell state bias, we first investigated genetic alterations 

associated with either the basal or classical subtypes. Prior work has suggested that KRAS 
amplifications associate with basal features (Chan-Seng-Yue et al., 2020; Miyabayashi et 

al., 2020), while amplifications of lineage transcription factors like GATA6 associate with 

classical subtypes (Chan-Seng-Yue et al., 2020). In agreement with prior bulk studies, we 

observed a significant association between single-cell inferred KRAS copy number gain and 

the scBasal state in metastatic cells (p < 0.03 Fisher’s exact test) (Figure S5E). Four KRAS-

amplified samples proliferated ex vivo and maintained this alteration, but their malignant 

cell state shifted from scBasal in vivo to scClassical in organoid culture (Figures 3D [black 

dots] and S5F), including one sample where the same KRAS-amplified clone exhibited a 

similar scBasal (biopsy) to scClassical (organoid) state shift (Figure 3E). These findings 

demonstrate that KRAS amplification alone is not sufficient to lock the scBasal expression 

state, PDAC cells are plastic, and the microenvironment can influence cell state independent 

of genotype in this context.
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We next compared genetic heterogeneity (inferred CNV sub-clones) and transcriptional 

states from matched biopsy tissue and organoid samples from iterative passages. ScClassical 

tumors tended to maintain their genotype and transcriptional state both early in culture 

and at later passages (e.g., PANFR0631) (Figures 3D and S5G [clone A]). In contrast, 

most models derived from scBasal or IC tumors exhibited early cell-state deviation and 

cessation of growth within 100 days of initiation (e.g., PANFR0552) (Figures 3D and 

S5H). In some cases, we observed outgrowth of an scClassical sub-clone in culture. For 

example, the in vivo scBasal clones from PANFR0489R rapidly decreased in abundance 

while clones with scClassical or organoid-specific states emerged at later passages (Figures 

S5I and S5J). By contrast, in vivo scBasal clones from PANFR0575 were maintained 

initially in culture, but their cell state was highly plastic and changed to scClassical when 

measured as organoids at passages 2 and 3 (Figures 3E and S5K). After > 100 additional 

days in ex vivo culture, PANFR0575 regained scBasal expression and clones with inferred 

TP63 amplifications, a squamous-specifying transcription factor (Somerville et al., 2018), 

dominated the culture (Figure S5K [clones D and E]). Our detailed analysis reveals that 

both plasticity and selection occur in the same model, where certain clones demonstrate 

plasticity in response to microenvironmental signals, and certain genotypes, though rare, 

may still exert a strong effect despite opposing cues from the microenvironment. In sum, 

these findings underscore the need to consider both mutational and transcriptional state to 

ensure faithful representation of in vivo cancer cell phenotypes.

Media formulation influences PDAC transcriptional states ex vivo

Given the evidence for selection and plasticity in standard organoid conditions, we 

tested whether specific aspects of the ex vivo culture environment governed cell state 

determination. We first evaluated the effects of extracellular matrix dimensionality by 

culturing established 3-dimensional (3D) organoid models as 2-dimensional (2D) cell lines 

in the same organoid medium. This did not affect transcriptional subtype across the 4 

models tested (Figure S5L). Next, we asked whether culturing established organoid models 

in altered media conditions could rescue expression heterogeneity (Figure 4A). We cultured 

4 organoid models in media without any additives for 6 days (“Minimal” medium) (Table 

S5; STAR Methods) and observed a robust increase in scBasal expression, a decrease in 

organoid-specific gene expression, and stable CNV profiles (Figures 4B, S5M, and S5N). 

With greater time in minimal medium, the distribution of cell states shifted even further 

toward IC and scBasal (Figure 4C). Since minimal medium lacks serum and mitogens 

to maintain prolonged cell growth, we tested a reduced organoid media formulation 

(“OWRNA”) (Table S5; STAR Methods) and found that OWRNA supported proliferation, 

strengthened scClassical, and allowed for scBasal expression (Figure S5O).

Given the divergence in cell state for cell line versus organoid models of PDAC (Figures 

1A and 1B), we took an established cell line and an organoid model and cultured them in 

the reciprocal media condition. Organoid cells grown in standard cancer cell line medium 

(“Cell line media,” RPMI-1640 with 10% fetal bovine serum) (STAR Methods) gained 

scBasal expression, while CFPAC1, an established pancreatic cancer cell line, lost scBasal 

features when grown in complete organoid media (Figures 4D, 4E, S5P, and S5Q). To 

understand whether these state changes are functionally significant, we exposed CFPAC1 
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cells grown in basal media conditions (“cell line media”) or classical conditions (complete 

organoid media) to SN-38 and paclitaxel. Strikingly, in both instances, we observed greater 

sensitivity among cells grown in organoid media, suggesting that environmental factors can 

shape therapeutic response through state changes (Figure 4F). These findings demonstrate 

that even established models are sensitive to changes in culture conditions and that a 

combination of up-front selective pressures and culture medium-imprinting shapes the cell-

state biases in extant model systems, influencing their functional attributes.

Although maintaining organoids in minimal or cell line media conditions resulted in 

partial recovery of scBasal and IC expression, we failed to observe fully polarized models 

(Figures S5P and S5Q), suggesting that these conditions lack critical TME components 

to fully specify cell state. We used differential expression across each biopsy-organoid 

pair to nominate genes that were expressed in vivo but missing ex vivo (Figure 3B; 

STAR Methods). Genes differentially expressed by malignant cells in vivo were related 

to soluble cytokine signaling, cell-cell communication, and microenvironmental interactions 

(Figure 4G). Hierarchical clustering revealed state-dependent expression patterns for in 
vivo-specific genes (Figure 4H; Table S4). For example, IFN response and EMT genes were 

significantly upregulated in scBasal and IC malignant cells in vivo (clusters 1 and 2), while 

genes associated with cell-cell interactions and surface glycoproteins were more strongly 

expressed in IC and scClassical cells (cluster 3). Genes related to biological adhesion 

were more uniform in their expression across the subtypes (cluster 4) (Figure 4H). The 

relative absence of these genes in organoid culture and their differences in expression 

across transcriptional subtypes in vivo suggests that TME signals might play a role in fully 

specifying cancer cell transcriptional state and potentially therapeutic responses.

Composition of the metastatic TME and site-specific differences in mesenchymal 
populations

The presence of TME-associated expression patterns in cancer cells in vivo suggested 

there may be subtype-dependent structure to, and instructive signaling from, the metastatic 

TME; however, relatively little is known about the composition of the metastatic TME 

in PDAC. We analyzed the non-malignant cells (n = 14,811) in the metastatic niche to 

further subclassify cell types and provide a more complete picture of the immune/stromal 

composition of metastatic disease (Figure 5A). Sub-clustering of T cells and natural killer 

(NK) cells revealed 4 cell types (CD4+T, CD8+ T, NK, and CD16+ [FCGR3A+] NK 

cells) (Figures S6A and S6B; STAR Methods) Similarly, an unbiased analysis within the 

monocyte/macrophage compartment revealed 3 subsets of tumor associated macrophages 

(TAMs) (FCN1+ “monocyte-like” TAMs, C1QC+ TAMs, and SPP1+ TAMs) (Figures S6C 

and S6D; Table S2) (Zhang et al., 2020; Zilionis et al., 2019). Marker expression across all 

previously described non-malignant cells is summarized in Figure S6E.

Whether the TME differs between primary PDAC and different metastatic sites is not 

well understood. Although we found equal distribution of immune cells across different 

metastatic sites, mesenchymal cells clustered by the site of disease (Figures S6F and S6G). 

Despite uniform expression of a previously described myofibroblast signature (Elyada et 

al., 2019; Öhlund et al., 2017), an unbiased analysis revealed divergent mesenchymal states 
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favoring expression of either fibroblast-like or pericyte-like genes (Figures S6H-S6K; Table 

S2) (Bartoschek et al., 2018; Di Carlo and Peduto, 2018; Hosaka et al., 2016; Pelon et 

al., 2020). While biopsies from each location contained both subsets, we detected a strong 

association between liver biopsies and the pericyte-like mesenchymal state (Figures 5B, 

S6L, and S6M). We validated this association in larger cohorts and observed a similar 

relationship between pericyte-like expression and liver metastases, while in contrast, tumors 

in the pancreas favored fibroblast-like mesenchymal expression (Figure 5C). Thus, we 

observed diverse immune and stromal cell types in the metastatic TME and identified 

mesenchymal features unique to the liver niche compared with primary disease (Figure 5D).

Transcriptional subtypes associate with distinct immune microenvironments

We next searched for associations between malignant cell state and the composition of the 

TME. Five samples were excluded from this analysis on the basis of low cell counts (< 

200 cells) or indeterminant transcriptional subtype (Figure S6N). We applied Simpson’s 

diversity index to define each tumor’s overall microenvironmental composition (STAR 

Methods). Tumors with higher average malignant scClassical or IC expression harbored 

greater TME diversity, while strongly scBasal tumors exhibited more homogeneous TMEs 

(Figure 5E). We observed a similar pattern in bulk samples where we inferred diversity 

by using the “immunogenic” signature (Bailey et al., 2016) to indicate greater immune 

cell infiltration (Figure 5F). Clustering over the cell type fractions in each biopsy revealed 

the non-malignant cell types driving overall diversity differences (Figures 5G and 5H). 

C1QC+ TAMs dominated the TME of strongly scBasal tumors, and both CD8+ and CD4+ 

T cells were significantly depleted in scBasal contexts compared to the rest of the samples 

in the cohort (Figures 5H and 5I). By contrast, T cells were most often isolated from, 

and their abundance positively correlated with, higher IC malignant fractions in our cohort 

(Figures 5I and S6O). We observed similar patterns in bulk RNA-seq data from The Cancer 

Genome Atlas (TCGA) (Weinstein et al., 2013; Vivian et al., 2017), noting reduced levels 

of immune-related gene expression in other epithelial tumors with high basal/squamous gene 

expression (Figure S6P [cluster 4]). Together, these findings suggest coordination between 

cancer cell states and the local TME, with decreased immune cell diversity in basal contexts 

(Figure 5J).

State-specific TME signals drive transcriptional heterogeneity and drug response

Based on these observations, we hypothesized that soluble factors specific to the TME of 

each transcriptional subtype may drive cancer cell states and potentially influence their 

therapeutic responses (Figure 6A). In vivo, the secreted factor milieu surrounding cancer 

cells originates from at least two sources: malignant cells themselves (“autocrine” factors) 

and non-malignant cells (“paracrine” factors) (Figure 6A). We first identified secreted 

factors differentially expressed by cancer cells in each transcriptional state (“autocrine” 

signals) and applied these to rescue IC and scBasal expression in ex vivo models (Figure 

6B; Table S6; STAR Methods). TGFB2 was the top differentially expressed factor shared 

by malignant cells in both scBasal and IC TMEs (Figure 6B), and organoids cultured with 

TGF-β ligands exhibited a pronounced shift toward IC and scBasal states (Figure 6C). The 

reemergence of scBasal transcriptional heterogeneity in both minimal media (Figure 5C) and 

TGF-β conditions (Figure 6C) suggested that different types of microenvironmental pressure 
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can lead to the basal-like cell state. These experiments also indicate that culture conditions 

can be tuned to achieve compositional differences spanning scClassical, heterogenous, and 

scBasal expression, akin to those seen in vivo.

We next assessed whether TME signals, like media formulation (Figure 4F), could influence 

drug sensitivity through altering transcriptional state. In an isogenic organoid system (STAR 

Methods), models induced to adopt scBasal expression through exposure to TGF-β for 3 

weeks were less sensitive to several standard-of-care chemotherapeutic agents including 

gemcitabine, paclitaxel, and SN-38, the active analog of irinotecan (Figures 6D, S7A, 

and S7B; Table S7). The duration of exposure to TGF-β corresponded with the degree 

of state shift, and these states were highly plastic, as withdrawal of TGF-β resulted in 

a return to scClassical expression (Figure 6E). Drug sensitivity tracked with cancer cell 

state, as models were re-sensitized to chemotherapeutic agents upon shifting back to the 

scClassical state (Figures 6E and 6F). These observations agree with recent clinical trial data 

showing that patients with basal phenotypes tend to have poorer outcomes with combination 

chemotherapy (Aung et al., 2018; Bailey et al., 2016; Collisson et al., 2011; Connor et al., 

2019; Moffitt et al., 2015). Together, these findings highlight the remarkable phenotypic and 

functional plasticity inherent in tumor models.

To assess for state-specific vulnerabilities more broadly, we tested a 24-drug panel in 

isogenic organoid systems with the scBasal state induced via two distinct routes, either 

by culturing in minimal or TGF-β-containing medium (Figure 6G; Table S7). Within the 

same model, scClassical states were on average more sensitive to both chemotherapy and 

agents targeting DNA-damage repair pathways while scBasal states were more sensitive to 

mitogen-activated protein kinase (MAPK) pathway inhibitors (MEK and ERK inhibitors) 

(Figures 6G, S7A, and S7B). These findings provide direct evidence that transcriptional state 

can be a major determinant of drug response and that differential targeting of cell states 

represents an actionable therapeutic paradigm.

Paracrine signals from the local TME direct cancer cell transcriptional phenotypes

We next searched for paracrine factors differentially expressed by the non-malignant cells in 

each subtype. We noted an increasing number of differentially expressed factors in the IC 

and scBasal contexts and mapped each paracrine factor to its cognate cell type to summarize 

the overall secreted factor combinations that shape subtype-specific TMEs in metastatic 

PDAC (Figures 7A and 7B; Table S6; STAR Methods). Interestingly, IFNG from CD8+ T 

cells was most highly expressed in the IC TME, consistent with a higher T cell fraction in IC 

tumors (Figures 5G and S6O) and the relative increase in IFN-responsive gene expression in 

IC and scBasal malignant cells (Figures 4G and 4H). Correspondingly, cells from organoid 

models exposed to interferon γ (IFNγ) showed increased IFN response gene expression 

(IFN response score) and a concomitant shift toward the IC state (Figures 7C, S7C, and 

S7D).

We next examined two in vivo scenarios for evidence that the TME can drive cell 

state variation by analyzing samples from (1) distinct metastatic sites within the same 

patient and (2) the same metastatic site before and after immunotherapy. In the first case 

(PANRF0473), a larger fraction of T cells within the liver metastatic niche expressed 
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high levels of IFNG (IFNG expression score) relative to the lung metastatic niche. 

Correspondingly, malignant cells in the liver showed evidence of IFN response and higher 

IC state expression (Figure 7D, S7E,F). Similarly, in serial samples from the same liver 

lesion in patient PANFR0489, the post-progression biopsy harbored a higher fraction of 

T cells with high IFNG expression scores, consistent with changes to the TME stemming 

from immunotherapy. Post-progression malignant cells again expressed higher IFN response 

scores, and their transcriptional phenotypes were shifted toward the IC and scBasal states 

relative to the pre-treatment malignant cells (Figures 7E, 7F, S7G, and S7H). These paired 

biopsies allow a window into the complex interplay between the TME and cancer cells 

within the same patient and, consistent with our organoid studies, illustrate the critical role 

that TME-supplied cytokines and immune activation may play in directing cancer cell state.

DISCUSSION

Single-cell atlases of cancer have revolutionized our understanding of human malignancies 

and revealed that mutational and transcriptional heterogeneity are common. Critical next 

steps include understanding what drives cancer cell state and whether it can be targeted 

therapeutically. Here, we provide a systematic framework for assessing cancer cell states, 

identifying drivers of transcriptional plasticity, and evaluating their functional significance 

in model systems. The use of matched in vivo tissue as a reference for culture model 

state fidelity, an approach that has been applied in normal organoid systems (Fujii et 

al., 2018) but not in cancer, enabled a structured dissection of cell-intrinsic versus TME-

induced contributions to malignant cell state. As the community continues to catalog 

these transcriptional states in clinical samples at single-cell resolution, we anticipate this 

framework will be broadly applicable for understanding their functional significance across 

a variety of cancers.

Single-cell resolution enabled us to appreciate the layering of malignant states whereby 

single cells can be unified in their similarity for an expression subtype (e.g., scBasal or 

IC) but differ in their expression of TME-influenced programs (e.g., IFN response). Future 

studies across more patients and different anatomic disease sites at single-cell resolution will 

be needed to fully parse which invariant “core” genes mark archetypal cell states in PDAC 

and which expression features are superimposed by the TME. Clinically annotated datasets 

will also aid in the assessment of these expression states for prognostic value and their utility 

in nominating cell state-specific therapeutic liabilities.

We also uncovered formerly unappreciated relationships between cancer cell transcriptional 

states and the local TME. Similar to the relationship between inflammation and 

tumorigenesis (Alonso-Curbelo et al., 2021; Li et al., 2021), our data support a 

model wherein as tumors become inflamed and immune-activated, malignant cells 

display enhanced state plasticity. These relationships may have implications for PDAC 

immunotherapy strategies given that a productive CD8 T cell response may promote more 

aggressive basal-like states, as suggested by our paired pre- and post-immunotherapy 

samples. Coordination between basal/mesenchymal malignant cell states and immune 

responses may be a broadly relevant phenomenon given our observations in other basal-like 

tumors and recent work in glioblastoma (Hara et al., 2021). A recent publication further 
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supports the idea that local TME variation can influence clinical outcomes in PDAC 

(Grünwald et al., 2021), while our work provides direct evidence that TME signals are 

critical drivers of malignant cell state and that cell state dictates drug sensitivity. Larger 

cohorts of longitudinal single-cell measurements, both spatially resolved and transcriptome-

wide, from individual patients undergoing therapy are needed to fully assess variation in the 

TME, the kinetics of cell state plasticity, and their consequences for therapeutic response.

While the genetic evolution of ex vivo models is an established phenomenon (Ben-David 

et al., 2019; Ben-David et al., 2018), our study shows similar ex vivo evolution along a 

transcriptional axis that causes discordance between a patient sample and its matched avatar. 

For example, biopsies taken from PANFR0489R and PANFR0576 establish long-term 

cultures ex vivo, but they do not represent the dominant cell state of the corresponding 

patient tissue in vivo (Figure 3D). Given our demonstrated link between cell state and 

therapeutic response, these findings establish the necessity for preserving transcriptional 

fidelity in personalized medicine pipelines (Hahn et al., 2021). Since models from different 

patients may also harbor differential plasticity and adaptability, future efforts will need to 

evaluate models in multiple conditions to account for this latent property, define its drivers 

(e.g., genetics, epigenetics), and accurately map vulnerabilities. Importantly, manipulating 

the soluble microenvironment may offer a more tractable approach for state-specific high-

throughput screening compared to more complex heterotypic co-cultures or patient-derived 

xenograft systems.

Within the context of PDAC, clinical studies are ongoing to evaluate the efficacy of 

gemcitabine/nab-paclitaxel and FOLFIRINOX in patients with basal- versus classical-

predominant metastatic disease (e.g., PASS01 – NCT04469556). Our observations suggest 

that basal tumors may exhibit broadly decreased sensitivity to chemotherapy and highlight 

the need for new strategies to target this transcriptional subtype of PDAC. Importantly, we 

show that the transition to an scBasal state may render cells sensitive to other classes of 

inhibitors. Since most PDAC tumors are heterogenous, combination strategies that suppress 

distinct cell states may be necessary for maximal synergistic effect (Palmer et al., 2019; 

Palmer and Sorger, 2017). Furthermore, the ability of the TME to drive malignant cell 

state transitions suggests that next generation therapeutic strategies may also need to target 

site-specific supportive cells in the TME to control cell-state evolution during therapy.

In sum, we provide a widely applicable framework to benchmark cell states in patient-

derived model systems, identify the drivers of malignant transcriptional heterogeneity, and 

examine the functional significance of cell state. As efforts to characterize cell states across 

malignancies provide new and increasingly higher resolution maps of patient tissues, an 

important next step will be to understand better how to control and target cell state. We 

anticipate that our approach will provide a path toward the systematic evaluation of cell state 

as a targetable feature in cancer.

Limitations of the study

We focused on understanding how the TME supports cell state, and thus we cannot comment 

directly on the epigenetic mechanisms through which these cell state transitions occur. 

Additional studies into the regulatory mechanisms underlying PDAC state transitions will 
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be a critical next step in further delineating the relationships between cell-intrinsic and 

extrinsic factors and state. In addition, we tracked CNV alterations to define genetic clones, 

but future studies using barcode-based lineage tracing approaches are needed to confirm 

whether individual cells transition between scClassical and scBasal states via the IC state as 

our data suggest (Wagner and Klein, 2020). While we focused predominantly on metastatic 

biopsies from the liver, it will be important in future studies to more broadly analyze how 

site-specific cues drive state plasticity. Even with our limited number of samples from 

outside the liver, we uncovered site-specific differences in mesenchymal populations which 

revealed important differences between metastatic and primary disease. Given the pivotal 

role that has been suggested for the fibrotic TME in primary disease (Ho et al., 2020; 

Sahai et al., 2020), these findings carry important implications for targeting the stromal 

compartment in primary versus metastatic PDAC. Future studies with larger sample and cell 

numbers will be needed to make comparisons across cell types in primary and metastatic 

disease to fully understand how the TME regulates transcriptional phenotypes in these 

distinct niches. Here, advances in spatial transcriptomics will likely empower a deeper 

understanding of these relationships across compartments (Longo et al., 2021). Finally, 

future studies that broadly map the landscape of RNA state-dependent drug response across 

various cancer models will be needed to fully define the links between malignant cell 

transcriptional plasticity and therapeutic response.

STAR★METHODS

RESOURCE AVAILABILITY

Lead contact—Further information and requests for resources and reagents should be sent 

to and will be fulfilled by Dr. Alex K. Shalek (shalek@mit.edu).

Materials availability—Organoid models generated in this study are available upon 

request with a materials transfer agreement.

Data and code availability—De-identified single-cell RNA-seq data are publicly 

available for download and visualization via the Single Cell Portal: https://

singlecell.broadinstitute.org/single_cell/study/SCP1644. Genomic and transcriptomic data 

will be available at the NCBI Database of Genotypes and Phenotypes (dbGaP). This 

paper analyzes existing, publicly available data. The links and accession numbers for these 

datasets are listed in the key resources table.

Code is available from the lead contact upon request.

Any additional information required to reanalyze the data reported in this paper is available 

from the lead contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human specimens—Eligible participants were recruited from outpatient clinics and 

inpatient units at the Dana-Farber Cancer Institute and the Brigham and Women’s Hospital. 

Investigators obtained written, informed consent from patients at least 18 years old with 

pancreatic cancer for Dana-Farber/Harvard Cancer Center Institutional Review Board (IRB)-
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approved protocols 11-104, 17-000, 03-189, and/or 14-408 for tissue collection, molecular 

analysis, and organoid generation. ScRNA-seq samples were collected from 23 patients 

between October 2018 and December 2020, both male (n = 13) and female (n = 10). 

Organoid samples for bulk genomic and transcriptomic analyses were collected between 

May 2015 and January 2018. Core needle biopsy specimens were collected and the first 

core was sent for pathologic analysis. One or more additional cores were then allocated for 

scRNA-seq and/or organoid generation. Clinical features of our patient cohort are included 

in Table S1.

Human PDAC patient-derived organoid models—Tissue samples were minced into 

small portions using a scalpel and then digested at 37°C for 15 min using digest medium 

that consisted of human complete organoid medium (see below), 1 mg/mL collagenase 

XI (Sigma Aldrich), 10 μg/mL DNase (Stem Cell Technologies), and 10 μM Y27632 

(Selleck) (Tiriac et al., 2018). After dissociation, a portion of the cells from the fresh 

tumor specimen were allocated for scRNA-seq, and the remainder were initiated and 

maintained as patient-derived organoid cultures as previously described (Boj et al., 2015; 

Tiriac et al., 2018). In brief, digested cells were seeded in 3-dimensional (3D) Growth-

factor Reduced Matrigel (Corning), fed with human complete organoid medium containing 

Advanced DMEM/F12 (GIBCO), 10 mM HEPES (GIBCO), 1x GlutaMAX (GIBCO), 500 

nM A83-01 (Tocris), 50 ng/mL mEGF (Peprotech), 100 ng/mL mNoggin (Peprotech), 100 

ng/mL hFGF10 (Peprotech), 10 nM hGastrin I (Sigma), 1.25 mM N-acetylcysteine (Sigma), 

10 mM Nicotinamide (Sigma), 1x B27 supplement (GIBCO), RSPONDIN-1 conditioned 

media 10% final, WNT3A conditioned media 50% final, 100 U/mL penicillin/streptomycin 

(GIBCO), and 1x Primocin (Invivogen) (Table S5), and maintained at 37°C in 5% CO2. 10 

μM Y27632 (Selleck) was included in the culture medium of newly initiated samples until 

the first media exchange. For propagation, organoids were dissociated with TrypLE Express 

(GIBCO) before re-seeding into fresh Matrigel and culture medium.

After initial processing of fresh tissue specimens, we monitored samples closely for 

organoid growth. We did not passage organoids at set time intervals, as there was significant 

variability in the time needed to establish relatively robust growth of organoids (Figure 

3D). Instead, we maintained early passage organoids until they reached relative confluence, 

and then passaged them at low split ratios (1:1, 1:1.5, or 1:2 dilutions) in complete 

organoid medium to promote continued growth. In one case, PANFR0489R, cells persisted 

as individuals and small organoids after initiation in complete organoid medium, but did not 

grow and expand cell numbers significantly. Approximately 15 weeks after initiation, we 

switched a portion of the surviving cells to organoid medium without A83-01 or mNoggin, 

and observed renewed growth of organoids under these media conditions but not of those 

that remained in complete organoid medium. Consequently, we expanded this sample in 

media without A83-01 or mNoggin, including performing early passage scRNA-seq. After 

several additional passages, once the organoids were robustly growing, we were able to 

transition this model back to complete organoid medium with no apparent change in 

growth rate, morphology, or transcriptional state. All other serially sampled organoids were 

maintained and assessed in complete medium except as indicated when specific media 

alterations or experimental perturbations were performed. The identify of organoid models 
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was authenticated by comparison of their inferred CNV profiles with targeted genomic 

sequencing and CNV profiles of matched patient tissue and with inferred CNV profiles 

from patient tissue and earlier passage models in the case of samples serially assessed with 

scRNA-seq. The identify of cell line models was authenticated by short tandem repeat 

(STR) analysis. Cell line and organoid cultures were routinely tested for mycoplasma 

contamination.

METHOD DETAILS

Sample preparation for single-cell RNA-sequencing of clinical samples, 
organoids, and cell lines—Patient specimens were dissociated for paired scRNA-seq 

and organoid generation as described above. In our initial process optimization for fresh 

patient specimens, we found that dissociation times below 30 min, while not always 

completely digesting all biopsy material and potentially affecting the representation of 

difficult to dissociate cell types (e.g., fibroblasts), resulted in greater cell viability and 

improved RNA quality downstream. After tissue dissociation, cells were washed, treated 

with ACK lysing buffer (Thermo Fisher) to lyse red blood cells, washed again, and counted 

using a hemocytometer with 0.4% Trypan blue (Thermo Fisher) added at 1:1 dilution 

for viability assessment. We allowed residual tissue chunks to settle before selecting a 

predominance of single cells for counting and Seq-Well processing. We allocated between 

10,000 and 15,000 viable cells per Seq-Well array, and where possible we prepared two 

arrays per sample. Most samples were processed and loaded onto Seq-Well arrays within 

2-3 h of biopsy acquisition. Remaining cells and tissue chunks were allocated for patient-

matched organoid generation.

For scRNA-seq of organoid samples and cell lines (CFPAC1), we passaged models and 

allowed them to grow for 6 days before dissociating to single cells (organoids – TrypLE 

Express, Thermo Fisher; cell lines – 0.25% Trypsin-EDTA, Thermo Fisher), counting, and 

allocating 15,000 viable cells for Seq-Well. By standardizing the collection of organoid 

scRNA-seq samples at 6 days after passaging, we tried to minimize bias arising from cell 

cycle differences in samples at different degrees of confluence.

Assessing organoid and cell line transcriptional states under different matrix 
and media conditions—For adaptation of patient-derived organoids onto 2-dimensional 

(2D) culture surfaces as patient-derived cell lines, tissue culture plates were pre-coated 

with 100 μg/mL Matrigel dissolved in basal media for 2 h at 37°C before washing with 

PBS. Established organoid models were dissociated and seeded onto these Matrigel-coated 

culture wells in complete organoid media. In parallel, a portion of these passage-matched 

organoid cells were re-seeded into Matrigel droplets as above. Cells were cultured in both 

matrix conditions in complete organoid media until they were confluent, approximately 

2-3 weeks. Cells were collected and lysed using Trizol before snap freezing. RNA was 

isolated and purified as described below (“Bulk RNA-sequencing of organoids” section) 

using chloroform extraction, aqueous phase isolation, and processing using the QIAGEN 

AllPrep DNA/RNA/miRNA Universal kit before being submitted for sequencing.
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For scRNA-seq assessment of organoid cell states when cultured under different media 

conditions, established organoid models were passaged as above by dissociating and 

reseeding into Matrigel droplets. A portion of the cells were cultured with complete 

organoid media (“Complete media”), while a distinct portion of passage-matched cells were 

cultured in “Minimal” media, which consisted of Advanced DMEM/F12 (Thermo Fisher), 

10 mM HEPES (Thermo Fisher), 1x GlutaMAX (Thermo Fisher), 100 U/mL penicillin/

streptomycin (Thermo Fisher), and 1x Primocin (Invivogen) (Table S5). Cells were cultured 

for 6 days before being collected, dissociated, and aliquoted for scRNA-seq. Images were 

taken with an Olympus XM10 camera mounted to an Olympus CKX41 microscope 1 day 

after seeding and again after 11 days in culture to assess organoid growth in both conditions. 

The portion of cells cultured in minimal media were maintained in the same conditions 

for a longer duration and harvested again for scRNA-seq at 27 days and 59 days after the 

initial introduction of minimal media. To mirror the standard scRNA-seq workflow, the cells 

harvested at the 27- and 59-day time points were collected 6 days after passaging.

In addition to the minimal media experiment, organoid cells were also cultured in standard 

cell line media (“RP10”), which contains RPMI-1640 (Thermo Fisher) and 100 U/mL 

penicillin/streptomycin (Thermo Fisher) with 10% fetal bovine serum (Sigma), or in 

reduced organoid media “OWRNA,” which consists of Advanced DMEM/F12 (Thermo 

Fisher), 10 mM HEPES (Thermo Fisher), 1x GlutaMAX (Thermo Fisher), 50 ng/mL 

mEGF (Peprotech), 100 ng/mL hFGF10 (Peprotech), 10 nM hGastrin I (Sigma), 1.25 mM 

N-ace-tylcysteine (Sigma), 10 mM Nicotinamide (Sigma), 1x B27 supplement (Thermo 

Fisher), 100 U/mL penicillin/streptomycin (Thermo Fisher), and 1x Primocin (Invivogen) 

(i.e., complete organoid medium with removal of WNT3A, RSPONDIN-1, NOGGIN, and 

A-8301; Table S5). Furthermore, OWRNA reduced organoid medium served as the baseline 

control medium when assessing the effect of specific factors (IFNGγ and TGF-β1) from 

the TME on malignant cell states. Cells were cultured for 6 days before being collected, 

dissociated, and aliquoted for scRNA-seq in each of the following conditions: RP10, 

OWRNA, OWRNA with 50 ng/mL IFNGγ (Peprotech), and OWRNA with 5 ng/mL TGF-

β1 (Peprotech) (Table S5). The cells cultured under the IFNGγ and TGF-β1 conditions were 

maintained in culture and harvested again for scRNA-seq 38 days after being introduced to 

these new media conditions. For these longer duration time points, cells were again passaged 

6 days before collecting for scRNA-seq.

For scRNA-seq assessment of transcriptional states of the established pancreatic cancer cell 

line CFPAC1 under different media conditions, CFPAC1 cells were cultured in parallel in 

either standard cell line medium RP10 or complete organoid medium for 6 days before being 

collected, dissociated, and aliquoted for scRNA-seq.

Compound sensitivity testing in cell lines and organoid models—Organoids 

were propagated in their respective media formulations for the indicated times (e.g., 3 

weeks, 6 weeks) before performing drug sensitivity testing. After dissociation, cells were 

seeded into ultra-low attachment 384-well plates (Corning) at 1000 viable cells per well 

with 20 μL of their respective medium containing 10% Matrigel by volume. After 24 h, 

compounds were added to each well over 12-point dose curves along with DMSO controls 

using a Tecan D300e digital dispenser. A parallel untreated plate was harvested at this 24 h 
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time point for growth rate correction. Drug- or DMSO-treated cells were cultured for 5 days 

before assessing for viability. Cell viability was measured by adding 20 uL of CellTiter-Glo 

3D (Promega) to each well, incubating for 1 h at room temperature on a shaker, and 

measuring luminescence using an EnVision plate reader (PerkinElmer). Given plate well 

randomization, raw luminescence data were deconvoluted with an in-house Python script 

(Python v3.7.4). Each condition was tested in triplicate, and each dose point was normalized 

to DMSO controls to estimate relative viability. Growth rate correction was performed as 

previously described, with growth-rate adjusted dose response curves fit to a 3-parameter 

sigmoidal curve (Hafner et al., 2016). Each experiment was performed using cells cultured 

in paired basal (OWRNA+TGF-β1 or Minimal) and classical (OWRNA) media conditions, 

and independent experiments were performed as summarized in Figure S7A and Table S7. 

To quantify the relative sensitivity of basal versus classical models to a given compound, 

the difference in growth-rate adjusted areas over the curve (AOC) for organoids cultured 

in paired media conditions was calculated for each compound within each experiment, as 

illustrated in Figure 6G and Figure S7A.

CFPAC1 cells were cultured in standard cell line medium RP10 or in complete organoid 

medium for 2 or 5 weeks before seeding for drug testing. Cells were dissociated and seeded 

into 384-well tissue culture plates (Greiner Bio-One) at 400 viable cells per well with 20 μL 

of their respective medium. Addition of compounds and sample harvesting were as above, 

except cell viability was measured by adding 20 uL of CellTiter-Glo (Promega) to each well 

and incubating for 15 min at room temperature on a shaker before measuring luminescence. 

Data analysis and dose response curve fitting were performed as described above.

Single-cell RNA-seq (scRNA-seq) data library generation, sequencing, and 
alignment—ScRNA-seq processing followed the Seq-Well protocol, uniquely compatible 

with low-input samples (Gierahn et al., 2017; Hughes et al., 2020). Briefly, arrays were 

preloaded with RNA capture beads (Fisher Scientific/ChemGenes) and stored in quenching 

buffer until used. Prior to cell loading, arrays were resuspended in 5 mL RPMI-1640 

medium (Thermo Fisher) with 10% fetal bovine serum (Sigma), hereafter referred to as 

RP10. After dissociation, single-cell suspensions were manually counted and diluted to 

15,000 cells per 200 μL of RP10 when cell numbers allowed. Excess RP10 was aspirated 

from the array and cells were loaded onto arrays. Excess cells were washed off with 

PBS (4x5 mL), briefly left in RPMI (5 mL) and cell+bead pairs were sealed for 40 

min at 37°C using a polycarbonate membrane (Fisher Scientific). Arrays were rocked in 

lysis buffer for 20 min and RNA was hybridized onto the beads for 40 min. Beads were 

removed and reverse transcription was performed overnight using Maxima H Minus Reverse 

Transcriptase (Fisher Scientific). Prior to sequencing, the beads underwent an exonuclease 

treatment (New England BioLabs) and second strand synthesis en masse followed by whole 

transcriptome amplification (WTA, Kapa Biosystems) in 1,500 bead reactions (50 μL). 

cDNA was isolated using Agencourt AMPure XP beads (Beckman Coulter) at 0.6X SPRI 

(solid-phase reversible immobilization) followed by a 1X SPRI and quantified using a Qubit 

dsDNA High Sensitivity assay kit (Thermo Fisher). Library preparation was performed 

using Nextera XT DNA tagmentation (Illumina FC-131-1096) and N700 and N500 indices 

specific to a given sample. Tagmented and amplified sequences were purified with a 0.6X 
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SPRI, and cDNA was quantified (Qubit dsDNA High sensitivity assay kit, Thermo Fisher) 

and the base pair distribution measured (High sensitivity D5000 screen tape, Agilent). cDNA 

was loaded onto either an Illumina Nextseq (75 Cycle NextSeq 500/550 v2.5 kit) or Novaseq 

(100 Cycle NovaSeq 6000 S2 kit) at 2.4 pM. Regardless of platform, the paired end read 

structure was 21 bases (cell barcode and UMI) by 50 bases (transcriptomic information) 

with an 8 base pair (bp) custom read one primer. The demultiplex and alignment protocol 

was followed as previously described (Macosko et al., 2015). While Novaseq data were 

directly output as FASTQs, Nextseq BCL files were converted to FASTQs using bcl2fastq2. 

The resultant Nextseq and Novaseq FASTQs were demultiplexed by sample based on 

Nextera N700 and N500 indices. Reads were then aligned to the hg19 transcriptome 

using the cumulus/dropseq_tools pipeline on Terra maintained by the Broad Institute using 

standard settings (Li et al., 2020).

Bulk RNA- and DNA-sequencing of organoids—RNA was obtained for bulk RNA-

sequencing from established organoids using one of two approaches. Dissociated organoids 

were resuspended into cold Matrigel, added as droplets to tissue culture plates (Greiner 

BioOne), and allowed to polymerize for 30 min before addition of media. Organoids were 

grown for 14-21 days (until confluent) under these conditions with regular media changes. 

At the time of harvest, cells were washed with cold phosphate buffered saline (PBS) at 

4°C, then lysed with Trizol (Invitrogen) before snap-freezing. To isolate RNA, we performed 

chloroform extraction with isolation of the aqueous phase before processing RNA as per 

protocols outlined in the QIAGEN AllPrep DNA/RNA/miRNA Universal kit.

In the second approach, used to obtain both RNA and DNA, dissociated organoids were 

resuspended in a solution of 10% Matrigel in complete organoid media (volume/volume) 

and cultured in ultra-low-attachment culture flasks (Corning). Organoids were grown for 

14-21 days (until confluent) before pelleting, washing with cold PBS at 4°C until most 

Matrigel was dissipated, and then snap frozen. Cell pellets were homogenized using buffer 

RLT Plus (QIAGEN) and a Precellys homogenizer. Samples were then processed for 

both DNA extraction and RNA isolation as per the QIAGEN AllPrep DNA/RNA/miRNA 

Universal kit. Purified RNA and DNA were then submitted for sequencing by the Broad 

Institute Genomics Platform.

For bulk RNA-sequencing, total RNA was quantified using the Quant-iT RiboGreen RNA 

Assay Kit (Thermo Fisher) and normalized to 5 ng/μL. Following plating, 2 μL of a 

1:1000 dilution of ERCC RNA controls (Thermo Fisher) were spiked into each sample. 

An aliquot of 200 ng for each sample was transferred into library preparation which 

uses an automated variant of the Illumina TruSeq Stranded mRNA Sample Preparation 

Kit. This method preserves strand orientation of the RNA transcript, and uses oligo dT 

beads to select mRNA from the total RNA sample followed by heat fragmentation and 

cDNA synthesis from the RNA template. The resultant 400 bp cDNA then goes through 

dual-indexed library preparation: ‘A’ base addition, adaptor ligation using P7 adapters, and 

PCR enrichment using P5 adapters. After enrichment, the libraries were quantified using 

Quant-iT PicoGreen (1:200 dilution; Thermo Fisher). After normalizing samples to 5 ng/μL, 

the set was pooled and quantified using the KAPA Library Quantification Kit for Illumina 
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Sequencing Platforms. The entire process was performed in 96-well format and all pipetting 

was done by either Agilent Bravo or Hamilton Starlet.

Pooled libraries were normalized to 2 nM and denatured using 0.1 N NaOH prior to 

sequencing. Flowcell cluster amplification and sequencing were performed according to the 

manufacturer’s protocols using the NovaSeq 6000. Each run was a 101 bp paired-end with 

an eight-base index barcode read. Data were analyzed using the Broad Picard pipeline which 

includes de-multiplexing and data aggregation (https://broadinstitute.github.io/picard/). 

FASTQ files were then processed as described below (see Bulk RNA-sequencing analysis).

For whole genome sequencing, 350 ng of genomic DNA was fragmented using a Covaris 

focused-ultrasonicator targeting 385bp fragments followed by size selection using SPRI 

cleanup. Library preparation was performed using a KAPA HyperPrep without amplification 

kit (KAPA Biosystems) with palindromic forked adapters with unique 8-base index 

sequences embedded within the adaptor (Roche). Libraries were then quantified using 

quantitative PCR (kit purchased from KAPA Biosystems) with probes specific to the adaptor 

ends on an Agilent Bravo liquid handling platform. Libraries were normalized to 2.2 nM, 

pooled into 24-plexes, combined with NovaSeq Cluster Amp Reagents DPX1, DPX2, and 

DPX3, and loaded into single lanes of a NovaSeq 6000 S4 flowcell using a Hamilton 

Starlet Liquid Handling system. Cluster amplification and sequencing occurred utilizing 

sequencing-by-synthesis kits to produce 151bp paired-end reads. Output from Illumina 

software was processed by the Broad Picard pipeline (https://broadinstitute.github.io/picard/) 

to yield BAM files containing demultiplexed, aggregated aligned reads. BAM files were 

then processed as described below (see Mutation and CNV identification from bulk DNA-

sequencing).

Multiplex immunofluorescence imaging—A multi-marker panel was developed to 

characterize malignant cell subtype in formalin-fixed paraffin-embedded (FFPE) 4 μm 

tissue sections using multiplex immunofluorescence (mIF). The panel comprises markers 

associated with either a basal (Keratin-17: Thermo Fisher MA513539 and S100A2: Abcam 

109494) or classical (CLDN18.2: Abcam 241330, GATA6: Cell Signaling Technology 5851 

and TFF1: Abcam 92377) subtype. Additionally, DAPI (Akoya Biosciences FP1490) was 

included for identification of nuclei and pan-cytokeratin (AE1/AE3: Dako M3515; C11: 

Cell Signaling Technology 4545) for identification of epithelial cells. Secondary Opal 

Polymer HRP anti-mouse and anti-rabbit antibody (Dako ARH1001EA), Tyramide signal 

amplification, and Opal fluorophores (Akoya Biosciences) were used to detect primary 

antibodies (Keratin-17, Opal 520; S100A2, Opal 650; GATA6, Opal 540; CLDN18.2, Opal 

570; TFF1, Opal 690; panCK, Opal 620).

These specific mIF markers were chosen for several reasons. KRT17, S100A2, and TFF1 

are included in the original basal and classical RNA gene signatures (Moffitt et al., 2015). 

GATA6 is also a classical marker in an extended RNA gene panel and has been reported 

to be a potential driver of the classical phenotype (Brunton et al., 2020; Moffitt et al., 

2015; O’Kane et al., 2020). Single markers of S100A2 and GATA6 have also been used 

extensively in imaging experiments in past literature to mark cells in the basal or classical 

state, respectively (Aung et al., 2018; Chan-Seng-Yue et al., 2020; Miyabayashi et al., 
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2020; O’Kane et al., 2020; Somerville et al., 2018). CLDN18.2 has also been associated 

with classical phenotypes, and antibody-based therapies targeting CLDN18.2 have been 

developed and tested in PDAC (Wöll et al., 2014). Furthermore, the markers chosen for the 

mIF subtyping panel agreed with those selected as optimal markers to differentiate basal-like 

versus classical by an international panel of experts at a workshop on pancreatic cancer 

subtyping held at Memorial Sloan Kettering in 2019. Here, we used multiple markers for 

each state to provide greater confidence in cell state identification and to assess marker 

heterogeneity across our mIF cohort.

Prior to use in multiplex staining, primary antibodies were first optimized via 

immunohistochemistry on control tissue to confirm contextual specificity. Monoplex 

immunofluorescence and iterative multiplex fluorescent staining were then used to optimize 

staining order, antibody-fluorophore assignments and fluorophore concentrations. Multiplex 

staining was performed using a Leica BOND RX Research Stainer (Leica Biosystems, 

Buffalo, IL) with sequential cycles of antigen retrieval, protein blocking, primary antibody 

incubation, secondary antibody incubation, and fluorescent labeling. Overview images 

of stained slides were acquired at 10X magnification using a Vectra 3.0 Automated 

Quantitative Imaging System (Perkin Elmer, Waltham, MA) and regions of interest (ROIs) 

were selected for multispectral image acquisition at 20X. After unmixing using a spectral 

library of single-color references, each image was inspected to ensure uniform staining 

quality and adequate tumor representation.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mutation and CNV identification from bulk DNA-sequencing—For targeted DNA-

sequencing of clinical samples, next-generation sequencing using a custom-designed 

hybrid capture library preparation was performed on an Illumina HiSeq 2500 with 

2x100 paired-end reads, as previously described (Garcia et al., 2017; Sholl et al., 2016). 

Sequence reads were aligned to reference sequence b37 edition from the Human Genome 

Reference Consortium using bwa, and further processed using Picard (version 1.90, 

http://broadinstitute.github.io/picard/) to remove duplicates and Genome Analysis Toolkit 

(GATK, version 1.6-5-g557da77) to perform localized realignment around indel sites. Single 

nucleotide variants were called using MuTect v1.1.45, insertions and deletions were called 

using GATK Indelocator. Copy number variants (CNV) and structural variants were called 

using the internally-developed algorithms RobustCNV and BreaKmer followed by manual 

review (Abo et al., 2015). RobustCNV calculates copy ratios by performing a robust linear 

regression against a panel of normal samples. The data were segmented using circular binary 

segmentation, and event identification was performed based on the observed variance of the 

data points (Bi et al., 2017).

We computed the cytoband-level copy number calls and weighted (by length) average 

segment means across the covered regions of each cytoband using ASCETS (Spurr et 

al., 2021). Briefly, cytobands were considered amplified/deleted if more than 70% of the 

covered regions had a log2 copy ratio of greater than 0.2/less than −0.2, and were considered 

neutral if more than 70% of the covered regions had a log2 copy ratio between −0.2 and 0.2.
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For comparisons of driver mutation frequencies across patient tumors, cell lines, and 

organoid models, mutation and CNV calls for KRAS, TP53, CDKN2A, and SMAD4 were 

either compiled from prior publications for patient samples and CCLE cell lines (Aguirre et 

al., 2018; Cancer Genome Atlas Research Network, 2017; Ghandi et al., 2019) or generated 

from whole genome sequencing of organoid models. Organoid cohort variants were called 

from tumor/germline pairs using GATK (v.4.1.6.0, Paired tumor-control mode). Potential 

germline variants were additionally filtered using gnomAD (v2.1). Significance of short-

nucleotide variants (SNVs) was determined using MuSiC2 (v0.2, q-value < 0.1). CNVs 

were initially called using GATK (v.4.1.6.0) followed by analysis with GISTIC (v2.0.23). 

Genomic alterations in KRAS, TP53, CDKN2A, and SMAD4 were binarized by counting a 

gene in the given sample as altered if it contained at least one of the following alterations: 

missense mutation, nonsense mutation, splice site alteration, frameshift insertion or deletion, 

in-frame insertion or deletion, a high amplification, or a homozygous deletion. Statistical 

significance of alteration occurrence per gene across sample cohorts was determined using a 

Fisher’s exact test with multiple test correction using the Benjamini-Hochberg procedure (R 

v4.0.3).

Bulk RNA-sequencing analysis—FASTQs for bulk RNA expression profiles were 

downloaded from the relevant repository (TCGA, https://toil.xenahubs.net; PDAC Cell lines, 

https://portals.broadinstitute.org/ccle), available in-house (Panc-Seq, metastatic PDAC), or 

generated for this study (organoid cohort) (Aguirre et al., 2018; (Weinstein et al., 2013) 

Cancer Genome Atlas Research Network, 2017; Ghandi et al., 2019; Vivian et al., 2017). 

All were processed using the same pipeline. Briefly, each sample’s sequences were marked 

for duplicates and then mapped to hg38 using STAR. After running QC checks using 

RNaseqQC, gene-level count matrices were generated using RSEM. Instructions to run the 

pipeline are given in the Broad CCLE github repository https://github.com/broadinstitute/

ccle_processing. Length-normalized values (TPM) were then transformed according to 

log2(TPM+1) for downstream analysis. The entire dataset was scaled and centered to allow 

relative comparisons across sample types (e.g., tumors, organoids, and cell lines). Signature 

scores were computed as below (e.g., basal and classical; see Generation of expression 

signatures/scores below) (Puram et al., 2017).

Single-cell data quality pre-processing and initial cell type discovery—All 

single-cell data analysis was performed using the R language for Statistical Computing 

(v3.5.1). Each biopsy sample’s digital gene expression (DGE) matrix (cells x genes) was 

trimmed to exclude low quality cells (< 400 genes detected; < 1,000 UMIs; > 50% 

mitochondrial reads) before being merged together (preserving all unique genes) to create 

the larger biopsy dataset. The merged dataset was further trimmed to remove cells with 

> 8,000 genes which represent outliers and likely doublet cells. We also removed genes 

that were not detected in at least 50 cells. The same metrics were applied to the organoid 

single-cell cohort (see below). On a per cell basis, UMI count data was divided by total 

transcripts captured and multiplied by a scaling factor of 10,000. These normalized values 

were then natural log transformed for downstream analysis (i.e., log-normalized cell x gene 

matrix). Initial exploration of the data was performed using the R package Seurat (v2.3.4) 

and followed two steps: 1) SNN-guided quality assessment and 2) cell type composition 
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determination. In step 1, we intentionally left cells in the DGE matrix of dubious quality 

(e.g., % mitochondrial reads > 25% but < 50%), performed PCA over the variable genes (n 

= 1,070 genes), and input the first 50 PCs (determined by Jackstraw analysis implemented 

through Seurat) to build an SNN graph and cluster the cells (res = 1; k.param = 40). The 

inclusion of poor-quality cells essentially acts as a variance “sink” for other poor-quality 

cells and they cluster together based on their shared patterns in quality-associated gene 

expression. This method helped to nominate additional low quality (e.g., defined exclusively 

by mitochondrial genes) or likely doublet cells (e.g., clusters defined by co-expression of 

divergent lineage markers) which were removed from the dataset (n = 1,678 cells). This led 

to an overall high-quality dataset of single-cells with a low overall fraction of mitochondrial 

reads (median = 0.09) for downstream analysis (Figure S1D).

Using the trimmed dataset, we proceeded to step 2 using a very similar workflow as above 

but with slightly altered input conditions for defining clusters. Here we used PCs 1-45 and 

their associated statistically significant genes for building the SNN graph and determining 

cluster membership (resolution = 1.2; k.param = 40). This identified the 36 clusters shown 

(visualized using t-SNE; perplexity, 40; iterations, 2,500) in Figure S1E. The expression 

of known markers was used to collapse clusters containing shared lineage information. 

For example, clusters 1, 2, and 4 all express high levels of macrophage markers—CD14, 

FCGR3A (CD16), CD68—and were accordingly collapsed for this first pass analysis 

(Figure S1E,I). To aid our cell type identification, we performed an ROC test implemented 

in Seurat to confirm the specificity (power > 0.6) of the top marker genes used to discern the 

cell types. Combined with inferred CNV information (see below), this analysis confirmed 

the presence of 11 broad non-malignant cell types in our biopsy dataset (Table S2). Variation 

in the SNN graph parameters above did not strongly affect cell type identification.

Single-cell CNV identification—To confirm the identity of the putative malignant 

clusters identified in Figure S1F, we estimated single-cell CNVs as previously described 

by computing the average expression in a sliding window of 100 genes within each 

chromosome after sorting the detected genes by their chromosomal coordinates (Patel et 

al., 2014; Tirosh et al., 2016b). We used all T/NK, Fib, Hep, and Endo cells identified above 

as reference normal populations for this analysis. Complete information on the inferCNV 

workflow used for this analysis can be found here https://github.com/broadinstitute/

inferCNV/wiki. To compare with bulk targeted DNA-sequencing, we collapsed individual 

probes to cytoband-level information (weighted average of log2 ratios across each cytoband, 

see above) within each sample. ScRNA-seq-inferred CNVs showed high concordance across 

samples with the bulk measurements and suggests that, at least by this metric, we are likely 

sampling the same dominant clones within sequential but distinct cores from each needle 

biopsy procedure (Figure S1G). For plotting CNV profiles in putative malignant versus 

normal cells (Figure S1H), we computed the average CNV signal for the top 5% of altered 

cells in each biopsy and correlated all cells in that biopsy to the averaged profile as has 

been previously described (Tirosh et al., 2016a). Relation of this correlation coefficient to 

the CNV score (mean square deviation from diploidy) in the single cells from each biopsy 

shows consistent separation of malignant from non-malignant cells, and, combined with 

membership in patient-specific SNN clusters, substantiates the identification of malignant 
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cells in our dataset. One patient sample, PANFR0604, did not contain any malignant cells 

within the core biopsy used for scRNA-seq analysis.

Subclonal analysis with single-cell inferred CNVs—The inferCNV workflow can 

be used to call subclonal genomic variation with high sensitivity and is described at 

https://github.com/broadinstitute/inferCNV/wiki (Fan et al., 2018; Patel et al., 2014; Tirosh 

et al., 2016b). Briefly, we used a six-state Hidden Markov Model (i6-HMM) to predict 

relative copy number status (complete loss to > 3x gain) across putative altered regions 

in each cell. A Bayesian latent mixture model then evaluated the posterior probability 

that a given copy number alteration is a true positive. We set a relatively stringent cutoff 

for this step (BayesMaxPNormal = 0.2) to only include high probability alterations for 

downstream clustering. The results of this filtered i6-HMM output were then used to cluster 

the single cells using Ward’s method. We used inferCNV’s “random trees” method to 

test for statistical significance (p < 0.05, 100 random permutations for each split) at each 

tree bifurcation and only retained subclusters that had statistical evidence underlying the 

presumed heterogeneity. To track subclonal heterogeneity between biopsy and matched 

organoid cells in Figure 3E and Figure S5E-K, the above workflow was implemented within 

each biopsy and the relevant matched organoid samples, essentially treating all cells as the 

same “tumor” and allowing the CNVs to determine cell sorting agnostic to sample-of-origin. 

The results of the HMM output can be used to infer gene-level information based on 

which genes are in the affected window. This (like the rest of the HMM workflow) is 

computed over groups of cells (e.g., samples or sub-clones) and used to map KRAS and 

other alterations to samples or sub-clones (Figure 3E, Figure S5E-K).

Subclustering of malignant and non-malignant cells—Detailed phenotyping 

required splitting the dataset into malignant and non-malignant fractions. After subsetting 

to only the malignant cells, we re-scaled the data and ran PCA including the first 35 

PCs for SNN clustering and t-SNE visualization. This PCA was used to determine the 

PanNET identity for PANFR0580 (Figure S2A). After removing PANFR0580, we repeated 

the steps above and used this new PCA for the remainder of PDAC malignant cell 

analysis. Subsequent phenotyping for malignant cells is discussed below (Generation of 

expression signatures/scores). A similar approach was used for calling the non-malignant 

subsets in Figure 5A. To determine the specific phenotypes within T/NK, macrophage, and 

mesenchymal populations, we separately subclustered these groups using PCs 1-20 and a 

resolution of 0.6 in each case. Of note, subclustering within the macrophages revealed a 

distinct cluster of cells co-expressing markers of both T/NK cells and macrophages (n = 491 

cells). We discarded these cells as likely doublets, as have others, and re-ran the macrophage 

PCA and clustering (Zhang et al., 2020; Zilionis et al., 2019). These cells are included in the 

full dataset in case they are of interest to others. Each unbiased analysis helped to define the 

non-malignant phenotypes summarized in Figure 5 and Figure S6.

Generation of expression signatures/scores—All expression scores were computed 

as previously described by taking a given input set of genes and comparing their average 

relative expression to that of a control set (n = 100 genes) randomly sampled to mirror the 

expression distribution of the genes used for the input (Tirosh et al., 2016b). While all scores 
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were computed in the same way, choosing the genes for input varied. We have outlined the 

relevant approaches below. Where correlations (Pearson’s r) are performed over genes, we 

used the log-transformed UMI count data for each case. Unless otherwise noted, we selected 

the top 30 statistically significant genes for each signature (> 3 SD above the mean for 

shuffled data) for visualization and scoring.

Cell cycle: We utilized previously established signatures for G1/S (n = 43 genes) and G2/M 

(n = 55 genes) to place each cell along this dynamic process (Tirosh et al., 2016a). After 

inspecting the distribution of scores in the complete dataset, we considered any cell > 1.5 

SD above the mean for either the G1/S or the G2/M scores to be cycling (van Galen et al., 

2019).

PDAC bulk subtype signatures: We scored malignant cells within our single-cell cohort 

for expression of previously published signatures derived from bulk RNA-sequencing of 

primary and metastatic tumors.

scBasal and scClassical programs: We first scored each malignant single cell for the 

basal-like and classical genes identified by Moffitt et al., 2015 as these were well described 

by unbiased analysis in our data (PCA, Figure S2B,C, S3B). To derive refined single-cell 

basal (scBasal) and single-cell classical (scClassical) signatures using our malignant cohort 

and determine programs associated with these cell states, we correlated the aforementioned 

basal and classical scores to the entire gene expression matrix containing malignant cells 

and identified the 1,909 genes significantly associated with either subtype (r > 0.1; > 3 SD 

above the mean for shuffled data, full data in Table S3). Biological pathway correlates for 

scBasal and scClassical are summarized in Figure S2E,F [WNT signaling (Kim et al., 2017); 

EMT (Gröger et al., 2012); cell cycle progression (Tirosh et al., 2016a)]. For visualization, 

we use the scBasal and scClassical genes (top 30 correlated genes for each). In Figure 2C we 

score single cells for EMT (Gröger et al., 2012) and the union of Hallmark and Reactome 

interferon response gene sets to show their divergence within cells expressing the scBasal 

state.

Intermediate co-expressor (IC) program: Ordering the cells by their polarization or 

“score difference,” simply the difference of the two scores, using these basal and classical 

scores related to PC1 and PC2 revealed a significant fraction of cells co-expressing 

intermediate levels of both cell states (Figure 2B, Figure S3A,B). Co-expressing cells 

showed associations with features across several additional PCs, but lacked a single 

dominant axis. To define a consensus set of genes that are preferentially expressed by 

coexpressing cells, we computed the Euclidean distance to the line representing equal basal 

and classical co-expression for each cell. To limit the influence of cell quality on this 

analysis and to specifically identify genes related to co-expression, we used cells from each 

group (basal, intermediate, and classical) with fractionally low mitochondrial genes (< 0.2) 

and non-zero basal or classical expression (basal or classical score > 0) and correlated 

their Euclidean distance (Figure S3C) to the entire gene expression matrix of malignant 

cells. Next, for each gene positively associated with this co-expressor state (Pearson’s r 
> 0), we subtracted the second highest correlation coefficient for each subtype-associated 
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gene (basal and classical), and then re-ranked the matrix by this corrected value. This 

enriched for genes more specific to the co-expressor state by excluding those that were also 

associated with basal or classical programs. We then selected the 115 genes with a corrected 

correlation value > 0.1 (p < 0.00001, shuffled data) as our intermediate co-expressor (IC) 

signature (Figure S3D, Table S3). Single cells were classified based on Euclidian distance 

to co-expression, where cells with Euclidian distance < 0.2 are defined as intermediate 

co-expressor and the remainder (Euclidian distance > 0.2) by their maximal of either 

scBasal or scClassical scores. We binned each organoid cell (Figure 4C,D) by its maximal 

expression for one of the 3 in vivo scores (scBasal, scClassical, or IC). Here a cell must 

be within 1 SD of the mean expression for a given subtype in vivo, else it was considered 

“organoid-specific” as this program was superimposed on all organoid cells, regardless 

of their subtype identity (Figure 4C). We used these classifications to summarize overall 

sample malignant cell composition and visualize the groups. Tumor heterogeneity measures 

were not significantly affected by changing these cutoffs.

Non-Malignant programs: TAM signatures were determined similar to above and previous 

work (van Galen et al., 2019; Zhang et al., 2020; Zilionis et al., 2019). Using PCA as 

an anchor (Figure S6C), we correlated expression within the TAM compartment to either 

FCN1, SPP1, or C1QC (top loaded genes on each relevant PC) and merged the resultant 

correlation coefficients for every detected gene to the 3 subtypes into one matrix (i.e., a 

16,920 × 3 matrix). For each TAM type (i.e., vector of correlation coeffects to each marker), 

we first ranked the matrix by decreasing correlation coefficient, selected only the most 

significantly associated genes to that type (r > 0.1; > 3 SD above the mean for shuffled data), 

subtracted the second highest correlation coefficient for each subtype-associated gene, and 

then re-ranked the matrix by this corrected value. We repeated this procedure for each TAM 

subtype independently. This ensures that the genes selected are specific to a given TAM 

subset and do not describe general TAM features. The top 30 genes for each were used for 

scoring and visualization (Table S2; Figure S6D).

Mesenchymal phenotypes were determined using a similar workflow. To examine 

mesenchymal heterogeneity, we removed a subset of adrenal endocrine cells (cluster 4, 

40 cells; Figure 5C) and then performed PCA on the remaining mesenchymal cells. PC1 was 

driven by spillover genes (likely contributed from ambient RNA) and lacked any coherent 

biological program and was not considered further. PCs 2 and 3 by contrast were consistent 

with variable mesenchymal (PC2) and inflammatory CAF (PC3) phenotypes. All these cells 

scored highly for previous myCAF gene expression programs so this phenotype did not fully 

explain the heterogeneity in mesenchymal cells. Again, using correlation, we determined the 

genes driving low PC2 scores (Fibroblast-like), and high PC2 scores (Pericyte-like), as well 

as those associated with the high PC3 scores (Inflammatory). As before, we used the top 30 

genes within each subset for scoring and visualization. These same genes (Fibroblast-like 

and Pericyte-like) were used to examine bulk RNA-seq profiles and their difference in each 

sample quantifies which phenotype is favored in the bulk averages (Figure 5C).

Analysis of normal pancreas progenitor data—We obtained the genes 

by cells matrix of normal pancreas progenitors (Qadir et al., 2020) at https://
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www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE131886. We clustered the original data 

and excluded a small subset of immune cells (CD45+). We then collapsed cell types 

from the original paper into broad categories (Pro-Acinar, Pro-ductal, Undifferentiated, and 

Mesenchymal) based on lineage marker expression. For analysis in Figure S3E we averaged 

the expression for scBasal, scClassical and IC genes in each group. For use in Figure S3F 

we generated signatures for each population using differential expression (FindAllMarkers 

function in Seurat using the “wilcox” option) and scored our single cells for these normal-

derived signatures as above.

Matched organoid clustering and cell-typing—After applying similar quality metrics 

as above, we performed PCA, SNN clustering, and t-SNE embedding for 32,073 cells 

including organoid cells and all malignant cells from primary PDAC biopsies (PCs 1-50; 

resolution = 1.2; k.param = 45; perplexity = 45; max_iter = 2,500), and identified 39 total 

clusters. Organoids clustered separately from their matched biopsies, suggesting expression 

and/or CNV related drift in culture. Only two SNN clusters—clusters 4 and 32—were 

admixed by sample. We determined the specific gene expression programs in these two 

clusters via differential expression testing by Wilcoxon rank sum test (p < 0.05, Bonferroni 

correction; log(fold change) > 0.5). These comparisons were done in a “1 versus rest” 

fashion, testing for genes defining each cluster (4 or 32) compared to the entire dataset. 

Their expression profiles were consistent with non-malignant cell types, likely fibroblasts 

(cluster 32) and epithelial cells (cluster 4; Figure S5B,C).

Correlation distances for genotype and transcriptional cell state—To generate 

correlation distances for genotype and transcriptional cell state, each single cell in a 

biopsy-organoid pair was represented by two vectors of information: (i) a cell state vector 

containing expression values for scBasal and scClassical genes (n = 60 genes) and (ii) 

a genotype vector containing the average CNV score for each cytoband. The cell state 

and genotype distances between every single cell within a biopsy/early organoid pair was 

computed from these vectors using a correlation-based (Pearson’s r) distance metric of the 

form d = (1-r)/2. This resulted in two distance matrices of n x n dimension where n is the 

total number of cells from each biopsy/early organoid sample pair. Values in Figure 3A are 

computed by averaging the values for d between only early organoid and matched biopsy 

cells.

Matched biopsy versus organoid malignant cell comparison—For CNV-

confirmed malignant cells from each biopsy and its matched organoid (earliest passage), 

we used differential expression (Wilcoxon rank sum test; p < 0.05, Bonferroni correction; 

log(fold change) > 0.3) to understand the features lost from malignant cells in the in vivo 
setting and gained when transitioning into growth in organoid culture. We required any 

gene to be significantly differentially expressed in at least 3 model-biopsy comparisons to 

summarize the consistent changes. We repeated this same workflow for both organoid- and 

biopsy-specific genes (Table S4) outlined in Figure 3C and Figure 4G,H, respectively.

TME associations—We determined the transcriptional-subtype-dependent composition 

of the TME (Figure 5E-I) following two steps. First, we computed the Simpson’s Index 
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(measure of ecological diversity) using the count of each non-malignant cell type captured 

from each sample as input (Figure 5E,G) and correlated each biopsy’s diversity score to 

its scBasal versus scClassical commitment score. Importantly, the number of non-malignant 

cells captured from each biopsy was not associated with basal versus classical commitment 

score (r = 0.09). Next, to understand which cell types drive these differences, we computed 

the fractional representation for every non-malignant cell type in each core needle biopsy 

and determined their pairwise correlation distance (Pearson’s r) followed by hierarchical 

clustering using Ward’s method (dendrogram in Figure 5G). For both analyses we only used 

samples with > 200 non-malignant cells captured (Figure S6N).

Biopsy paracrine and autocrine subtype-specific factor analysis—Factors 

present in the TME but absent from organoid culture could originate from at least two 

sources, the malignant cells themselves (autocrine) or non-malignant cells in the local 

microenvironment (paracrine). We examined any gene with gene ontology annotations 

related to “cytokines,” “chemokines,” or “growth factors” and took the union of these 

lists, yielding 321 genes, 218 of which were detected in our dataset. For “autocrine” 

factors we performed differential expression between malignant cells binned as scBasal 

and scClassical, and then IC versus rest. A gene was considered differentially expressed 

if it passed a p < 0.05 with Bonferroni correction and a log(fold change) > 0.2 in one of 

these comparisons. Genes were then assigned to subtypes based on the log fold change 

direction (Figure 6B, Table S6). “Paracrine” factors were determined in a similar manner 

with slight modifications. We grouped non-malignant cells into basal, classical or IC based 

on the average expression and clustering for malignant programs from their respective tumor 

samples (Figure S3G). We then assessed for differential expression between all cells from 

a given group and the rest using the same cutoffs as above and sorted factors into subtypes 

based on their log fold change directionality (Figure 7A, Table S6). We visualized which 

cell type contributed the highest average expression for each factor among the cell types 

from each of the respective cell state-specific TMEs (Figure 7B). We note that our use of 

“paracrine” and “autocrine” here is somewhat inexact as these secreted factors could act 

in either manner depending on the context. We merely use this nomenclature to reflect a 

“cancer cell centric” view, i.e., factors secreted by malignant cells are autocrine and those 

deriving from the TME are paracrine.

Tumor phenotyping from mIF data—Supervised machine learning algorithms were 

applied for tissue and cell segmentation (inForm 2.4.1, Akoya Biosciences). Single-cell-level 

imaging data were exported and further processed and analyzed using R (v3.6.2). To assign 

phenotypes to individual malignant epithelial cells, mean expression intensity in the relevant 

subcellular compartment was first used to classify cells as positive or negative for each 

of the 5 markers. Combinatorial expression patterns for the five markers were then used 

to phenotypically classify cells as basal, classical, co-expressing / IC or marker negative 

(3 combinations of 2 basal markers, 7 combinations of 3 classical markers, 1 pan-marker 

negative, 21 combinations of co-expression of basal and classical markers, Figure S4A, 

Table S3). Tumor subtype composition was assessed by calculating the fraction of total 

malignant cells positive for each cell phenotype (Figure S4B, excluding pan-marker negative 

cells).
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• scRNA-seq of metastatic pancreatic cancer and matched organoid models

• Ex vivo to in vivo comparisons reveal loss of cell state heterogeneity in 

models

• Cell state is shaped by the microenvironment in vivo and can be controlled ex 
vivo

• Cell state drives drug response
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Figure 1. Assessing transcriptional states in patient tumors and cancer models
(A) Precision medicine pipelines assess model fidelity for genetics but typically do not 

evaluate RNA states.

(B) Alterations in PDAC driver genes across primary resections (TCGA), metastatic biopsies 

(Panc-Seq), and organoid and cell line (CCLE) models. Grey indicates where genomic data 

were not available. P-values by Fisher’s exact test.

(C) Comparison of PDAC expression signatures from bulk RNA-sequencing in primary and 

metastatic tumors, cell lines, and organoid models in (B). Rows are clustered, columns are 

sorted by average basal-classical score difference. P-values indicate differences between 

patient tumors, cell lines, and organoids by ANOVA.

(D) Schematic of contributors to RNA state that may lead to differences between in vivo and 

ex vivo expression patterns.

(E) Metastatic patient samples were collected via core needle biopsies and dissociated. 

Biopsy cells were allocated for scRNA-seq, and patient-matched organoids were developed 

with downstream serial scRNA-seq sampling.

(F and G) t-distributed stochastic neighbor embedding (t-SNE) for biopsy (F) and matched 

patient-derived organoid cells (G).

See also Figure S1; Tables S1 and S2.
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Figure 2. An intermediate co-expressor state bridges basal and classical phenotypes
(A) Signature scores (rows) for bulk derived expression subtypes in malignant cells 

(columns).

(B) Heatmaps depict the expression of scBasal and scClassical expression programs and 

highlight a co-expressing cell population.

(C) Variation in EMT and IFN response signature expression within malignant cells that 

have scBasal expression.

(D) The intermediate co-expressor (“IC”) expression program is enriched in co-expressing 

cells. Enrichment adjusted P-values (hypergeometric test) for EMT, KRAS, and AKT gene 

sets are indicated at right in (B) and (D).

(E) Gene set enrichment analysis for the 115 genes specific to the intermediate co-expressor 

program.

(F) Malignant cell state diagram for PDAC. ScBasal-scClassical commitment score (x axis) 

and IC score (y axis).

(G) Frequency of co-expressing cells is related to increased mixing of scBasal and 

scClassical cell populations. Log ratio of % scBasal and scClassical cells in each sample 

(x axis; dotted line at 0 indicates equal percentages of scBasal and scClassical cells) versus 

their % IC cells (y axis).

(H) Multiplex immunofluorescence analysis identifies co-expressing cells in matched 

metastatic samples. White box indicates region for co-expression insets at bottom. Scale 

bar represents 10 μm.

See also Figures S2, S3, and S4; Table S3.
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Figure 3. Organoid culture selects against the scBasal state with transcriptional evolution over 
time
(A) Outgrowth and similarity between organoids and matched biopsy samples. Red fill 

indicates successful early (Early) and long-term (Estab.) culture. Right gray scale indicates 

similarity between each biopsy-early organoid pair for inferred CNVs (genotype, Geno.) or 

cell state (State). P-value for Geno. versus State differences determined by Student’s t test.

(B) Schematic for matched in vivo malignant cell and organoid comparison.

(C) Single-cell and average expression of malignant programs (top) and organoid-specific 

genes (bottom) in biopsy cells and matched, early passage organoid cells (n = 13 models). 

P-values determined by Student’s t test. Parenthetical P-values (left) indicate hypergeometric 

test for pathway enrichments.

(D) Swimmer’s plot depicting organoid state evolution in culture. Pie charts indicate the 

fraction of cell states at each time point.

(E) Clonal fractions from KRAS-amplified PANFR0575 biopsy (gray) and organoid (red) 

cells. Clone A (green) is present in both. Heatmap shows expression of scBasal and 

scClassical states in clone A from both contexts.

See also Figure S5.
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Figure 4. Modulation of the media microenvironment allows recovery of scBasal states
(A) Strategies to recover scBasal expression in different media conditions.

(B) Tied dot plot for sample average scBasal score (left) and organoid-specific score (right) 

in the indicated conditions. Color outline indicates sample identity. P-value compares single 

cell distributions within models and was calculated by Student’s t test.

(C) Cell state diagrams for organoid cells cultured in minimal media. P-values are for that 

time point versus the complete media condition and compare B/C commitment (top) and IC 

scores (right) by ANOVA followed by Tukey’s HSD.

(D and E) Violin plots depict scBasal and organoid-specific expression scores in 

PANFR0562 organoid cells (D) or CFPAC1 cell line (E) after 6 days in Complete organoid 

medium or in “Cell line” medium. P-values for differences were calculated by Student’s t 

test.

(F) CFPAC1 cell line growth rate-adjusted dose response curves to SN-38 and paclitaxel 

after culture in standard “Cell line” medium or in Complete organoid medium. Points 

are the mean ± SD of 3 technical replicates. Curves are representative of 2 independent 

experiments.
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(G) Significant pathway enrichments (P-value < 10−12) for top in vivo differentially 

expressed genes (143 genes).

(H) Average expression in biopsy (left) and organoid cells (right) for the 143 top 

in vivo differentially expressed genes (rows), organized by originating tumor’s overall 

transcriptional subtype (colored dots). Parenthetical P-values (left) for enrichment of 

indicated pathways are by hypergeometric test. Overall biopsy versus organoid expression 

difference is determined by Student’s t test (bottom). P-values computed by one-way 

ANOVA followed by Tukey’s HSD (center) are for differences in average expression 

between biopsy transcriptional subtypes (*P-value < 10−8; **P-value < 10−16).

See also Figure S5; Tables S4 and S5.
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Figure 5. Distinct mesenchymal phenotypes and transcriptional state-specific immune 
heterogeneity exist in the liver metastatic microenvironment
(A) t-SNE visualization of non-malignant cells identified in the metastatic 

microenvironment, abbreviations as in Figure S1J (TAM, tumor associated macrophage).

(B) Expression of Fibroblast-like (PC2 low) and Pericyte-like (PC2 high) mesenchymal 

(Mes.) cell programs across different metastatic sites (top).

(C) Density plots for mesenchymal cell phenotype score in single cells from our metastatic 

cohort (top) or previously published PDAC bulk RNA-seq profiles (bottom), fill indicates 

anatomic site. P-value determined by Student’s t test (top) or by ANOVA followed by 

Tukey’s HSD (bottom).

(D) Summary of mesenchymal phenotypes in primary versus liver metastatic PDAC.

(E) Correlation between microenvironment diversity (Simpson’s index, x axis) and the 

average malignant scBasal-scClassical commitment score (y axis) for each scRNA-seq 

sample.

(F) Correlation between TME diversity as inferred by immunogenic signature score (x 

axis) versus average tumor scBasal-scClassical commitment score (y axis) in primary and 

metastatic bulk RNA-seq samples.

(G and H) Sample-level (columns) variation in Simpson’s index (G, dot plot), average 

malignant scBasal-scClassical (G, top heat bar) and IC (G, bottom heat bar) expression, 
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and fraction of non-malignant cell types (H). Samples were clustered and ordered within 

metastatic site (liver versus other) by their fractional representation of cell types. Dots 

indicate top statistically significant cell type frequency differences calculated using a 

Kruskal-Wallis test with multiple hypothesis correction.

(I) Boxplots compare cell type fractions between the scBasal predominant tumors with low 

diversity (PANFR0593, 575, 545) and all others. P-value determined by Student’s t test.

(J) Summary of associations between microenvironmental diversity, non-malignant cell 

types, and malignant cell state.

See also Figure S6; Table S2.
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Figure 6. Tumor state-specific factors rescue malignant transcriptional heterogeneity and reveal 
state-specific drug sensitivities
(A) Schematic describing microenvironmental inputs to tumor cell state in vivo (left, 

“Metastatic environment”) versus ex vivo (center, “Organoid environment”) and a 

strategy to recover malignant transcriptional heterogeneity ex vivo (right, “State-supportive 

environment”).

(B) Differential expression (Wilcoxon rank sum test) of secreted factors between in vivo 
tumor cells scored as scBasal versus scClassical (x axis) and IC malignant cells versus the 

rest (y axis). State-specific genes that pass significance after multiple hypothesis correction 

(p < 0.05) are colored by their group association. (C and D) Cell state diagrams with 

marginal density plots (C) and growth rate-adjusted dose response curves to gemcitabine 

and SN-38 (D) for organoid model PANFR0562 cultured for 3 weeks in control medium 

(OWRNA) or in control medium with TGF-β. P-values in (C) for group differences between 

B/C commitment (top) and IC scores (right) were calculated by ANOVA followed by 

Tukey’s HSD. In (D), points are the mean ± SD of 3 technical replicates. Curves are 

representative of 2 independent experiments.

(E) Cell state diagram time series for PANFR0562 organoids cultured with TGF-β or after 

TGF-β removal.
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(F) Growth rate-adjusted dose response curves to gemcitabine and paclitaxel for models in 

(E). Points are the mean ± SD of 3 technical replicates.

(G) State-specific drug sensitivities in isogenic organoid model pairs skewed toward scBasal 

or scClassical states by altering media formulation. Points are the mean ± SEM of 2–6 

biologic replicates for the difference in growth rate-corrected Area Over the Curve (AOC) 

between each scBasal-scClassical model pair.

See also Figure S7; Tables S5, S6, and S7.
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Figure 7. Malignant transcriptional states respond to TME alterations in organoid models and in 
vivo
(A) Differential expression (Wilcoxon rank sum test) of secreted factors by non-malignant 

cells (paracrine) grouped by their sample-averaged malignant cell expression state in scBasal 

and scClassical (x axis) tumors and IC biopsies and the rest (y axis). State-specific genes 

that pass significance after multiple hypothesis correction (p < 0.05) are colored by their 

group association.

(B) Dot plot for state-specific significant differentially expressed paracrine factors (rows) 

by subtype-specific non-malignant cell types (columns). Dot size represents that cell type’s 

fraction within tumors of each subtype, and fill color indicates average expression. Only cell 

types with a fractional representation > 5% from each subtype are visualized.

(C) Density plots of IFN response score (top) and IC score (bottom) in control organoid cells 

and after addition of IFNγ for 6 days. P-values were calculated by Student’s t test.

(D) Biopsy samples from distinct metastatic sites (liver, dark gray; lung, light gray) in 

the same patient (PANFR0473) demonstrate co-variation in T cell IFNG expression (top), 

malignant cell IFN response score (middle), and malignant IC score (bottom). P-values for 

density plot differences were calculated by Student’s t test.

(E) Biopsy samples from the same lesion pre- and post-immunotherapy (checkpoint 

inhibitor plus a macrophage-targeting agent; pre-, PANFR0489, pink; post-, PANFR0489R, 
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blue) demonstrate coordinated changes with treatment in T cell IFNG expression (top), 

malignant cell IFN response score (middle), and malignant IC score (bottom). P-values for 

density plot differences were calculated by Student’s t test.

(F) Heatmap for malignant cell state shifts from samples in (E).

See also Figure S7; Tables S5, S6, and S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Mouse monoclonal anti-cytokeratin 17, clone E3 Thermo Fisher Cat# MA5-13539; RRID:AB_10980102

Rabbit monoclonal anti-S100A2, clone
EPR5392

Abcam Cat# ab109494; RRID:AB_10859000

Rabbit monoclonal anti-Claudin18.2, clone EPR19202-244 Abcam Cat# ab241330

Rabbit monoclonal anti-GATA-6 XP, clone D61E4 Cell Signaling Technology Cat# 5851; RRID:AB_10705521

Rabbit monoclonal anti-TFF1 (estrogen inducible protein 
pS2), clone EPR3972

Abcam Cat# ab92377; RRID:AB_10562112

Mouse monoclonal anti-cytokeratin, clone AE1/AE3 Agilent/Dako Cat# M3515; RRID:AB_2132885

Mouse monoclonal anti-pan-keratin, clone C11 Cell Signaling Technology Cat# 4545; RRID:AB_490860

Opal polymer HRP anti-mouse and anti-rabbit secondary 
antibody

Akoya Biosciences Cat# ARH1001EA; RRID:AB_2890927

Biological samples

Human PDAC samples This study N/A

Chemicals, peptides, and recombinant proteins

Advanced DMEM/F12 Thermo Fisher Cat# 12634028

RPMI 1640 Corning Cat# 10-040-CV

Fetal bovine serum Sigma Cat# F4135

Penicillin/streptomycin Thermo Fisher Cat# 15140122

Primocin Invivogen Cat# ant-pm-1

HEPES Thermo Fisher Cat# 15630080

GlutaMAX Thermo Fisher Cat# 35050061

A83-01 Tocris Cat# 2939

Recombinant mouse Noggin Peprotech Cat# 250-38E

Recombinant mouse EGF Peprotech Cat# 315-09

Recombinant human FGF10 Peprotech Cat# 100-26

Human [Leu15]-Gastrin I Sigma Cat# G9145

N-acetylcysteine Sigma Cat# A9165

Nicotinamide Sigma Cat# N0636

B-27 supplement Thermo Fisher Cat# 17504044

Recombinant human TGF-β1 Peprotech Cat# 100-21

Recombinant human IFNγ Peprotech Cat# 300-02

Growth factor reduced Matrigel Corning Cat# 356231

TrypLE Express Thermo Fisher Cat# 12604054

Trypsin-EDTA (0.25%) Thermo Fisher Cat# 25200056

CellTiterGlo 3D Promega Cat# G9683

Collagenase XI Sigma Cat# C7657

Dnase StemCell Technologies Cat# 07900

Y-27632 Selleck Chemicals Cat# S1049

ACK lysing biffer Thermo Fisher Cat# A1049201

Trypan blue solution, 0.4% Thermo Fisher Cat# 15250061
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REAGENT or RESOURCE SOURCE IDENTIFIER

Spectral DAPI Akoya Biosciences Cat# FP1490

Opal 520 reagent pack Akoya Biosciences Cat# FP1487001KT

Opal 540 reagent pack Akoya Biosciences Cat# FP1494001KT

Opal 570 reagent pack Akoya Biosciences Cat# FP1488001KT

Opal 620 reagent pack Akoya Biosciences Cat# FP1495001KT

Opal 650 reagent pack Akoya Biosciences Cat# FP1496001KT

Opal 690 reagent pack Akoya Biosciences Cat# FP1497001KT

Xylenes (histological) Fisher Scientific, X3P1GAL Cat# X3P-1GAL

BOND Epitope Retrieval Solution 1 Leica Biosystems Cat# AR9961

BOND Epitope Retrieval Solution 2 Leica Biosystems Cat# AR9640

Antibody diluent/block Akoya Biosciences Cat# ARD1001EA

1x Plus Automation Amplification Diluent Akoya Biosciences Cat# FP1609

ProLong Gold Antifade Mountant Fisher Scientific/Molecular Probes Cat# P36930

Gemcitabine Selleck Chemicals Cat# S1149

Paclitaxel Selleck Chemicals Cat# S1150

SN-38 Selleck Chemicals Cat# S4908

Trametinib Selleck Chemicals Cat# S2673

5-FU Selleck Chemicals Cat# S1209

Afatinib Selleck Chemicals Cat# S1011

AZD6738 (Ceralasertib) Selleck Chemicals Cat# S7693

Binimetinib Selleck Chemicals Cat# S7007

BVD-523 (Ulixertinib) Selleck Chemicals Cat# S7854

Dinaciclib Selleck Chemicals Cat# S2768

Everolimus Selleck Chemicals Cat# S1120

Gedatolisib Selleck Chemicals Cat# S2628

GSK126 Selleck Chemicals Cat# S7061

(+)-JQ1 Selleck Chemicals Cat# S7110

LY3023414 (Samotolisib) Selleck Chemicals Cat# S8322

MK-1775 (Adavosertib) Selleck Chemicals Cat# S1525

Navitoclax Selleck Chemicals Cat# S1001

Olaparib Selleck Chemicals Cat# S1060

Oxaliplatin Selleck Chemicals Cat# S1224

Palbociclib Selleck Chemicals Cat# S4482

Prexasertib Selleck Chemicals Cat# S6385

SHP099 Selleck Chemicals Cat# S8278

Tazemetostat Selleck Chemicals Cat# S7128

YKL-5-124 Selleck Chemicals Cat# S8863

2-mercaptoethanol Sigma Cat# M3148

Buffer RLT QIAGEN Cat# 79216

Buffer RLT Plus QIAGEN Cat# 1053393

Deoxynucleotide (dNTP) solution mix NewEngland BioLabs Cat# N0447L

Superase.In RNase Inhibitor Thermo Fisher Cat# AM2696
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REAGENT or RESOURCE SOURCE IDENTIFIER

Maxima H minus reverse transcriptase Fisher Scientific Cat# EP0753

AMPure XP beads Beckman Coulter Cat# A63881

Guanidinium thiocyanate Thermo Fisher Cat# AM9422

N-Lauroylsarcosine sodium salt solution (Sarkosyl NL) Sigma Cat# L7414

Exonuclease l New England BioLabs Cat# M0293S

Klenow Fragment New England BioLabs Cat# M0212L

Polycarbonate membrane filters 62x22 Fisher Scientific/Sterlitech 
Corporation

Cat# NC1421644

MACOSKO-2011-10 mRNA Capture Beads Fisher Scientific/ChemGenes Cat# NC0927472

ERCC RNA spike-in mix Thermo Fisher Cat# 4456740

Critical commercial assays

AllPrep DNA/RNA/miRNA Universal kit QIAGEN Cat# 80224

Nextera XT DNA Library Preparation Kit Illumina Cat# FC-131-1096

Nextseq 500/550 High output v2.5 kit (75 cycles) Illumina Cat# 20024906

NovaSeq 6000 S2 kit (100 cycles) Illumina Cat# 20012862

TruSeq Stranded mRNA Library Prep kit Illumina Cat# 20020595

Kapa HiFi HotStart ReadyMix Kapa Biosystems Cat# KK2602

KAPA HyperPrep kit (PCR-free) Kapa Biosystems Cat# KK8505

High Sensitivity D5000 ScreenTape Agilent Cat# 5067-5592

Qubit dsDNA High-Sensitivity kit Thermo Fisher Cat# Q32854

Quant-iT Ribogreen RNA Assay kit Thermo Fisher Cat# R11490

Quant-iT PicoGreen dsDNA Assay kit Thermo Fisher Cat# P11496

Deposited data

Bulk and single-cell transcriptomic data from PDAC patient 
samples and organoid models

This study https://singlecell.broadinstitute.org/
single_cell/study/SCP1644 dbGaP: 
phs002712.v1.p1

Primary PDAC genomic and transcriptomic data (TCGA, 
Pancreatic Ductal Adenocarcinoma)

Cancer Genome Atlas Research 
Network, 2017

https://portal.gdc.cancer.gov/projects/
TCGA-PAAD

Metastatic PDAC genomic and transcriptomic data (Panc-
Seq)

Aguirre et al., 2018 dbGaP: phs001652.v1.p1

CCLE transcriptomic data Ghandi et al., 2019 https://portals.broadinstitute.org/ccle

TCGA transcriptomic data (other malignancies) Vivian et al., 2017 https://toil.xenahubs.net

Experimental models: Cell lines

Human PDAC organoids This study N/A

CFPAC-1 ATCC Cat# CRL-1918; RRID:CVCL_1119

L Wnt-3A cells for Wnt-3A conditioned medium ATCC Cat# CRL-2647; RRID:CVCL_0635

Cultrex 293T cells for R-spondin1 conditioned medium Trevigen Cat# 3710-001-K; RRID:CVCL_RU08

Oligonucleotides

Seq-Well ISPCR: AAG CAG TGG TAT CAA CGC AGA 
GT

Integrated DNA Technologies N/A

Custom Read 1 Primer: GCC TGT CCG CGG AAG CAG 
TGG TAT CAA CGC AGA GTA C

Integrated DNA Technologies N/A

Seq-Well 5¢ TSO: AAG CAG TGG TAT CAA CGC AGA 
GTG AAT rGrGrG

Integrated DNA Technologies N/A

Cell. Author manuscript; available in PMC 2022 February 08.

https://singlecell.broadinstitute.org/single_cell/study/SCP1644
https://singlecell.broadinstitute.org/single_cell/study/SCP1644
https://portal.gdc.cancer.gov/projects/TCGA-PAAD
https://portal.gdc.cancer.gov/projects/TCGA-PAAD
https://portals.broadinstitute.org/ccle
https://toil.xenahubs.net


A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Raghavan et al. Page 51

REAGENT or RESOURCE SOURCE IDENTIFIER

Seq-Well Custom P5-SMART PCR hybrid oligo: AAT GAT 
ACG GCG ACC ACC GAG ATC TAC ACG CCT GTC 
CGC GGA AGC AGT GGT ATC AAC GCA GAG TAC

Integrated DNA Technologies N/A

Seq-Well dN-SMRT oligo: AAG CAG TGG TAT CAA CGC 
AGA GTG ANN NGG NNN B

Integrated DNA Technologies N/A

Software and algorithms

R project for statistical computing v3.5.1 R Core Team https://www.r-project.org

R package – Seurat v2.3.4 GitHub https://github.com/satijalab/seurat

R package – Circlize v0.4.8 CRAN https://CRAN.R-project.org/
%20package%20=%20circlize

R package – infercnv v0.99.4 GitHub https://github.com/broadinstitute/
inferCNV

R package – data.table v1.12.0 GitHub https://github.com/Rdatatable/data.table

R package – ggplot2 v3.2.1 CRAN https://CRAN.R-project.org/
%20package%20=%20ggplot2

R package – ComplexHeatmap v2.7.3 Bioconductor https://bioconductor.org/%20packages/
ComplexHeatmap/

R package – dplyr v1.0.7 CRAN https://cran.r-project.org/web/packages/
dplyr/

STAR GitHub https://github.com/alexdobin/STAR

Cumulus Li et al., 2020 https://cumulus.readthedocs.io/

Broad Picard pipeline v1.90 GitHub https://broadinstitute.github.io/picard/

Genome Analysis Toolkit (GATK) v1.6-5-g557da77 and 
v.4.1.6.0

Broad Institute https://gatk.broadinstitute.org/hc/en-us

Python Programming Language v3.7.4 Python https://www.python.org

Other

Leica BOND RX Research Stainer Leica Biosystems https://www.leicabiosystems.com/
ihc-ish-fish/fully-automated-ihc-ish-
instruments/bond-rx/

Vectra 3.0 Automated Quantitative Imaging System PerkinElmer/Akoya Biosciences https://www.akoyabio.com/phenoptics/
mantra-vectra-instruments/vectra-3-0/
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